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Abstract 

An extenswn of logrc programmmng, called “ordered logic 
programmmng”, which mcludes some abstractrons of the 
object-orrented paradigm, IS presented An ordered program 
consists of a number of modules (oblects), where each 
module 1s composed by a number of rules possrbly wrth 
negated head predicates A sort of ‘isa” hterarchy can be 
defined among the modules m order to allow for rule mnherr- 
tance Therefore, every module sees its own rules as local 
rules and the rules of the other modules to which It as con- 
nected by the “lsa” hierarchy as global rules In this way, as 
local rules may hide global rules, rt IS possible to deal wrth 
default properties and exceptions Thrs new approach 
represents a novel attempt to combme the logtc paradigm 
wrth the object-oriented one m bwwledge base system 
Moreover, thrs approach provuies a new ground for explarn- 
ing some recent proposals of semantics for classical logic 
programs wrth negation m the rule bodies and gives an 
mterestmng semantics to logrc programs with negated rule 
heads 

1. Introduction 

In this paper we present an extension of logic prograrmnmg, 
called ordered logic programmmng, that mcludes, besides to 
classical mference mechamsms, object-onented abstrachons 
and amemtles for non-monotomc reasonmg Ordered logic 
programs are parnally-ordered sets of “traditional” logic pro- 
grams (called components) where negatmn may also occur m 
the rule heads and were first mtroduced m [LV] 

Pemuss~on to copy wtbout fee all or part of this q atenal IS granted prwded 
that the copses are not made or dWtbutcd for drect commemal advantage, the 

An ordered program 1s a mulhple possibly contradictory 
representanon of the knowledge, one for each component of 
it, that can be thought of as a module or an object It fol- 
lows that there are as many meanmgs as components Given 
a component C,. the meanmg of C, 1s given by the rules m 
C, as well as the rules m C, with C, I C, In other words a 
program mherits rules from other programs, possible contrad- 
xtlon 1s removed m two different ways by overruling and by 
defeating 

P, = <(Cl, C,), (Cl < Czl>. 

where 

C2=( 
brrd (penguin) , 
bird (pigeon) , 
fly(x) - bird(X), 
-ground-anunal (X) - brrd (X ) ) 

cl= I 
ground~arumal (penguin ) , 
-fly (X) - ground~anwnaf (X) ) 

Fig 1 Ordered program Pl wrth overrulrng 

The process of overrulmg 1s stiongly related to the fact that, 
as we do allow negation also m the head of predicates, con- 
tradlctmg mformahon could flow around if not blocked A 
rule of a component C, gets overruled m the component C, 
with C, < C, if It mtroduces some contradlctlon m C, (see 
the ordered program P, of Figure 1 - the pengum does not 
fly since some rules m C!z are overmled m CJ 

The second way to avoid contradlctmg mformatlon flow IS to 
defeat the whole mformahon This happens when the com- 
ponent C, mherlts contradlctmg rules from two other com- 
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loan-rute (16) 

Then, as the confhctmg mformatlon take loan and 
take loun should be mferred, both pieces of iformatmn 
are defeated and nothmg can be said about takmg loans at 
myself level Suppose finally that the two rules defined at 
myself level are the followmg 

lnf lutron (19) 

loun-rute ( 16) 

Then the rule of Expert 4 IS overmled by the rule of Expert 3, 
as there is no conflictmg mfonnation coming from Expert2 
and Expert3, take-loan IS mferred at myself level 

In tlus paper we elaborate the declarative model-theoretic 
semanncs of ordered programs A nice feature of this seman- 
hcs IS that It 1s able to capture the stable model semantics for 
classical logic programming with negation on rule bodes 
[GLl,SZ] This confirms that our extension of logic progrsm- 
mmg 1s well founded 

The paper 1s orgamzed as follows The semantics of ordered 
programs IS described m Section 2 In Sechon 3 we show 
that the semantics of ordered programs provides a new frame- 
work to explam the semantics of classical logic programs 
with negation In Section 4, we show that, as a particular 
case of ordered program, a logic program with negated head 
rules can be qupped with an mterestmg semantics where the 
rules with negated heads play the role of exceptions to gen- 
eral rules We present the conclusion and &scuss further 
work m Section 5 

c3= 1 
rrch (mrmmo ) 
-poor(X) - rich(X)) 

C2=( 
poor (mwnmo ) 
+wh(X) - poor(X)) 

cl= 1 
free-tlckzt (X) - poor(X) ) 

Fig 2 Ordered program P2 with defeatmg 

ponents C, and Ck In this case, both pieces of mformatlon 
are defeated (see the ordered program P2 of Figure 2 - we 
cannot establish whether mlmrno 1s to receive a free ticket as 
from the point of view of C1, C3 cannot be trusted better 
than C2 or vice versa) It turns out that the meanmg of a pro- 
gram may be partial 

