Extending Logic Programming

Els Laenens
Philips Intt B V, PASS/AIT
Eindhoven, The Netherlands

Domenico Sacca
Dipartimento di Sistemi,
Universitd della Calabria, Rende, Italy

Dirk Vermeir
Department of Mathematics and Computer Science,
Unwversity of Antwerp UIA, Wilryk, Belgium

Abstract

An extension of logic programmung, called "ordered logic
programmung", which ncludes some abstractions of the
object-oriented paradigm, s presented An ordered program
consists of a number of modules (objects), where each
module ts composed by a number of rules possibly with
negated head predicates A sort of "i1sa" hierarchy can be
defined among the modules in order to allow for rule inher:-
tance Therefore, every module sees its own rules as local
rules and the rules of the other modules to which it is con-
nected by the “1sa" herarchy as global rules In this way, as
local rules may hide global rules, it is possible to deal with
default properties and exceptions This new approach
represents a novel attempt to combine the logic paradigm
with the object-oriented one in knowledge base systems
Moreover, this approach provides a new ground for explain-
ing some recent proposals of semantics for classical logic
programs with negation n the rule bodies and gives an
interesting semantics to logic programs with negated rule
heads

1. Introduction

In this paper we present an extension of logic programming,
called ordered logic programming, that mcludes, besides to
classical inference mechamsms, object-onented abstractions
and amemties for non-monotonic reasontng Ordered logic
programs are partially-ordered sets of "traditional” logic pro-
grams (called components) where negation may also occur in
the rule heads and were first introduced 1n {LV]

Permission to copy without fee all or part of this matenal 1s granted provided
that the coptes are not made or distributed for direct commercial advantage, the
ACM copynight notice and the title of the publication and 1its date appear, and
notice 1s given that copying 1s by permission of the Association for Computing
Machinery To copy otherwrse, or to republish, requires a fee and/or specific
permission

© 1990 ACM 089791 365 5/90/0005/0184 $1 50

184

An ordered program 1s a multple possibly contradictory
representation of the knowledge, one for each component of
1, that can be thought of as a module or an object It fol-
lows that there are as many meanings as components Given
a component C,, the meaning of C, 1s given by the rules n
C, as well as the rules in C;, with C, £ C, In other words a
program 1herits Tules from other programs, possible contrad-
iction 1s removed m two different ways by overruling and by
defeating

Pl = <[C1, Cz}, [Cl < C2]>,
where

Ca={
bird (penguin) ,
bird (pigeon) ,
fly(x) - blrd(X)v
—ground_ammal (X) ~ bird(X) }
Ci={
ground_ammal (penguin),
—fly(X) ~ ground_ammal(X) }

Fig 1 Ordered program P, with overruling

The process of overruling 1s strongly related to the fact that,
as we do allow negation also m the head of predicates, con-
tradicting mformation could flow around if not blocked A
rule of a component C, gets overruled in the component C,
with C, < C, if it mntroduces some contradicton 1 C, (see
the ordered program P; of Figure 1 - the pengumn does not
fly since some rules in C, are overruled n C,)

The second way to avoid contradicting information flow 1s to
defeat the whole informatnon This happens when the com-
ponent C, mhents contradicting rules from two other com-

P2= <{C1, C2, C3}, {C1 < Cz, Cl < C;)),

where
Cy={
rich(mimmo)
—poor (X) — rich(X))}
Cy={
poor (mummo)
—rich(X) — poor (X))
C={

free_ticket(X) — poor(X)}

Fig 2 Ordered program P, with defeating

ponents C, and C; In this case, both pieces of information
are defeated (see the ordered program P, of Figure 2 - we
cannot establish whether mrummo 1s to receive a free ticket as
from the point of view of C,, C3 cannot be trusted better
than C, or vice versa) It tums out that the meaning of a pro-
gram may be partial

Py= <[C1, Cz, C3, C4}, {Cl < Cz, Cl < C;, C3 < C4}>,

where
Ca={

take_loan « inflation(X), X>11)
Ca={

—take_loan « loan_rate(X), X>14)
Ci={

take_loan « inflation(X), loan_rate(Y),

X>Y+2}
C1={]

Fig 3 Loan program

The flavor of the language, as given so far, confirms that 1t 1s
a powerful attempt to include object-onented mechamsms,
notably, mheritance and default values, into logic program-
ming Our claim 1s that application domamns of logic pro-
gramming are extended by the proposed approach for it 1s
possible to represent uncertain knowledge as required 1n
advanced knowledge base apphcations Consider the pro-
gram 1n Figure 3, 1t models a situation where myself (com-
ponent C,; that 1s empty for now) has taken some knowledge
on loan procedures from three experts, where the knowledge
of Expert2 (component C,) 1s mdependent from those of the
other two experts On the other side, Expert3 (component
C3) has refined the knowledge of Expert4 (component C,)
Obviously, as no rule can be actually fired, no inference 1s
possible at myself level Suppose now that the rule

mnflation (12)

15 stated at myself level Then 1t 1s possible to mfer from
Expert2 that take_loan 1s true Suppose now that, at myself
level, the following two rules are imnstead defined

inflation (12)

185

loan_rate (16)

Then, as the conflicung mformation take loan and
—take_loan should be mnferred, both pieces of information
are defeated and nothing can be said about taking loans at
myself level Suppose finally that the two rules defined at
myself level are the following

inflation (19)
loan_rate (16)

Then the rule of Expert4 1s overruled by the rule of Expert3,
as there 1s no conflicing information coming from Expert2
and Expert3, take_loan 1s mferred at myself level

