
Extending Logic Programming

Els Laenens
Phlhps Intl B V , PASS/AIT
Emdhoven, The Netherlands

Domenzco Saccd
Dlpartlmento dr Slsteml,

Umverslti della Calabna, Rende, Italy

Dvk Vermew
Department of Mathematics and Computer Science,

University of Antwerp UIA, Wlhqk, Belgium

Abstract

An extenswn of logrc programmmng, called “ordered logic
programmmng”, which mcludes some abstractrons of the
object-orrented paradigm, IS presented An ordered program
consists of a number of modules (oblects), where each
module 1s composed by a number of rules possrbly wrth
negated head predicates A sort of ‘isa” hterarchy can be
defined among the modules m order to allow for rule mnherr-
tance Therefore, every module sees its own rules as local
rules and the rules of the other modules to which It as con-
nected by the “lsa” hierarchy as global rules In this way, as
local rules may hide global rules, rt IS possible to deal wrth
default properties and exceptions Thrs new approach
represents a novel attempt to combme the logtc paradigm
wrth the object-oriented one m bwwledge base system
Moreover, thrs approach provuies a new ground for explarn-
ing some recent proposals of semantics for classical logic
programs wrth negation m the rule bodies and gives an
mterestmng semantics to logrc programs with negated rule
heads

1. Introduction

In this paper we present an extension of logic prograrmnmg,
called ordered logic programmmng, that mcludes, besides to
classical mference mechamsms, object-onented abstrachons
and amemtles for non-monotomc reasonmg Ordered logic
programs are parnally-ordered sets of “traditional” logic pro-
grams (called components) where negatmn may also occur m
the rule heads and were first mtroduced m [LV]

Pemuss~on to copy wtbout fee all or part of this q atenal IS granted prwded
that the copses are not made or dWtbutcd for drect commemal advantage, the

An ordered program 1s a mulhple possibly contradictory
representanon of the knowledge, one for each component of
it, that can be thought of as a module or an object It fol-
lows that there are as many meanmgs as components Given
a component C,. the meanmg of C, 1s given by the rules m
C, as well as the rules m C, with C, I C, In other words a
program mherits rules from other programs, possible contrad-
xtlon 1s removed m two different ways by overruling and by
defeating

P, = <(Cl, C,), (Cl < Czl>.

where

C2=(
brrd (penguin) ,
bird (pigeon) ,
fly(x) - bird(X),
-ground-anunal (X) - brrd (X))

cl= I
ground~arumal (penguin) ,
-fly (X) - ground~anwnaf (X))

Fig 1 Ordered program Pl wrth overrulrng

The process of overrulmg 1s stiongly related to the fact that,
as we do allow negation also m the head of predicates, con-
tradlctmg mformahon could flow around if not blocked A
rule of a component C, gets overruled m the component C,
with C, < C, if It mtroduces some contradlctlon m C, (see
the ordered program P, of Figure 1 - the pengum does not
fly since some rules m C!z are overmled m CJ

The second way to avoid contradlctmg mformatlon flow IS to
defeat the whole mformahon This happens when the com-
ponent C, mherlts contradlctmg rules from two other com-

184

loan-rute (16)

Then, as the confhctmg mformatlon take loan and
take loun should be mferred, both pieces of iformatmn
are defeated and nothmg can be said about takmg loans at
myself level Suppose finally that the two rules defined at
myself level are the followmg

lnf lutron (19)

loun-rute (16)

Then the rule of Expert 4 IS overmled by the rule of Expert 3,
as there is no conflictmg mfonnation coming from Expert2
and Expert3, take-loan IS mferred at myself level

In tlus paper we elaborate the declarative model-theoretic
semanncs of ordered programs A nice feature of this seman-
hcs IS that It 1s able to capture the stable model semantics for
classical logic programming with negation on rule bodes
[GLl,SZ] This confirms that our extension of logic progrsm-
mmg 1s well founded

The paper 1s orgamzed as follows The semantics of ordered
programs IS described m Section 2 In Sechon 3 we show
that the semantics of ordered programs provides a new frame-
work to explam the semantics of classical logic programs
with negation In Section 4, we show that, as a particular
case of ordered program, a logic program with negated head
rules can be qupped with an mterestmg semantics where the
rules with negated heads play the role of exceptions to gen-
eral rules We present the conclusion and &scuss further
work m Section 5

c3= 1
rrch (mrmmo)
-poor(X) - rich(X))

C2=(
poor (mwnmo)
+wh(X) - poor(X))

cl= 1
free-tlckzt (X) - poor(X))