P2 = <(Cl, c2, c3, c41, {Cl < c2, Cl < CJ, c3 < C4)>, 

c2= I 
take-loan t mflu.tion(X), X>ll ) 

c4= 1 
7tuke_loun t loan-rute (X), X >14 ) 

c3= 1 
tuke-loan t if lutron (X ), bun-rute (Y ), 

X>Y+2 ) 
cl= 0 

Fig 3 Loan progrum 

The flavor of the language, as given so far, confirms that it is 
a powerful attempt to mclude object-onented mechamsms, 
notably, mherltsnce and default values, mto logic program- 
ming Our clann is that apphcation domams of logic pro- 
grammmg are extended by the proposed approach for It 1s 
possible to represent uncertam knowledge as required m 
advanced knowledge base applications Consider the pro- 
gram m Figure 3, it models a situation where myself (com- 
ponent C1 that IS empty for now) has taken some knowledge 
on loan procedures from three experts, where the knowledge 
of Expert2 (component Cd IS mdependent from those of the 
other two experts On the other side, Expert3 (component 
C3) has refined the knowledge of Expert4 (component Cd) 
Obviously, as no rule can be actually fired, no mference 1s 
possible at myself level Suppose now that the rule 

mflutlon(12) 

IS stated at myself level Then it IS possible to mfer from 
Expert2 that take-loan is true Suppose now that, at myself 
level, the followmg two rules are mstead defined 

mnf lutron (12) 

2 Ordered Programs 

Let us first introduce the basic concepts and notahons of our 
language 

We suppose that a (possibly mfimte) number of constants, 
variables and symbols are avallable The basic tokens of the 
language are terms, predicates and hterals A term 1s recur- 
sively defined as a variable, a constant or f (tl, 9t.h 
where t,. , t, are terms and f IS a function symbol A 
predrcute 1s a formula of the language that 1s of the form 
p (t), where p IS a predicate symbol with anty n (n20) and t 
IS a sequence of n terms (arguments of the predlcute) A 
lrterul 1s either a predicate (posrtrve lrterul) or its negaclon 
(negutrve literal) A term, predicate or literal 1s ground If it 
is vanable free 

Two hterals are complementary if they are of the form A and 
-J , for some predicate A In general, given a hteral A and a 
set of ground hterals X, -A denotes the complement of A 
and -X denotes the set of hterals (-J 1 B E X ) Moreover, 
X’ (resp X-) denotes the set of all positive (resp, negative) 
hterals m X Fmally, we say that X 1s consrstent If there are 
not two hterals A and B m X such that A = -8 

A negutwe rule (or, snnply, a rule) 1s a formula of the 
language represented with the usual Prolog’s notation [L] as 
follows 
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Qo-Ql> >Qm 

where Qo, , Q,,, are hterals, Qo IS the head of the rule, 
and QI, , Q,,, IS the body of the rule If QO 1s positive 
then the rule 1s a seminegufrve rule, moreover, if also 
QI> 9 Qm are all positive then the the rule IS a posttrve 
rule (or Horn clause) Given a rule r, H (r ) denotes the head 
of r and B (r ) denotes the set of all hterals m the body of r 
A rule 1s a fact d lt has an empty body and 1s ground if it 1s 
vanable free 

A negative program 1s a set of rules If all rules are semme- 
gahve (resp , positive) then the program is called a seminegu- 
tive program (resp , positive program) 

Let P be a negative program The Herbrand’s Universe of P 
(denoted by HP) 1s the set of all possible ground terms recur- 
sively constructed by usmg constants and function symbols 
occurrmg m P The Herbrand’s Base of P (denoted by BP) 
1s the set of all possible ground predicates whose predicate 
symbols occur m P and whose arguments are elements of 
HP A ground rnstunce of a rule r m P 1s a rule obtamed 
from r by replacmg every vanable X m r by e(X), where @ 
1s a mapping from the set of all vanables occurrmg m P to 
HP The set of all ground mstances of all rules m P 1s 
denoted by ground (LP ) An rnterpretutlon for P 1s any con- 
sistent subset of Bp v -8~ 

Let I be an mterpretation for a negative program P, then T 
denotes the set of predicates {A 1 A e Bp, and neither A nor 
4 1s m I) Note that, accordmg to the mterpretatlon I, a 
ground literal 1s true d and only if it IS member of I, there- 
fore, f contams all the elements of the Herbrand base for 
which no value has been assigned m the mterpretatlon 
(undefined elements) [FB, P3, SZ] An mtexpretatlon 1s total 
if T is empty 

For a positive or semmegatlve program P, those total 
mterpretabons for P that make true all rules m ground(P) 
are called total models and a total model M for P 1s mmunal 
if there exists no other total model N for P such that M’ 1s a 
proper subset of N+ It 1s known that a total model exists for 
every positive or semmegahve program, moreover, the 
mmunal total model of a positive program 1s unique and 
represents the meamng of it [L, U] On the other hand, the 
notion of model cannot be easily extended to negative pro- 
grams as mconslstency can now anse because of negative 
head predicates and there are many alternative ways to cope 
with mconsistency In &us paper, the semsnhcs of negative 
programs will be eventually explamed as a parttcular case of 
a more general class of logic programs (ordered programs) 

Defwtron 1 

(a) An ordered program 1s a fimte parhally-ordered set of 
negative programs (called components) where ‘I” 1s 
the parhal order 

(b) An mterpretatron for an ordered program m a com- 
ponent C, 1s any mterpretahon of C,*, where C,* 
denotes the negative program (r 1 r E C, and 
c, s c, ) cl 