In this paper we elaborate the declarative model-theoretic
semantics of ordered programs A nice feature of this seman-
tics 1s that 1t 1s able to capture the stable model semantics for
classical logic programming with negation on rule bodies
[GL1,SZ] This confirms that our extension of logic program-
ming 1s well founded

The paper 1s orgamized as follows The semantics of ordered
programs 18 descnbed 1n Section 2 In Section 3 we show
that the semantics of ordered programs provides a new frame-
work to explain the semantcs of classical logic programs
with negation In Section 4, we show that, as a particular
case of ordered program, a logic program with negated head
rules can be equipped with an mnteresting semantics where the
rules with negated heads play the role of exceptions to gen-
eral rules We present the conclusion and discuss further
work 1n Section 5

2 Ordered Programs

Let us first introduce the basic concepts and notations of our
language

We suppose that a (possibly infinite) number of constants,
variables and symbols are available The basic tokens of the
language are terms, predicates and hiterals A term 1s recur-
sively defined as a variable, a constant or f (¢, i),
where ¢, ,t, are terms and f 1s a function symbol A
predicate 1s a formula of the language that 1s of the form
p(t), where p 1s a predicate symbol with anty n (n20) and t
1s a sequence of n terms (arguments of the predicate) A
literal 1s either a predicate (positive literal) or its negation
(negative literal) A term, predicate or hiteral 1s ground if 1t
1s vanable free

Two lhiterals are complementary 1f they are of the form A and
—A, for some predicate A In general, given a literal A and a
set of ground literals X, —A denotes the complement of A
and —X denotes the set of hterals {~B | B € X} Moreover,
X* (resp X7) denotes the set of all positive (resp, negative)
hterals in X Finally, we say that X 1s consistent 1f there are
not two literals A and B in X such that A = —B

A negatve rule (or, simply, a rule) 1s a formula of the
language represented with the usual Prolog’s notation [L] as
follows

QO - Ql; s Qm
where Q,, , O, are literals, Qg 15 the head of the rule,
and Q,, » Om 15 the body of the rule If Qg 1s positive

then the rule 15 a semunegative rule, moreover, if also
g, , On are all positive then the the rule 15 a positive
rule (or Hom clause) Given a rule r, H(r) denotes the head
of r and B (r) denotes the set of all literals in the body of r

A rule 1s a fact 1f 1t has an empty body and 1s ground if 1t 15

vanable free

A negative program 1s a set of rules If all rules are semine-
gative (resp, positive) then the program 1s called a seminega-
tive program (resp, positive program)

Let P be a negative program The Herbrand’s Universe of P
(denoted by Hp) 1s the set of all possible ground terms recur-
sively constructed by using constants and function symbols
occurring in P The Herbrand’s Base of P (denoted by Bp)
1s the set of all possible ground predicates whose predicate
symbols occur in P and whose arguments are elements of
Hp A ground instance of a rule r m P 1s a rule obtamned
from r by replacing every vaniable X m r by ¢(X), where ¢
1s a mapping from the set of all vanables occurring i P to
Hp The set of all ground instances of all rules n P 1s
denoted by ground (LP) An interpretation for P 1s any con-
sistent subset of Bp U —Bp

Let I be an mterpretation for a negative program P, then I
denotes the set of predicates {A | A € Bp, and netther A nor
—A 15 n [} Note that, according to the interpretation /, a
ground hteral 15 true 1f and only if 1t 1s member of I, there-
fore, I contams all the elements of the Herbrand base for
which no value has been assigned n the interpretation
(undefined elements) [FB, P3, SZ] An mterpretation 1s total
1f T 1s empty

For a positive or semmegative program P, those total
mnterpretations for P that make true all rules in ground (P)
are called total models and a total model M for P 1s mimmal
if there exists no other total model N for P such that M* 1s a
proper subset of N* It 1s known that a total model exists for
every positive or seminegalive program, moreover, the
minimal total model of a positive program 1s umque and
represents the meamng of 1t [L, U] On the other hand, the
notton of model cannot be easily extended to negative pro-
grams as nconsistency can now arise because of negative
head predicates and there are many alternative ways to cope
with mconsistency In this paper, the semantics of negative
programs will be eventually explamed as a particular case of
a more general class of logic programs (ordered programs)
Defiation 1

(a) An ordered program 1s a finite partally-ordered set of
negative programs (called components) where "<” 1s
the partial order

(b) An interpretation for an ordered program in a com-
ponent C, 1s any interpretauon of C,, where C,
denotes the negative program {r lr € C, and

¢ <C) O

186

Let P be an ordered program The restniction of "<" to all
pairs of distinct components 1s denoted by "<", moreover,
given (wo distinct components C, and C,, C, <> C, means
that neither C; < C, nor C, < C, Throughout all examples
of this paper, an ordered program P 1s represented by a pair
<C,L> where C 1s the set of components and L 1s the rela-
uon "<” Fmally, given a rule r m ground(C.), C(r)
denotes the component C, contaimng the rule of which r 1s
the ground mstance If a rule occurs 1n more than one com-
ponent then we assume that 1t has distinct ground nstances
so that C 1s actually a function from ground instances to
components

Every component C, of an ordered program can be thought
of as a module or object with local rules (thus those defined
in C,) and with global rules (thus those defined in all other
components C, such that C, < C,), where local rules may
hide (overrule) global rules The "<" relation 1s a sort of 1sa
hierarchy for the components and provide the ground for
mhertance It turns out that a predicate can be defined in
different ways in the various components, thus the program
P has several meamngs, one for each of its components