Fig 2 Ordered program P2 with defeatmg

ponents C, and Ck In this case, both pieces of mformatlon
are defeated (see the ordered program P2 of Figure 2 - we
cannot establish whether mlmrno 1s to receive a free ticket as
from the point of view of C1, C3 cannot be trusted better
than C2 or vice versa) It turns out that the meanmg of a pro-
gram may be partial

P2 = <(Cl, c2, c3, c41, {Cl < c2, Cl < CJ, c3 < C4)>,

c2= I
take-loan t mflu.tion(X), X>ll)

c4= 1
7tuke_loun t loan-rute (X), X >14)

c3= 1
tuke-loan t if lutron (X), bun-rute (Y),

X>Y+2)
cl= 0

Fig 3 Loan progrum

The flavor of the language, as given so far, confirms that it is
a powerful attempt to mclude object-onented mechamsms,
notably, mherltsnce and default values, mto logic program-
ming Our clann is that apphcation domams of logic pro-
grammmg are extended by the proposed approach for It 1s
possible to represent uncertam knowledge as required m
advanced knowledge base applications Consider the pro-
gram m Figure 3, it models a situation where myself (com-
ponent C1 that IS empty for now) has taken some knowledge
on loan procedures from three experts, where the knowledge
of Expert2 (component Cd IS mdependent from those of the
other two experts On the other side, Expert3 (component
C3) has refined the knowledge of Expert4 (component Cd)
Obviously, as no rule can be actually fired, no mference 1s
possible at myself level Suppose now that the rule

mflutlon(12)

IS stated at myself level Then it IS possible to mfer from
Expert2 that take-loan is true Suppose now that, at myself
level, the followmg two rules are mstead defined

mnf lutron (12)

2 Ordered Programs

Let us first introduce the basic concepts and notahons of our
language

We suppose that a (possibly mfimte) number of constants,
variables and symbols are avallable The basic tokens of the
language are terms, predicates and hterals A term 1s recur-
sively defined as a variable, a constant or f (tl, 9t.h
where t,. , t, are terms and f IS a function symbol A
predrcute 1s a formula of the language that 1s of the form
p (t), where p IS a predicate symbol with anty n (n20) and t
IS a sequence of n terms (arguments of the predlcute) A
lrterul 1s either a predicate (posrtrve lrterul) or its negaclon
(negutrve literal) A term, predicate or literal 1s ground If it
is vanable free

Two hterals are complementary if they are of the form A and
-J , for some predicate A In general, given a hteral A and a
set of ground hterals X, -A denotes the complement of A
and -X denotes the set of hterals (-J 1 B E X) Moreover,
X’ (resp X-) denotes the set of all positive (resp, negative)
hterals m X Fmally, we say that X 1s consrstent If there are
not two hterals A and B m X such that A = -8

A negutwe rule (or, snnply, a rule) 1s a formula of the
language represented with the usual Prolog’s notation [L] as
follows

185

Qo-Ql> >Qm

where Qo, , Q,,, are hterals, Qo IS the head of the rule,
and QI, , Q,,, IS the body of the rule If QO 1s positive
then the rule 1s a seminegufrve rule, moreover, if also
QI> 9 Qm are all positive then the the rule IS a posttrve
rule (or Horn clause) Given a rule r, H (r) denotes the head
of r and B (r) denotes the set of all hterals m the body of r
A rule 1s a fact d lt has an empty body and 1s ground if it 1s
vanable free

A negative program 1s a set of rules If all rules are semme-
gahve (resp , positive) then the program is called a seminegu-
tive program (resp , positive program)

Let P be a negative program The Herbrand’s Universe of P
(denoted by HP) 1s the set of all possible ground terms recur-
sively constructed by usmg constants and function symbols
occurrmg m P The Herbrand’s Base of P (denoted by BP)
1s the set of all possible ground predicates whose predicate
symbols occur m P and whose arguments are elements of
HP A ground rnstunce of a rule r m P 1s a rule obtamed
from r by replacmg every vanable X m r by e(X), where @
1s a mapping from the set of all vanables occurrmg m P to
HP The set of all ground mstances of all rules m P 1s
denoted by ground (LP) An rnterpretutlon for P 1s any con-
sistent subset of Bp v -8~

Let I be an mterpretation for a negative program P, then T
denotes the set of predicates {A 1 A e Bp, and neither A nor
4 1s m I) Note that, accordmg to the mterpretatlon I, a
ground literal 1s true d and only if it IS member of I, there-
fore, f contams all the elements of the Herbrand base for
which no value has been assigned m the mterpretatlon
(undefined elements) [FB, P3, SZ] An mtexpretatlon 1s total
if T is empty