Let P be an ordered program The restnctlon of “I” to all 
pairs of dtstmct components 1s denoted by ‘I<“, moreover, 
given two dlstmct components C, and C,, C, c> C, meam 
that neither C, < C, nor C, < C, Throughout all examples 
of thts paper, an ordered program P 1s represented by a pan 
cC,L> where C 1s the set of components and L 1s the rela- 
hon “<” Fmally, given a rule r m ground(C,*), C(r) 
denotes the component C, contnmng the rule of whch r 1s 
the ground mstance If a rule occurs m more than one com- 
ponent then we assume that it has dishnct ground mstances 
so that C 1s actually a funchon from ground mstances to 
components 

Every component C, of an ordered program can be thought 
of as a module or object with local rules (thus those defined 
m C, ) and wtth global rules (thus those defined m all other 
components C, such that C, < C,). where local rules may 
hde (overrule) global m1e.s The “4’ relation 1s a sort of Isa 
hierarchy for the components and provide the ground for 
mherltance It turns out that a predicate can be defined m 
different ways m the various components, thus the program 
P has several meamngs, one for each of its components 

Example 1 Consider the ordered program P1 of Figure 1 
To the best of the knowledge of Cl, the penguin IS not a 
ground urwnal and flies whereas these facts are contradicted 
m C; On the other side, C 1 can mhent a rule from Cz to 
mfer that the pIgeon flies 0 

Defmltlon 2 Given an mterpretahon I for P m C, , a rule r 
m ground (C,*) is 

appluxble if B (r ) E 1, 

applred if it IS applicable and H (r ) E I, 

blocked If there exists A m B (r ) such that -A E I, 

overruled d there exists a non-blocked rule i m 
ground (C,*) such that C(i) c C(r), and 
H(i) =-J?(r), 

defeated if there exists a non-blocked rule i m 
ground (C,*) such that (1) C(i) <> C(r) or 
C(i)=C(r),and(n)H(i)=4(r) Cl 

EMmple 2 Take the ordered program P1 of Example 1 The 
set I, = (bird (pigeon ), bird (penguin), 
ground~arumal @enguin), 7ground_anunal @rgeon ), 
fly (pigeon), 7f ly (penguin)) is a total mterpretation for P 1 
m C1 The ground rule 

fly (penguin ) - bu-d (penguin) 

1s applicable but it 1s overruled by the applied ground rule 

7f ly @enguin) - ground~anrmal @engurn) 

The ground rule 

7fly@igeon) - ground~anunal@igeon) 

1s both blocked and non-applicable 

Consider now the ordered program $1 = <(C ) , 0>, where 
C contams all the rules that are either in the component C1 
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or C2 of the ordered prtgram PI In this case, consldermg I1 
as an mterpretahon for P 1 m C , the applicable rule 

fly @engum) - bard @engum) 

1s defeated by the applied rule 

-fly (penguin) - ground-animal (penguin) 

Also the applied rule 

ground_anrmal (penguin ) 

1s defeated by the applicable rule 

Iground-anamal (penguin) - bard @engurn) 

Let P2 be the ordered program m Figure 2 Then the set 
I2 = (rtch (mrmmo), poor (munmo )) 1s a (non-total) mterpre- 
tatlon of P3 m C1 The two ground rules 

rrch (mamma ) 

*ach (mamma ) - poor (mrmmo ) 

defeat each other %s means that more mformahon 1s 
needed on mamma m order to certify whether he 1s nch or 
not Cl 

Defirutaon 3 Let P be an ordered program and C be a com- 
ponent of it An mterpretahon M IS a model for P m C if 
(a) for each A m M. every rule r with H(r) = 4 IS either 
blocked or overruled by an apphed rule and (b) for each A m 
R, every applicable rule r with H(r) = A or H(r) = 4 IS 
either overruled or defeated Cl 

Condihon (a) guarantees that either the value of a hteral A m 
a model cannot be contradicted by any rule (no matter value 
1s assigned to any undefined element) or d It 1s contradicted 
then 1s reconfirmed by a most specific rule (1 e, a rule m a 
lower component), condltlon (b) says that the value of A that 
could be mferred by some applicable rule can remam 
undefined only if dus rule 1s overruled or defeated, possibly 
by asslgnmg suitable values to some undefined elements 

Example 3 Consider the ordered programs P 1, P 1 and P2 of 
Example 2 The mterpretahon II 1s a model for PI III Cl On 
the other side, II 1s not a model for the ordered program p, 
m C A model for PI m C IS f, = (bard (pigeon). 
brrd (pengum), fly (pigeon), -ground-anunal @tgeon )) , note 
that fly (penguin) and grouru-urumal (pengum ) are 
undefined The mterpretatlon I2 IS not a model for P2 m C1 

We are now given the ordered program P3 composed by only 
one component, C. conslstmg of the followmg two rules 

a- b 

TCJ - b 

We have that (b), (Tb), (u,-~b). (~u,-~b) and () are 
models, whereas all other mterpretahons (mcludmg the Her- 
brand Base) are not Cl 

The previous example has shown that the Herbrand Base 1s 
not necessarily a model as for eadmonal logic programs 
Then one could suspect that not all ordered programs have a 
model However, we next prove that a model always exists 
To thy end, we need to introduce some prehmmary 
defimtlons and results 