Example 1 Consider the ordered program P, of Figure 1
To the best of the knowledge of C3, the penguin 1s not a
ground ammal and fhies whereas these facts are contradicted
m C] On the other side, C, can imhent a rule from C, to
mfer that the pigeon fhes O

Definition 2 Given an interpretation [for P n C,, arule r
m ground (C.’) 1s

- applicable ff B(r)c I,
- applied 1f 1t 1s apphicable and H(r) € I,
- blocked 1f there exists A n B(r) such that -4 € I,

- overruled if there exists a non-blocked rule 7 m
ground(C) such that CF)<C(r), and
H(F)Y=-H{(),

- defeated 1f there exists a non-blocked rule 7 m
ground(C) such that (1) C@F)<>C() or
CAH=C@r),and)HF)=-H({¢) O

Example 2 Take the ordered program P, of Example 1 The
set I = {bird (pigeon), bird (penguin),
ground_amimal (penguin), —ground_armmal (pigeon),
fly(pigeon), —fly(penguin)} 1s a total mnterpretation for P,
m C; The ground rule

fly(penguin) — bird (penguin)
1s applicable but 1t 1s overruled by the applied ground rule
—fly(penguin) ~ ground_ammal (penguin)
The ground rule
—fly(pigeon) — ground_ammal(pigeon)
1s both blocked and non-applicable

Consider now the ordered program P, = <{C} , D>, where
C contains all the rules that are either in the component C,

or C; of the ordered program P, In this case, considenng I,
as an mterpretation for P, in C, the applicable rule

fly(penguin) — bird (penguin)
1s defeated by the applied rule

—fly (penguin) — ground_arumal (penguin)
Also the apphed rule

ground_amimal (penguin)
1s defeated by the applicable rule

—ground_animal (penguin) — biurd (penguin)

Let P, be the ordered program in Figure 2 Then the set
I, = {rich(mummo), poor (mimmo)} 1s a (non-total) interpre-
tation of P3 in C; The two ground rules

rich(mimmo)
and
—rich(mimmo)— poor (mimmo)

defeat each other This means that more mformation 1s
needed on mimmo 1n order to certify whether he 1s nch or
not [J

Defirution 3 Let P be an ordered program and C be a com-
ponent of 1t An interpretation M 1s a model for P m C if
(a) for each A 1n M, every rule r with H(r) = —A 1s eather
blocked or overruled by an apphed rule and (b) for each A 1n
M, every applicable rule r with H(r)=A or H(r)=—-A 15
either overruled or defeated 0O

Condition (a) guarantees that either the value of a literal A 1n
a model cannot be contradicted by any rule (no matter value
15 assigned to any undefined element) or 1f 1t 15 contradicted
then 1s reconfirmed by a most specific rule (1e, a rule n a
lower component), condition (b) says that the value of A that
could be mferred by some applicable rule can remamn
undefined only 1f this rule 1s overruled or defeated, possibly
by assigning suitable values to some undefined elements

Example 3 Consider the ordered programs P, P, and P, of
Example 2 The mterpretation /, 1s a model for P, in C; On
the other side, I; 1s not a model for the ordered program P,
m C A model for P, m C s [, = {bird(pigeon),
bird (penguin), fly (pigeon), ~ground_animal (pi1geon)}, note
that fly(penguin) and ground_ammal(penguin) are
undefined The mterpretation / 1s not a model for P, n C,
We are now given the ordered program P3 composed by only
one component, C, consisting of the following two rules

a-b»b
—a - b

We have that {b}, {=b}, {a,~b}, (—a,~b} and {} are
models, whereas all other interpretations (including the Her-
brand Base) are not O

187

The previous example has shown that the Herbrand Base 15
not necessarily a model as for tradinonal logic programs
Then one could suspect that not all ordered programs have a
model However, we next prove that a model always exists
To this end, we need to iniroduce some prehmmary
defimitions and results

Definition 4 Let P be an ordered program and C be one of
1ts component Let I be the famuly of all interpretations of P
m C The ordered immediate transformation for P 1 C 1s
the function Vpie I — I defined as follows given an
nterpretation I, Vpic(I) = {A | there exists a rule r 1n C*
such that H(r)= A, B(r) c I and r 1s neither overruled nor
defeated (wrt I) by any rule} O

LEMMA 1 The transformation Vp|c s monotone and has
the least fixpoint

PROOF (sketch) It 1s routine to prove that Vpic 1s mono-
tone But Vp)c 1s monotone in the complete lattice <I,>
Hence 1ts least fixpoint exists [T] [

From now on, we shall denote the least fixpont of Vp|c by
VFic(@)

PROPOSITION 1 Guven an ordered program P and a com-
ponent C, V&ic(D) s a model for P in C

PROOF (sketch) It 1s easy to see that the two conditions of
Defimtion 3 are satisfied O

Thus we have proved that a model exists for each ordered
program 1n every of 1ts components A subsequent question 15
whether a total model always exists

Definition 5 Let P be an ordered program and C a com-
ponent of it A model M for P in C 1s

(a) total 1if M 1s empty,
®)

exhaustive 1f there exists no other model M for P
C such that M 1s a proper subset of M O

Obviously every total model 1s also exhaustive but the con-
verse 1s not true As a model always exists, an exhaustive
model must exist as well, on the other side, the existence of a
total model 1s not guaranteed For mstance, no total model
exists for the program P, of Example 2 m C We also
pomnted out that it may happen that there exists a non-total
exhaustive model even when there 1s a total one