For a positive or semmegatlve program P, those total
mterpretabons for P that make true all rules m ground(P)
are called total models and a total model M for P 1s mmunal
if there exists no other total model N for P such that M’ 1s a
proper subset of N+ It 1s known that a total model exists for
every positive or semmegahve program, moreover, the
mmunal total model of a positive program 1s unique and
represents the meamng of it [L, U] On the other hand, the
notion of model cannot be easily extended to negative pro-
grams as mconslstency can now anse because of negative
head predicates and there are many alternative ways to cope
with mconsistency In &us paper, the semsnhcs of negative
programs will be eventually explamed as a parttcular case of
a more general class of logic programs (ordered programs)

Defwtron 1

(a) An ordered program 1s a fimte parhally-ordered set of
negative programs (called components) where ‘I” 1s
the parhal order

(b) An mterpretatron for an ordered program m a com-
ponent C, 1s any mterpretahon of C,*, where C,*
denotes the negative program (r 1 r E C, and
c, s c,) cl

Let P be an ordered program The restnctlon of “I” to all
pairs of dtstmct components 1s denoted by ‘I<“, moreover,
given two dlstmct components C, and C,, C, c> C, meam
that neither C, < C, nor C, < C, Throughout all examples
of thts paper, an ordered program P 1s represented by a pan
cC,L> where C 1s the set of components and L 1s the rela-
hon “<” Fmally, given a rule r m ground(C,*), C(r)
denotes the component C, contnmng the rule of whch r 1s
the ground mstance If a rule occurs m more than one com-
ponent then we assume that it has dishnct ground mstances
so that C 1s actually a funchon from ground mstances to
components

Every component C, of an ordered program can be thought
of as a module or object with local rules (thus those defined
m C,) and wtth global rules (thus those defined m all other
components C, such that C, < C,). where local rules may
hde (overrule) global m1e.s The “4’ relation 1s a sort of Isa
hierarchy for the components and provide the ground for
mherltance It turns out that a predicate can be defined m
different ways m the various components, thus the program
P has several meamngs, one for each of its components

Example 1 Consider the ordered program P1 of Figure 1
To the best of the knowledge of Cl, the penguin IS not a
ground urwnal and flies whereas these facts are contradicted
m C; On the other side, C 1 can mhent a rule from Cz to
mfer that the pIgeon flies 0

Defmltlon 2 Given an mterpretahon I for P m C, , a rule r
m ground (C,*) is

appluxble if B (r) E 1,

applred if it IS applicable and H (r) E I,

blocked If there exists A m B (r) such that -A E I,

overruled d there exists a non-blocked rule i m
ground (C,*) such that C(i) c C(r), and
H(i) =-J?(r),

defeated if there exists a non-blocked rule i m
ground (C,*) such that (1) C(i) <> C(r) or
C(i)=C(r),and(n)H(i)=4(r) Cl

EMmple 2 Take the ordered program P1 of Example 1 The
set I, = (bird (pigeon), bird (penguin),
ground~arumal @enguin), 7ground_anunal @rgeon),
fly (pigeon), 7f ly (penguin)) is a total mterpretation for P 1
m C1 The ground rule

fly (penguin) - bu-d (penguin)

1s applicable but it 1s overruled by the applied ground rule

7f ly @enguin) - ground~anrmal @engurn)

The ground rule

7fly@igeon) - ground~anunal@igeon)

1s both blocked and non-applicable

Consider now the ordered program $1 = <(C) , 0>, where
C contams all the rules that are either in the component C1

186

or C2 of the ordered prtgram PI In this case, consldermg I1
as an mterpretahon for P 1 m C , the applicable rule

fly @engum) - bard @engum)

1s defeated by the applied rule

-fly (penguin) - ground-animal (penguin)

Also the applied rule

ground_anrmal (penguin)

1s defeated by the applicable rule

Iground-anamal (penguin) - bard @engurn)

Let P2 be the ordered program m Figure 2 Then the set
I2 = (rtch (mrmmo), poor (munmo)) 1s a (non-total) mterpre-
tatlon of P3 m C1 The two ground rules

rrch (mamma)

*ach (mamma) - poor (mrmmo)

defeat each other %s means that more mformahon 1s
needed on mamma m order to certify whether he 1s nch or
not Cl

Defirutaon 3 Let P be an ordered program and C be a com-
ponent of it An mterpretahon M IS a model for P m C if
(a) for each A m M. every rule r with H(r) = 4 IS either
blocked or overruled by an apphed rule and (b) for each A m
R, every applicable rule r with H(r) = A or H(r) = 4 IS
either overruled or defeated Cl