Defmataon 4 Let P be an ordered program and C be one of 
Its component Let I be the fanuly of all mterpretations of P 
m C The ordered rmmedaate transjormatron for P m C IS 

the function Vp,c I + I defined as follows given an 
mterpretatlon I. Vplc(Z) = (A 1 there exists a rule r m C’ 
such that H (r ) = A, B (r ) E I and r IS neither overruled nor 
defeated (w r t I) by any rule) Cl 

LEMMA 1 The transformatwn V,IC IS monotone and has 
the bast jixp01nt 

PROOF (sketch) It IS routme to prove that Vpc IS mono- 
tone But VP ~c 1s monotone m the complete lattice d.9 
Hence its least fixpomt exists [T] Cl 

From now on, we shall denote the least fixpomt of V,lc by 
V~ldQ9 
PROPOSITION 1 Given an ordered program P and a com- 
ponent C , V&(0) fl a model for P an C 

PROOF (sketch) It 1s easy to see that the two condihons of 
Defimtlon 3 are satisfied Cl 

Thus we have proved that a model exsts for each ordered 
program m every of its components A subsequent question IS 
whether a total model always exists 

Dejinrtron 5 Let P be an or&red program and C a com- 
ponent of it A model M for P m C 1s 

(a) total if M is empty, 

(b) exhaustive if there exists no other model 10 for P m 
C such that M IS a proper subset of fi 0 

Obviously every total model IS also exhaustive but the con- 
verse 1s not true As a model always exists, an exhaushve 
model must exist as well, on the other side. the existence of a 
total model 1s not guaranteed For mstance. no total model 
exists for the program P2 of Example 2 m C We also 
pointed out that it may happen that there exists a non-total 
exhaushve model even when there 1s a total one 

Fmdmg a total model 1s hard even for semmegahve pro- 
grams Besides such a model does not necessarily capture the 
“mtended” semanhcs of the program, 1 e, it may contam 
hterals that are not derivable from the program (mformally, 
such hterals are “assumptions” as theta value 1s, m a sense, 
arbitrary) For mstance well-founded semantics [VRS] does 
not guarantee the existence of a total well-founded model 
As a consequence, we prefer to find a partial model without 
any assumphon rather than a larger (even total) model with 
assumptions Let us elaborate hs issue next 

Definrtron 6 Let P be an ordered program, C be a com- 
ponent of it, and I be an mtexpretatlon for P m C A non- 
empty subset X of I 1s an assumption set w r t I If for each 
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A m X, every rule r m ground(C* ) with H(r) = A sahsfies 
one of the followmg condlhons 

(4 r 1s non apphcable, or 

(b) r IS overruled, or 

(cl r 1s defeated, or 

(d) B(r)nX+0 Cl 

Note that the notion of assumption set was first mtroduced m 
[LV] and 1s an extension of the defimhon of assumphon set 
used m [SZ] that, m mm, 1s an extension of the nohon of 
unfounded set given m [VRS] The models we are going to 
analyze are those which do not mclude any assumphon set 

Defmtron 7 Let P be an ordered program, C be a com- 
ponent of P and M be a model for P m C Then M IS an 
ussumptron-free model for P m C If no subset of M IS an 
assumphon set w r t M 0 

Example 4 Consider the ordered programs PI, PI and P2 of 
Examples 2 and 3 The model 11 for PI m C1 as well as i1 
for PI in C is assumption free The empty set is an 
assumption-free model for P2 m C1 Take now the ordered 
program P3 of Example 3 The empty set 1s the only 
assumption-free model for P3 in C 

Consider now the ordered program P4 with a umque com- 
ponent C, consishng of the followmg rule 

a-b 

The only assumption-free model of P4 m C1 IS the empty set, 
tins means that no ground literal 1s hue without makmg some 
assumphon Note that the model (7a ,Tb ) IS not assumphon 
free m our defimhon Actually, It 1s not assumption-free even 
for the tradihond program C, for It 1s based on some parhcu- 
lar lmpllclt assumphon for asserting negahve ground hterals 
(e g , negation by failure [Cl], stratified negahon [ABW. CH, 
N, VG], perfect model [Pl, P2], well-founded model [VRS], 
stable model [GLl], etc ) The model (~a ,Ib ) becomes the 
only assumphon-free model of P m C1 if we add a second 
component Cz with the followmg two rules 

-?a 

-,b 

andC1<C2 Cl 

As It has been sketched m the previous example and as it 
will be formally shown m the next sechon, most of recent 
semanhcs for negahon are subsumed by ordered program 
semanhcs by JUSt expliclhng that every negahve lIteral 1s hue 
unless it 1s overruled The advantage of our approach even 
for the case of programs with only one component 1s that any 
assumphon for derlvmg negahve laterals must be explicitly 
declared, and, besides, it 1s possible to use more assumphons 
at the same hme For instance, when definmg a predicate, 
three different situahons may snse (1) every negahve literal 
IS true unless it 1s overruled (classical situahon), (II) every 
posihve hteral 1s tTue unless it is overruled (in tbls case, the 
“sign” of the predicate could be changed to reduce to the pre- 

vious case), and (m) every literal 1s undefined unless its value 
1s expbatly derived All the three cases can be captured by 
ordered programs 