Finding a total model 1s hard even for semmegative pro-
grams Besides such a model does not necessanly capture the
"intended” semantics of the program, 1e, 1t may contam
hterals that are not derivable from the program (informally,
such literals are "assumptions" as their value 1s, mn a sense,
arbitrary) For imstance well-founded semantics [VRS] does
not guarantee the existence of a total well-founded model
As a consequence, we prefer to find a partial model without
any assumption rather than a larger (even total) model with
assumptions Let us elaborate this 1ssue next

Defirution 6 Let P be an ordered program, C be a com-
ponent of 1t, and / be an interpretation for P m C A non-
empty subset X of / 1s an assumption set wrt I if for each

A m X, every rule r m ground(C") with H(r) = A sausfies
one of the followmg conditions

(a) r 1s non applicable, or
(b)
(c) r 1s defeated, or

@ Br)nX=+0 O

Note that the notion of assumption set was first ntroduced 1n
[LV] and 1s an extension of the defimtion of assumption set
used mn [SZ] that, in tum, s an extension of the notion of
unfounded set given mn [VRS] The models we are going to
analyze are those which do not include any assumption set

Defiition 7 Let P be an ordered program, C be a com-
ponent of P and M be a model for P m C Then M 1s an
assumption-free model for P in C if no subset of M 1s an
assumption set wrt M [0

r 1s overruled, or

Example 4 Consider the ordered programs P, P, and P, of
Examples 2 and 3 The model I, for P, i C, as well as [,
for P, in C 1s assumption free The empty set 1s an
assumption-free model for P, m C, Take now the ordered
program Pi of Example 3 The empty set 1s the only
assumption-free model for P; in C

Consider now the ordered program P, with a umque com-
ponent C, consisting of the following rule

a-b

The only assumption-free model of P4 mn C| 1s the empty set,
this means that no ground literal 1s true without making some
assumption Note that the model {—a,—b} 15 not assumption
free 1n our defimtion Actually, 1t 1s not assumption-free even
for the traditional program C, for 1t 1s based on some particu-
lar implhicit assumption for asserting negative ground literals
(e g, negation by failure [Cl], stratified negation [ABW, CH,
N, VG], perfect model [P1, P2], well-founded model [VRS],
stable model {GL1}, etc) The model {—a,—b } becomes the
only assumption-free model of P 1n C, if we add a second
component C, with the following two rules

—a
—b

andC1<C2 O

As 1t has been sketched i the previous example and as 1t
will be formally shown m the next section, most of recent
semantics for negation are subsumed by ordered program
semantics by just expliciting that every negative literal 15 true
unless 1t 1s overruled The advantage of our approach even
for the case of programs with only one component 1s that any
assumption for deriving negative literals must be expheitly
declared, and, besides, 1t 1s possible to use more assumptions
at the same ume For nstance, when defimng a predicate,
three different situations may anse (1) every negative hiteral
1s true unless 1t 1s overruled (classical situation), (1) every
posttive literal 1s true unless 1t 15 overruled (in this case, the
"sign" of the predicate could be changed to reduce to the pre-

188

vious case), and (u1) every hiteral 1s undefined unless 1its value
1s exphcitly denived All the three cases can be captured by
ordered programs

We now formahze the intuition that an assumption-free
model only contamns ground literals which can be inferred
from the rules of the program

Defimition 8 Let P be an ordered program, C be a com-
ponent of P and M be a model for P in C The enabled ver-
sion of ground (C™), denoted by C§, 1s the program contain-
g all applied rules of ground(C*) 0O

Let us now apply the immediate consequence transformation

T as defined for seminegative and positive programs to Cj

Hence, given any nterpretation / for P m C, T..)= {a |l
M

there exists a rule r m Cf such that A =H(r) and
B(rycl)
LEMMA 2 Let P be an ordered program, C be a com-
ponent of P and M be a model for P in C Then T, s
M
monotone and has the least fopont, denoted by Tz, (D)
M

Moreover, T;; DycM
M

PROOF (sketch) It 1s easy to recogmze that Tc‘ 1s defined

the complete lattice <I, >, where I 1s the famly of all
mterpretations for C¢, since no contradictions can anse m
C*, moreover, Tc‘ 1s monotone It follows then T ce has the
least fixpoint Finally, since for each r in C¢, H(r)1s m M
by construcuon, T, (@) c M DO

THEOREM 1 Let P be a program and C be a component
of ut

(@) A model M for P in C s assumption free if and only
fT5 (@) =M
(b) Veic(D) is an assumption-free model for P in C and

is the wntersection of all models for P in C

PROOF (sketch) (a) Suppose that M 1s a model for P in C

and that TC“, (@)=M We prove by contradiction that M 1s

assumption free Let us assume that X ¢ M 1s an assumption
set wrt M It 1s easy to see that no rule m C*¢ 1s non-
applicable, overruled or defeated Hence, for each A m X,
every rule with H(r) = A contains at least an element of X
m 1ts body Hence, M — X 1s a model (contradiction wath the
fact that M 1s the least fixpomt of 7. Hence M 1s

assumption-free Suppose now that M 1s an assumption free
model for P in C We agamn proceed by contradiction to
prove that T (&) =M Suppose then that TJ, (@)=2M By

Lemma 2, TC"",(@)CM Let X= M —Té“’,(@) By
definiion of C¢, for each A m X, there exists no rule r of

C¢ such that H(r)=A Hence X 1s an assumption set and
we get a contradiction Hence, Té"’, =M