We now formalize the mhntion that an assumphon-free 
model only contams ground bterals wluch can be mferred 
from the rules of the program 

Definatron 8 Let P be an ordered program, C be a com- 
ponent of P and M be a model for P 111 C The enabled ver- 
slon of ground(C* ), denoted by Ch. 1s the program contam- 
mg all applied rules of ground (C * ) Cl 

Let us now apply the mmedrate consequence transformatron 
T as defined for semmegahve and positive programs to C& 
Hence, given any mterpretahon I for P m C, Tch(I) = (A 1 

there exists a rule r m C’s such that A = H (r ) and 
B(r)EI) 
LEMMA 2 Let P be an or&red program, C be a com- 
ponentofP andM beumodelforP mC ThenT 

% 
u 

monotone and has the least jixpoant, denoted by TFh (0) 

Moreover, T+, (0) c M 

PROOF (sketch) It 1s easy to recognize that Tc’ IS defined m 
the complete lattice 4,~, where Z 1s the family of all 
mterpretations for C’ , smce no contradichons can anse m 
C’, moreover, Tee 1s monotone It follows then Tee has the 
least fixpomt Finally, since for each r m C’ , H (r ) 1s m M 
by construchon, T$ (0) E M Cl 

THEOREM 1 Let P be a program and C be a component 
of at 

(a) A model M for P an C u assumptaon free af and only 
tfT,“, (0) = M 

(b) V;,,(O) as an assumptaon-free model for P an C and 
as the mtersectron of all models for P an C 

PROOF (sketch) (a) Suppose that M IS a model for P m C 
and that Tpe (0) = M We prove by contradichon that M IS 
assumphon free Let us assume that X E M 1s an assumphon 
set w r t M It 1s easy to see that no rule m C’ 1s non- 
applicable, overruled or defeated Hence, for each A m X, 
every rule with H (r ) = A contams at least an element of X 
m its body Hence, M - X 1s a model (contradlchon with the 
fact that M 1s the least fixpomt of T,, Hence M IS 
assumption-free Suppose now that M 1s an assumphon free 
model for P m C We agam proceed by contradichon to 
prove that T; (0) = M Suppose then that TFe (0) # M By 
Lemma 2, TFe(0)cM Let X= M-T,“,(0) By 
definition of C’ , for each A m X, there exists no rule r of 
C’ such that H (r ) = A Hence X 1s an assumphon set and 
we get a contradlchon Hence, TFe (0) = M 

(6) The proof that V;,(0) 1s assumption free 1s rather 
straightforward On the other side, it can be shown that 
every model N for P m C 1s a fixpomt of Vp,c Therefore, 
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the least fixpomt of Vplc 1s contamed m N 0 

It follows that V&(0) is the least model for P m C Let us 
now tum our attention to maxnnal assumphon-free models 
for P m C, I e , any assumption-free model that 1s a proper 
subset of no other assumption-free model for P m C 

Defitutaon 9 Let P be an ordered program and C a com- 
ponent of it A model M for P m C IS stable if M IS a max- 
imal assumphon-free model 0 

We pomt out that the umqueness of stable models 1s not 
guaranteed 

Example 5 Let P5 be the ordered program <(Cl, C,), 
(C, c C2)> where C2 has the followmg rules 

a 

6 

C 

and C1 consists of 

-a - b,c 

76 - u 

76 - 76 

[a, 76, c) and (-~a, 6, c) are two stable models for Ps m 
Cl, whereas (c ) 1s an assumption-free (but not stable) model 
forPgmC1 Cl 

The next result shows that every assumphon-free model IS an 
“approxunahon” of a total or exhaushve model m the sense 
that, by asslgmng value to some of the undefined elements 
and without changmg the value for those hterals that are 
already m the model, a total or exhaustive model can be 
achieved 

PROPOSITION 2 Let P be a program and C be u com- 
ponent of at Then every model for P an C 1s a (not neces- 
sarily proper) subset of an exhaustrve model for P In C 

PROOF (sketch) Let M be an assumption-free model for P 
m C Let L be the fannly of all consistent subsets of 
R u -@ such that M u L IS a model for P m C If L 1s 
empty then M 1s obvtously exhaustive and, then, the propoa- 
tlon holds Otherwlse, we select a maxnnal element L m L, 
1 e , L 1s m L and 1s not a proper subset of any other element 
m L It 1s easy to see that M u L 1s an exhaushve model 
for P m C Cl 

It turns out that a stable model 1s the maxlmal subset of some 
exhaustive model that can be mferred from the rules 

3. Semlnegatlve Programs 

In this sectron we show that the semantics for ordered pro- 
gram 1s able to capture the semanhcs for clssslcal semmega- 
tive programs 

Let C be a semmegahve program We say that the ordered 
versaon of C , denoted by OV(C ). 1s the ordered program 
<(Y&, C), (C < -&)> (note that the Herbrand Base -& 

1s here considered as a set of negahve rules with empty 
body) As it will be shown next, the component 4~ 
corresponds to an explicit closed world assumphon declara- 
hon [R] “every element of the Herbrsnd Base 1s false unless 
its truth is proved” Note that, mstead of wrltmg down all 
the elements m Bc it is sufficient to wnte a rule 

-P(X,, , x,> 

where X1, X,, are &stmct vanables, for each n-ary 
predicate symbol p occurrmg m C In tis case the srze of 
OV(C ) 1s polynomlally bounded m the size of C (the size of 
a program is the total number of symbols that occur m tt) 

We now show that there ae close relahonships between the 
models of C (as m c1ass~a.l logic programmmg) and the 
models for OV(C) 1~1 C 

Example 6 Consider the ancestor program C 

anc(XB) 

unc(X,Y) - parent(X,Z), anc(Z,Y) 

where parent 1s defined through a database relanon [U] 
Then OV(C) = <(C, 6), (C c d)>, where c 1s 

-parent (X ,Y ) 

,anc(X,Y) 

Note that we have used a reduced form to write down BC q 

Let us now mtroduce the notlon of 3-valued model for sem- 
megatlve programs, as given m [P3] Let C be a semmega- 
hve program and I be an mterpretatlon of it Gwen a ground 
literal A , value (A ) IS equal to T (rue) if A IS m I, F (alse) If 
-A IS m I and V(n&fined) otherwlse (1 e, either A or 4 
1s m T) Moreover, we assume that F c U c T and that the 
value of a conJunchon J of ground hterals 1s the nummal 
value of these hterals, I e , value(J) = mrnA mJ (value (A )) 
If J 1s empty then we assume that value(J) = T Then I IS a 
3-valued model for C if for each rule r m ground(C), 
value(H (r)) 2 value@(r)) Note that d a 3-valued model 1s 
total then it makes true all the rules m ground(C) and every 
exhaushve model for C IS total 

PROPOSITION 3 Let C be u semrnegutave program Then 
every model for OV(C ) an C as a 3-valued model for C 

PROOF (sketch) Let M be a model for OV(C) m C Obvl- 
ously M 1s an interpretation for C Let r be any rule m 
ground(C) In order to prove that M 1s a 3-valued model for 
C it IS sufficient to show that value (H (r )) 2 value@ (r )) 
Suppose that value (H (r )) < U otherwlse the proof would be 
tnvlal If vulue(H (r)) = (I, then H(r) IS m R Since r can- 
not be overruled or defeated, by definition of model for 
ordered programs r 1s not apphcable, 1 e value (B (r )) 5 U 
If vulue(H(r)) = F. then -&Z(r) 1s m M Since r cannot be 
overruled, by defimhon of model for ordered programs r 1s 
blocked, 1 e , value (B (r )) = F 0 
Note that the converse of Proposition 3 does not hold 
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,?hmpfe 7 Corder the progrsm C conslshng of the fol- 
lowing rule 

P - YP 

We have that (p ) 1s a 3-valued model for C but not for 
OV(C) m C smce the unphctt rule up IS not overruled by a 
non-blocked rule In fact, the rule of C 1s not apphcable 0 

Let us now mtroduce the concept of founded model as given 
m [SZ] To tins end, we apply the stability transformation 
condihon for a semmegahve program given m [GLl] to 3- 
valued models Gwen a semmegahve program C and a 3- 
valued model M for C, the posrtave version of C w r t M, 
denoted CM, 1s the posihve program obtamed from 
ground(C) by delehng (a) each not applied rule and (c) all 
negahve laterals from the remammg rules Then M IS 
founded If T& (0) = M’ Moreover, M IS stable when it 1s 
maxnnally founded (I e , it 1s founded and IS a proper subset 
of no other founded model) Note that if M IS total then M 
1s stable also accordmg to the defimhon of [GLl] We recall 
that the latter delimhon only refers to total models 

PROPOSITION 4 Let C be u semanegatave program Then 
every rnterpretatwn M for C as a 3-valued, founded model 
for C af and only af M LF an assumptwn-free model for 
OV(C) an C 

PROOF (sketch) Suppose that M 1s an assumption-free 
model for OV(C) III C Then, by Proposlhon 3, M IS a 3- 
valued model for C It IS easy to see that T& (0) c M’ 
Moreover. it can be shown that TFM (0) = M+ smce other- 

wise M - TFM (0) would be an assumption set w r t M 
Hence M 1s also founded Suppose now tbat M IS a 3-valued, 
founded model for C It 1s easy to see that the condlhon (a) 
of Definition 3 1s sahsfied because M 1s a founded model and 
the condihon (b) of Definition 3 is sahsfied because M IS a 
3-valued model Hence M 1s a model for OV(C) m C 
Fmally, the fact that M 1s assumption free denves from the 
fact that M 1s founded 0 

COROLLARY 1 Let C be a semanegatave program Then 
an rnterpretataon M for C IS a stable model for C af and 
only af M 1s a stable model for OV(C) an C 

PROOF It follows from Proposition 4 and the definitions of 
stable models Cl 

We have then shown that recent semanhcs for negahon such 
as stable model semantics can be also explamed m the fiame- 
work of ordered programs Nevertheless, Example 7 has 
pomt out that not all 3-valued models are captured by an 
ordered program To remove tius hmltahon, we mtroduce a 
different ordered version of a semmegahve program C , called 
the extended version of C and denoted by Ev(C), that 1s 
obtamed from OV(C) by addmg the rule A - A, for every 
A m Bc, to the component C The above rules are called 
reflexave rules Also m this case the number of such addl- 
tlonal rules can be dramatlcly reduced by wrltmg them m a 
non-ground form 