(b) The proof that Vgic(D) 1s assumption free 1s rather
straightforward On the other side, 1t can be shown that
every model N for P 1n C 1s a fixpoint of Vpic Therefore,

the least fixpomnt of Vpic 1s contammed m N [

It follows that Vgic (D) 1s the least model for P in C Let us
now tumn our attention to maximal assumption-free models
for P 1in C, 1e, any assumption-free model that 1s a proper
subset of no other assumption-free model for P in C

Defiution 9 Let P be an ordered program and C a com-
ponent of it A model M for P 1n C 1s stable 1f M 1s a max-
1mal assumption-free model [

We pomnt out that the umqueness of stable models 1s not
guaranteed

Example 5 Let Ps be the ordered program <{C,, C,},
{C < C,}> where C, has the following rules

a
b
c

and C; consists of

—a - b,c
—b - a
—-b - —b

{a, b, c} and {—a, b, ¢} are two stable models for Ps in
C,, whereas {c} 1s an assumption-free (but not stable) model
for P s C1 (]

The next result shows that every assumption-free model 1s an
"approximation” of a total or exhaustive model n the sense
that, by assigming value to some of the undefined elements
and without changing the value for those lterals that are
already 1n the model, a total or exhaustive model can be
achieved

PROPOSITION 2 Let P be a program and C be a com-
ponent of it Then every model for P in C 1s a (not neces-
sarily proper) subset of an exhaustive model for P in C

PROOF (sketch) Let M be an assumption-free model for P
m C Let L be the famly of all consistent subsets of
M u-M suchthat M UL 1s amodel for P mC IfL 1s
empty then M 1s obviously exhaustive and, then, the proposi-
tion holds Otherwise, we select a maximal element L mn L,
1e, L 1sm L and 1s not a proper subset of any other element
mn L It 1s easy to see that M U L 15 an exhaustive model
forPmC O

It tumms out that a stable model 1s the maximal subset of some
exhaustive model that can be inferred from the rules

3. Seminegative Programs

In this section we show that the semantics for ordered pro-
gram 1s able to capture the semantics for classical semimnega-
tive programs

Let C be a semiegative program We say that the ordered

version of C, denoted by OV(C), 1s the ordered program
<{—B¢c, C}, {C < —B¢c}> (note that the Herbrand Base —B¢

189

1s here considered as a set of negauve rules with empty
body) As it will be shown next, the component —B¢
corresponds to an exphcit closed world assumption declara-
tion [R] "every element of the Herbrand Base 1s false unless
its truth 1s proved” Note that, mstead of writing down all
the elements mn B¢ 1t 1s sufficient to wnte a rule

-p (Xln > Xu)

where X, , X, are distinct vanables, for each n-ary
predicate symbol p occurmnng mm C In this case the size of
OV (C) 1s polynomally bounded i the size of C (the size of
a program 1s the total number of symbols that occur i it)

We now show that there are close relationships between the
models of C (as n classical logic programmng) and the
models for OV(C) n C

Example 6 Consider the ancestor program C
anc (X ,X)
anc(X,Y) — parent(X,Z), anc(Z,Y)

where parent 1s deﬁx}ed throug}x a database relaton [U]
Then OV (C) = <{C, C}, {C < C}>, where C s

—parent(X,Y)
—anc (X,Y)
Note that we have used a reduced form to wnite down B [

Let us now mtroduce the notion of 3-valued model for sem-
megative programs, as given mn [P3] Let C be a semmega-
tive program and / be an mterpretation of it Given a ground
literal A, value(A) 1s equal to T (rue) if A 1s n I, F (alse) if
—A 15 1n [and U (ndefined) otherwise (1 e, either A or -4
1s n J) Moreover, we assume that F < U < T and that the
value of a conjunction J of ground literals 1s the mimmal
value of these literals, 1e, value(J) = min, ,;(value(A))
If J 1s empty then we assume that value(J)=T Then/l 152
3-valued model for C 1if for each rule r 1 ground(C),
value (H (r)) 2 value (B (r)) Note that if a 3-valued model 1s
total then 1t makes true all the rules in ground(C) and every
exhaustive model for C 1s total

PROPOSITION 3 Let C be a seminegative program Then
every model for OV(C) in C 1s a 3-valued model for C

PROOF (sketch) Let M be a model for OV(C) n C Obwi-
ously M 1s an interpretaton for C Let r be any rule mn
ground(C) 1In order to prove that M 1s a 3-valued model for
C 1t 1s sufficient to show that value (H (r)) 2 value (B (r))
Suppose that value (H (r)) < U otherwise the proof would be
trivial If value(H(r)) = U, then H(r)1s m M Since r can-
not be overruled or defeated, by defimtion of model for
ordered programs r 1s not apphcable, 1e value(B(r)) < U
If value(H(r)) = F, then —H (r) 1s m M Since r cannot be
overruled, by defimtion of model for ordered programs r 1s
blocked, 1e, valueB(r))=F 0O

Note that the converse of Proposition 3 does not hold

Lwvrmuinla 7 Oomosdas tha sweacvam 7 ancase tromcy AF tha fal
Mw’l}ll‘ 4 LULLIUGL UG lusld.lll w \,uuamuns UL UIC iUk~
lowing rule

P - —p

We have that {p} 15 a 3-valued model for C but not for
OV (C) m C since the imphcit rule —p 1s not overruled by a
non-blocked rule In fact, the rule of C 1s not apphicable O

Let us now troduce the concept of founded model as given
in [SZ] To this end, we apply the stability transformation
condition for a seminegative program given in [GL1] to 3-
valued models Given a semimnegative program C and a 3-
valued model M for C, the positive version of C wrt M,
denoted Cp, 1s the positive program obtammed from
ground(C) by deleting (a) each not applied ruie and (c) ail
negative literals from the remamming rules Then M 1s
founded 1f TC""M (D) =M* Moreover, M 1s stable when 1t 1s

maximally founded (1e, 1t 1s founded and 1s a proper subset
of no other founded model) Note that 1if M 1s total then M
1s stable also according to the defimtion of [GL1] We recall

that the latter defimtion only refers to total models

PROPOSITION 4 Let C be a semunegatve program Then
every interpretation M for C s a 3-valued, founded model
for C of and only if M s an assumption-free model for
ovV({C)inC

PROOF (sketch) Suppose that M 1s an assumption-free
model for OV(C) mn C Then, by Proposition 3, M 1s a 3-
valued model for C It 1s easy to see that TC‘"M DM

Moreover, 1t can be shown that Té"M (D) = M* smce other-
wise M — Té"‘M () would be an assumption set wrt M

Hence M 1s also founded Suppose now that M 1s a 3-valued,
founded model for C It 1s easy to see that the condition (a)
of Definttion 3 1s satisfied because M 1s a founded model and
the condition (b) of Defimition 3 1s sausfied because M 1s a
3-valued model Hence M 1s a model for OV(C) mm C
Finally, the fact that M 1s assumption free denives from the
fact that M 1s founded [

COROLLARY 1 Let C be a senunegative program Then
an interpretation M for C 1s a stable model for C if and
only if M s a stable model for OV(C) in C

PROOF It follows from Proposition 4 and the defimtions of
stable models (1

We have then shown that recent semantics for negation such
as stable model semantics can be also explained in the frame-
work of ordered programs Nevertheless, Example 7 has
pomnt out that not all 3-valued models are captured by an
ordered program To remove this hmitation, we mtroduce a
different ordered version of a semmegative program C, called
the extended version of C and denoted by EV(C), that 1s
obtamed from OV (C) by adding the rule A — A, for every
A 1m B¢, to the component C The above rules are called
reflexive rules Also m this case the number of such addi-
tional rules can be dramaticly reduced by writing them m a
non-ground form

190

DDNADNCTTINNT &£
RO LAY D

be an interpretation for C

(@) M s a 3-valued model for C if and only if M 1s a
model for EV(C) in C

Every assumption-free model for OV(C) i C 1s an
assumption-free model for EV(C) in C

(¢) Every assumption-free model for EV(C) in C i1s a (not
necessarily proper) subset of an assumption-free model
Jor OV(C)in C

M s a stable model for OV(C) in C if and only if M
is a stable model for EV(C) in C

PROOF (sketch) (a) The proof that if M 1s a model for
EV(C) n C then M 1s a 3-valued model for C 1s similar to
the proof of Proposition 3 Let us now assume that M 1s a
3-valued model for C We have to prove that M 1s a model
for EV(C)in C Let A be any element n M If A 1s nega-
tive then for each rule r m ground(C) with H(r) = -A,
value (H(r)) = F by defimtion of 3-valued model Hence r 1s
blocked If A 15 positive then the fact —A n B¢ 15 overruled
by the reflexave rule

A-A

Tot I ha
e v ve

0
1]
I
£
N
oo
[
<
111
-
~
o
~
B
g
1%
-
~

(b)

d

Hence, the condition (a) of Defimtion 3 1s satisfied Let us
now consider any element A m M By defimtion of 3-valued
model, for each rule »r m ground(C) with H(r)=-A,
value(H(r)) < U Hence, r 1s not applicable and also the
condition (b) of Defimtion 3 1s satisfied Therefore, M 1s a
model for EV(C)mn C

(b) Let M be any assumption-free model for OV(C) n C
By Proposition 3, M 1s a 3-valued model for C By Proposi-
tion 5 (part @), M 1s a model for EV(C) Let X be any non-
empty subset of M and A be any element m X By
hypothesis, X 1s not an assumption set wrt OV(C) m C,
so, by Defimtion 6, there exists an applied rule r m
ground(C*) wrt OV(C) such that H(r)=A,
B(r)u X =Q and r 1s neither overruled or defeated By
defimtion of extended version, r 1s also 1 ground(C* wrt
EV(C) Moreover, r cannot be overruled or defeated by any
reflexive rule Hence, X 1s not an assumption set wrt
EV(C) m C It follows that every subset of M 1s not an
assumption set wrt EV(C) n C, 1e, M 1s an assumption-
free model for EV(C)m C

(c) It follows from the fact that reflexive rule cannot play
any role for assumption sets

(d) Let M be a stable model for OV(C) mn C Smce M 1s
also an assumption-free model for OV(C) in C by defimuon
of stable model, M 1s an assumption-free model for EV(C)
m C by Proposition 5 (part b) We show that M 1s actually a
stable model for EV(C) in C by contradicion Let us then
assume that M 1s an assumption set for EV(C) in C such
that M ¢ M By Proposiion 5 (part c), there exists an
assumption-free model N for OV(C) n C such that M ¢ N
Hence, M c N (contradiction with the fact that M 1s a stable
model for OV(C) in C) Therefore, M 1s also a stable model

for EV(C) m C Suppose now that M 1s a stable model for
EV(C)m C We have to prove that M 1s also a stable model
for OV(C) in C By Proposttion 5 (part c¢), there exists an
assumption-free model N for OV(C) m C such that M ¢ N