PROPOSITION 5 L.et C be a semmegatrve program and M 
be an interpretation for C 

(a) M as a 3-valued model for C af ana’ only af M ts a 
model for EV(C) an C 

(b) Every assumption-free model for OV(C) m C u an 
assumptwn-free model for EV(C) an C 

(c) Every asswnptron-free model for EV(C) m C IS a (not 
necessarily proper) subset of un assumptron-free model 
for OV(C) an C 

(d) M u a stable model for OV(C) an C If and only af M 
as u stable model for EV(C) an C 

PROOF (sketch) (a) The proof that if M IS a model for 
EV(C ) m C then M 1s a 3-valued model for C IS slfTular to 
the proof of Proposihon 3 Let us now assume that M 1s a 
3-valued model for C We have to prove that M IS a model 
for EV(C ) m C Let A be any element m M If A IS nega- 
hve then for each rule r m ground(C) with H (r ) = -IA, 
value (H (r )) = F by defimhon of 3-valued model Hence r IS 
blocked If A 1s positive then the fact +i m Bc 1s ovenuled 
by the reflexive rule 

A -A 

Hence, the condihon (a) of Defimhon 3 IS satisfied Let us 
now consider any element A III fl By defimhon of 3-valued 
model, for each rule r m ground(C) with H(r) = -A, 
value(H (r)) I U Hence, r 1s not applicable and also the 
condihon (b) of Definition 3 1s sahsfied Therefore, M 1s a 
model for Ev(C) m C 

(6 ) Let M be any assumphon-free model for OV(C ) III C 
By Proposihon 3, M 1s a 3-valued model for C By Propon- 
hon 5 (part a), M IS a model for E’V(C ) Let X be any non- 
empty subset of M and A be any element m X By 
hypothesis, X IS not an assumphon set w r t OV(C) III C, 
so, by Defimhon 6, there exists an applied rule r m 
ground (C’ ) wrt OV(C) such that H(r)=A. 
B (r ) u X = 0 and r 1s neither overruled or defeated By 
defimhon of extended version, r IS also m growrd(C’ w r t 
EV(C ) Moreover, r cannot be overruled or defeated by any 
reflexive rule Hence, X 1s not an assumphon set w r t 
Ev(C ) m C It follows that every subset of M 1s not an 
assumption set w r t EV(C ) m C , 1 e , M 1s an sssumphon- 
free model for i%(C) m C 

(c) It follows from the fact that reflexive rule cannot play 
any role for assumpaon sets 

(d) Let M be a stable model for OV(C) m C Smce M 1s 
also an assumption-free model for OV(C) m C by defimhon 
of stable model, M 1s an assumphon-free model for Ev(C) 
m C by Proposihon 5 (part 6) We show that M 1s actually a 
stable model for Ev(C ) m C by contradichon Let us then 
assume that fi 1s an assumption set for ,!i’V(C) m C such 
that M c h? By Proposihon 5 (part c ), there ex=ts an 
assumption-free model N for OV(C ) m C such that Q G N 
Hence, M c N (contradtchon with the fact that M 1s a stable 
model for OV(C ) m C ) Therefore, M 1s also a stable model 
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for EV(C) m C Suppose now that M 1s a stable model for 
Ev(C) m C We have to prove that M IS also a stable model 
for OV(C) m C By Proposlhon 5 (part c), there exists an 
assumphon-free model N for OV(C) III C such that M E N 
But If M were a proper subset of N then M would not be a 
stable model for EV(C) m C smce N would be a larger 
assumphon-free model for L’V(C) m C by Proposlhon 5 
(part 6) Hence, M = N and, then, M 1s a stable model for 
OV(C)mC 0 

It turns out that ordered programs subsume 3-valued seman- 
tics for semmegahve programs 

4 Negative Programs. 

Let us now consider a negahve program C A striughtforwsrd 
way to provide a semantics for C 1s to follow the approach 
used in the previous section ana therefore, to state that the 
models of C are those of OV(C) or, better, those of EV(C) 
The followmg example shows that, m tlus framework, nega- 
tive rules do no play any constructive role 

Example 8 Consider now the negahve program C conslstmg 
of the followmg two rules 

fly(X) - bard(X) 

7f ly (X) - ground_anml (X) 

and of a number of database facts de&g bard and 
ground_anunal In tlus case, accordmg to the two-level 
semanhcs, we cannot state anything about the flying capablh- 
hes of any ground bud Cl 

The previous example has pointed out that two-level seman- 
tics for negahve programs is rather poor smce negahve rules 
either defeat the derlVation of A posihve literal or Just confirm 
the trutbness of a negative lrteral, already asserted m the first 
level We then propose a different semanhcs for negative pro- 
gram 
Let C be a negative program The 3-level verston of C, 
denoted by 3V(C). 1s the ordered program <(-&.C’,C-), 
(C- < C+. C+ < --&, C- < Y&J>, where C’ contams both 
all semmegahve rules of C and all reflexive rules, and C- 
contams all negative rules Note that C- can be thought of as 
a set of exceptions to the general rules of C+ We can now 
define the semanhcs of a negahve program C by referrmg to 
its 3-level version 3V(C) To dus end, we observe that a set 
of bterals 1s an mterpretahon of C if and only If It 1s an 
mterpretahon for 3V(C) m C- 