But if M were a proper subset of N then M would not be a
stable model for EV(C) m C smnce N would be a larger
assumption-free model for EV(C) in C by Proposition 5

{rart hY Hanra M ~ A and than AM 16 a ctahla mndal fae
\paiv v nllice, oz = v aiG, uicil, o1 i3 a SitaoiC mioGdL 107
oviC)mC 0O

| PP TP SIS | mre ciiheiimae 2 cad caran
Al WIS UUlL Uldl OIUCTCA PIORIAIILS SUDSUINEC S-valuca >cmndn-
tics for semmegatwe programs

4 Negative Programs.

Let us now consider a negative program C A straightforward
way to provide a semantics for C 1s to follow the approach
used in the previous section and, therefore, to state that the
models of C are those of OV (C) or, better, those of EV(C)
The following example shows that, in this framework, nega-
tive rules do no play any constructive role

Example 8 Consider now the negative program C consisting
of the following two rules

fiv(XY — bird(X)
J ’ v g

X ird 3
—fly(X) — ground_ammal (X)

and of a number of database facts definng bird and
ground_ammal In this case, according to the two-level
semantics, we cannot state anything about the flying capabili-
ties of any ground bird [J

The previous example has pointed out that two-level seman-
tics for negative programs 1s rather poor since negative rules
either defeat the derivation of 4 positive literal or just confirm
the truthness of a negative literal, already asserted 1n the first
level We then propose a different semantics for negative pro-
gram

Let C be a negative program The 3-level version of C,
denoted by 3V(C), 1s the ordered program <{—B¢,C*,C"},
{C~ < C* C*<-B¢, C” < —B¢)>, where C* contains both
all semmegative rules of C and all reflexive rules, and C~
contans all negative rules Note that C~ can be thought of as
a set of exceptions to the general rules of C* We can now
define the semantics of a negative program C by refernng to
its 3-level version 3V(C) To this end, we observe that a set
of literals 1s an mnterpretation of C if and only if 1t 1s an
mterpretation for 3V(C) m C~

Defiution 10 Let C be a negative program and / be an

nterpretation for C

(a) I 1s amodel for C 1f I 1s a model for 3V(C)mn C~

(b) I 1s an assumption-free model for C iof I 15 an
assumption-free model for 3V(C) m C~

(¢) I 1s a stable model for C if I 1s a stable model for
WEC)mC™ 0O

Example 9 Consider the program C of Example 8 We have

that 3V(C) = <{Cp, C*,C}, C_.<C*, C_<C% C, < C%>,

191

where Co, 1n the reduced form, consists of the following
rules

—~Flv (X
HDA%Y

—-bird (X))

—ground_ammal (X))
C* consists of ail facts defimng bird and ground_amimai and
of the following rule

fiyX) - burd(X)
C~ only contams the rule

~fly(X) - ground_amimal (X)

According to the three-level semantics, every ground ammal
which 1s also a bird does not fly

Consider now the negative program C consisting of the fol-
lowing two rules

colored(X) — color(X), —colored (Y), X+Y
—colored (X) — ugly_color (X)

and of a number of database facts defimng color and
ugly_color Qbviously every ugly color 1s also a color The
meamng of the program 1s rather clear "select exactly one of
the available non-ugly colors" [J

As promised mn Section 2, we have provided a semantics for
negative programs, where negative rules play the interesting
role of exceptions to general rules We now propose a direct
semantics for a negative program which does not make any
reference to ordered programs

Let C be a negative program A subset X of I* 1s an assump-
tion set wrt I iof for each A m X, every rule r m
ground (C) with H(r) = A satisfies one of the following con-
dinons either valueB(r))<U or Br)nX D Ths 1s
the defimtion of assumption set given in {SZ] and comncides
with the defimtion of unfounded set {[VRS] if the conditon
value (B(r)) < U 1s changed mto value (B(r))=F

Defiition 11 Let C be a negative program and / be an
mterpretation of C

(a) I 15 a model for C if for each rule r 1 ground(C),
either (1) value (H (r)) 2 value (B (r)) or (u) there 1s an
exception, 1¢, H(r) 1s m I* and there exists a nega-
tive rule 7 i ground(C) for which both
H(Fy=—-H(r) and valueB(7))=T

(b) I 15 an assumption-free model for C 1if no non-empty
subset of I* 1s an assumption set wrt |

(¢) I 1s a stable model for C if I 1s a maximal
assumption-free model for C, 1e, 1t 15 a proper subset
of no other assumption-free model for C 0O

Note that Defimition 11 only uses concepts introduced 1n clas-
sical logic programming For reasons of space, we state the
next result without any proof

THEOREM 2 Definitions 10 and 11 are equivalent [

Thus Defimition 11 can be seen as a simple, direct extension
of seminegative program semantics {o negative programs