Dejirutaon 10 Let C be a negative program and I be an 
mterpretahon for C 

(a) I 1s a model for C if I 1s a model for 3V(C) 111 C- 

(b) I 1s an assumptaon-free model for C d I 1s an 
assumphon-free model for 3V(C) m C- 

(c) I 1s a stable model for C d I 1s a stable model for 
3v(c)mc- Cl 

Example 9 Consider the program C of Example 8 We have 
that 3V(C) = <(Co, C+, C-), C- < C+, C- c Co, C+ < Co)>, 

where CO, m the reduced form, consists of the followmg 
rules 

-fly(X) 

Tbrrd (X ) 

7ground-anunal (X) 

C’ consists of all facts definmg bard and ground_anrmal and 
of the followmg rule 

fly(X) - bard(X) 

C- only contams the rule 

-7f ly (X) - ground~anamal (X) 

According to the three-level semanhcs, every ground ammal 
wluch IS also a bird does not fly 

Consider now the negative program C consrstmg of the fol- 
lowmg two rules 

colored(X) - color(X), -colored(Y), XtY 

Tcolored (X ) - ugly-color (X ) 

and of a number of database facts defimng color and 
ugly-color Obviously every ugly-color 1s also a color The 
mesnmg of the program 1s rather clear “select exactly one of 
the avnlable non-ugly colors” Cl 

As promised m Section 2. we have provided a semanhcs for 
negahve programs, where negahve rules play the mtereshng 
role of excephons to general rules We now propose a dmzct 
semanhcs for a negahve program winch does not make any 
reference to ordered programs 

Let C be a negative program A subset X of I+ 1s an assump- 
taon set w.r t I d for each A m X. every rule r m 
ground(C) with H (r ) = A sahsfies one of the followmg con- 
dlhons either value(B(r))SU or B(r)nX#0 Tins 1s 
the defimhon of assumphon set given m [SZ] and comcldes 
with the defimhon of unfounded set [VRS] if the con&hon 
value (B (r )) I U 1s changed mto value (B (r )) = F 

Definrtaon II Let C be a negahve program and I be an 
mterpretation of C 

(a) I 1s a model for C if for each rule r m ground(C). 
either (1) value(H (r)) 2 value (B (r )) or (u) there 1s an 
exception, 1 e , H(r) 1s m I’ and there exists a nega- 
tlve rule i m ground(C) for wluch both 
H(i) = 4(r) and value@(i)) = T 

(b) I is an assumption-free model for C if no non-empty 
subset of I’ is an assumphon set w r t I 

(c) I 1s a stable model for C if I 1s a maximal 
assumption-free model for C, i e , it is a proper subset 
of no other assumphon-free model for C 0 

Note that Defimhon 11 only uses concepts mtroduced m clas- 
sical logic programmmg For reasons of space, we state the 
next result without any proof 
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THEOREM 2 Definrtaons 10 and 11 are equavulent 0 

Thus Defimtlon 11 can be seen as a smple, dmct extension 
of semmegatlve program semanhcs to negahve programs 

5. Conclusion 

We have mtroduced an extension of logic programmmg, 
called ordered logrc progrummang. whch mcludes some 
abstractions of the object-onented paradigm In fact, an 
ordered logic program consists of a number of modules, each 
module bemg composed by a set of rules possibly with 
negated head predicate A sort of “isa” luerarchy can be 
defined among modules m order to provide the ground for 
rule mhentance In fact, every module sees its own rules as 
local rules and the rules of the other modules to which it 1s 
connected m herarchy as global rules Therefore, as local 
rules may hide global rules, it 1s possible to deal with default 
propeties and excephons Moreover, smce a most specific 
module can be also thought of as the new vemon of a more 
general module, also verstomng can be dealt with by our 
approach It turns out that modules correspond to obJects 
smce they already include such concepts as methods, 
defaults, mhentance and version while an effechve support 
for obJect idenhty can be easily provided (see, for mstance, 
[K]) On the other side. because of its capablhty to deal with 
default properhes and excephons, ordered logic programmmg 
can be seen as a powerful language for non-monotomc rea- 
somng as well as a new formalism for explammg some recent 
proposals of semantics for classical logic programs with 
negahon m the rule bodes In sum, ordered logic programs 
appear to be a step toward the construchon of knowledge 
base systems of great flexlblhty for they mclude two relevant 
features (a) combmahon of logic progr ammmg and obJect- 
onented paradigms, and (b) treatment of logic programs with 
negated rule heads As for the issue (a), we note that two 
mterestmg proposals have been recently proposed m [AK] 
and [KL], on the other side, recent work 1s dealmg with the 
issue (b) (see, for mstance, [KS, GL2]) The advantage of our 
approach 1s that the two issues are treated m a untied frame- 
work 

We conclude by mentlonmg that further work 1s presently 
devoted to better support object identity and to extend well- 
founded semantics [VRS] to ordered logic programs In this 
context, a proof procedure for mfemng conclusions from 
some classes of ordered logic programs has been devised m 
[LVI 
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