5. Conclusion

We have mtroduced an extension of logic programming,
called ordered logic programming, which includes some
abstractions of the object-onented paradigm In fact, an
ordered logic program consists of a number of modules, each
module being composed by a set of rules possibly with
negated head predicate A sort of "1isa" hierarchy can be
defined among modules 1n order to provide the ground for
rule mhentance In fact, every module sees its own rules as
local rules and the rules of the other modules to which 1t 1s
connected n hierarchy as global rules Therefore, as local
rules may hide global rules, 1t 1s possible to deal with default
properties and exceptions Moreover, since a most specific
module can be also thought of as the new version of a more
general module, also versioning can be dealt with by our
approach It turns out that modules correspond to objects
since they already include such concepts as methods,
defaults, inhentance and version while an effective support
for object 1dentity can be easily provided (see, for mnstance,
[K]) On the other side, because of its capability to deal with
default properties and exceptions, ordered logic programming
can be seen as a powerful language for non-monotomc rea-
soning as well as a new formahsm for explamning some recent
proposals of semantics for classical logic programs with
negation 1n the rule bodies In sum, ordered logic programs
appear to be a step toward the construction of knowledge
base systems of great flexibility for they include two relevant
features (a) combmation of logic programming and object-
oriented paradigms, and (b) treatment of logic programs with
negated rule heads As for the 1ssue (a), we note that two
mteresting proposals have been recently proposed in [AK]
and [KL], on the other side, recent work 1s dealing with the
1ssue (b) (see, for mnstance, [KS, GL2]) The advantage of our
approach 1s that the two 1ssues are treated n a unified frame-
work

We conclude by mentioning that further work 1s presently
devoted to better support object identity and to extend well-
founded semantics [VRS] to ordered logic programs In this
context, a proof procedure for mnferrng conclusions from
some classes of ordered logic programs has been devised mn
(LV]

ACKNOWLEDGMENT This work has been carried out
within the project KIWIS that 1s partially supported by the
Commussion of the European Commuruties in the framework
of the ESPRIT program

6 References

[ABW] Apt, K, Bar, H, and Walker, A, "Towards a
Theory of Declarative Knowledge," Minker, J (ed),
Morgan Kaufman, Los Altos, 1987, pp 89-148

192

[AK]

[CH]

[y

[FB]

[GL1]

[GL1]

K]

(KL]

{KS]

(L]

(LV]

(P1]

(P2]

[P3]

Abiteboul, S, Kanellakis, PC, "Object Identity as a
Query Language Prnimitive”, ACM SIGMOD Conf on
the Management of Data, SIGMOD Record, Vol 18,
No 2, June 1989, pp 159-173

Chandra, A, Harel, D, "Homn Clauses and General-
zation", Journal of Logic Programming 2, 1, 1985,
pp 320-340

Clark, KL, "Negation as Failure”, mn Logic and
Data Base, (Gallaire and Minker, eds), Plenum
Press, New York, 1978, pp 293-322

Fiting, M, Ben-Jacob, M, "Straufied and Three-
valued Logic Programming Semantics”, Proc Sth
Int Conf and Symp on Logic Programming, MIT
Press, Cambndge, Ma, 1988, pp 1054-1068

Gelfond, M, Lifschitz, V, "The Stable Model
Semantics for Logic Programmung”, Proc 5th Int
Conf and Symp on Logic Programming, MIT Press,
Cambndge, Ma, 1988, pp 1070-1080

Gelfond, M, Lifschitz, V, "Logic Programs with
Classical Negation", unpublished manuscript, Sep-
tember 1989

KIWIs Team, "The specifications of BQM", ESPRIT
Technical Report, February 1990

Kifer, M, Lausen, G, "F-Logic A Higher-Order
Language for Reasoming about Objects, Inhentance
and Scheme"” ACM SIGMOD Conf on the Manage-
ment of Data, SIGMOD Record, Vol 18, No 2, June
1989, pp 134-146

Kowalski, R A, Sadn, F, "Logic Programs with
Exceptions”, unpublished manuscnpt, November
1989

Lloyd, JW, Foundations of Logic Programming,
Springer Verlag, Berln, 1987

Laenens, E, Vermeir, D, "A Fixpomnt Semantics for
Ordered Logic", Journal of Logic and Computation,
to appear

Naqvi, S A, "A Logic for Negation in Database Sys-
tems,” i Foundations of Deductive Databases and
Logic Programmung, (Minker, J ed), Morgan Kauf-
man, Los Altos, 1987

Przymusinski, TC, "On the Semantics of Stratified
Deductive Databases and Logic Programs”, Journal
of Automated Reasoning, to appear

Przymusinski, TC, "On the Declaranve and Pro-
cedural Semantics of Deductive Databases and Logic
Programs”, in Foundations of Deductive Databases
and Logic Programming, (Minker, J ed), Morgan
Kaufman, Los Altos, 1987, pp 193-216

Przymusinski, T C, "Well-founded models are inter-
sections of three-valued stable models", unpublished
manuscript, 1989

(R]

(7]

(T]

(vl

[VG]

[VRS]

Reater, R, "On Closed World Databases", m Logic
and Data Base, (Gallaire and Minker, eds), Plenum
Press, New York, 1978, pp 55-76

Sacca, D, Zamwolo, C, "Stable models and Non-
determimism for logic programs with negation”, to
appear m Proc ACM Symp on Principles of Data-
base Systems, 1990

Tarski, A "A Lattice Theorencal Fixpoint Theorem
and 1its Application,” Pacific Journal of Mathematics
5, 1955, pp 285-309

Ullman, JD, Principles of Database and
Knowledge-Base Systems, Vol 1 and 2, Computer
Science Press, Rockville, Md , 1988

Van Gelder, A, "Negation as Faillure Using Tight
Denivations for Logic Programs,” Proc 3rd IEEE
Symp on Logic Programming, Springer-Verlag,
1986, pp 127-138

Van Gelder, A, Ross, K, Schlipf, J S, "Unfounded
Sets and Well-Founded Semantics for General Logic
Programs"”, ACM SIGMOD-SIGACT Symp on Prin-
ciples of Database Systems, March 1988, pp 221-
230

193