Condihon (a) guarantees that either the value of a hteral A m
a model cannot be contradicted by any rule (no matter value
1s assigned to any undefined element) or d It 1s contradicted
then 1s reconfirmed by a most specific rule (1 e, a rule m a
lower component), condltlon (b) says that the value of A that
could be mferred by some applicable rule can remam
undefined only if dus rule 1s overruled or defeated, possibly
by asslgnmg suitable values to some undefined elements

Example 3 Consider the ordered programs P 1, P 1 and P2 of
Example 2 The mterpretahon II 1s a model for PI III Cl On
the other side, II 1s not a model for the ordered program p,
m C A model for PI m C IS f, = (bard (pigeon).
brrd (pengum), fly (pigeon), -ground-anunal @tgeon)) , note
that fly (penguin) and grouru-urumal (pengum) are
undefined The mterpretatlon I2 IS not a model for P2 m C1

We are now given the ordered program P3 composed by only
one component, C. conslstmg of the followmg two rules

a- b

TCJ - b

We have that (b), (Tb), (u,-~b). (~u,-~b) and () are
models, whereas all other mterpretahons (mcludmg the Her-
brand Base) are not Cl

The previous example has shown that the Herbrand Base 1s
not necessarily a model as for eadmonal logic programs
Then one could suspect that not all ordered programs have a
model However, we next prove that a model always exists
To thy end, we need to introduce some prehmmary
defimtlons and results

Defmataon 4 Let P be an ordered program and C be one of
Its component Let I be the fanuly of all mterpretations of P
m C The ordered rmmedaate transjormatron for P m C IS

the function Vp,c I + I defined as follows given an
mterpretatlon I. Vplc(Z) = (A 1 there exists a rule r m C’
such that H (r) = A, B (r) E I and r IS neither overruled nor
defeated (w r t I) by any rule) Cl

LEMMA 1 The transformatwn V,IC IS monotone and has
the bast jixp01nt

PROOF (sketch) It IS routme to prove that Vpc IS mono-
tone But VP ~c 1s monotone m the complete lattice d.9
Hence its least fixpomt exists [T] Cl

From now on, we shall denote the least fixpomt of V,lc by
V~ldQ9
PROPOSITION 1 Given an ordered program P and a com-
ponent C , V&(0) fl a model for P an C

PROOF (sketch) It 1s easy to see that the two condihons of
Defimtlon 3 are satisfied Cl

Thus we have proved that a model exsts for each ordered
program m every of its components A subsequent question IS
whether a total model always exists

Dejinrtron 5 Let P be an or&red program and C a com-
ponent of it A model M for P m C 1s

(a) total if M is empty,

(b) exhaustive if there exists no other model 10 for P m
C such that M IS a proper subset of fi 0

Obviously every total model IS also exhaustive but the con-
verse 1s not true As a model always exists, an exhaushve
model must exist as well, on the other side. the existence of a
total model 1s not guaranteed For mstance. no total model
exists for the program P2 of Example 2 m C We also
pointed out that it may happen that there exists a non-total
exhaushve model even when there 1s a total one

Fmdmg a total model 1s hard even for semmegahve pro-
grams Besides such a model does not necessarily capture the
“mtended” semanhcs of the program, 1 e, it may contam
hterals that are not derivable from the program (mformally,
such hterals are “assumptions” as theta value 1s, m a sense,
arbitrary) For mstance well-founded semantics [VRS] does
not guarantee the existence of a total well-founded model
As a consequence, we prefer to find a partial model without
any assumphon rather than a larger (even total) model with
assumptions Let us elaborate hs issue next

Definrtron 6 Let P be an ordered program, C be a com-
ponent of it, and I be an mtexpretatlon for P m C A non-
empty subset X of I 1s an assumption set w r t I If for each

187

A m X, every rule r m ground(C*) with H(r) = A sahsfies
one of the followmg condlhons

(4 r 1s non apphcable, or

(b) r IS overruled, or

(cl r 1s defeated, or

(d) B(r)nX+0 Cl

Note that the notion of assumption set was first mtroduced m
[LV] and 1s an extension of the defimhon of assumphon set
used m [SZ] that, m mm, 1s an extension of the nohon of
unfounded set given m [VRS] The models we are going to
analyze are those which do not mclude any assumphon set

Defmtron 7 Let P be an ordered program, C be a com-
ponent of P and M be a model for P m C Then M IS an
ussumptron-free model for P m C If no subset of M IS an
assumphon set w r t M 0

Example 4 Consider the ordered programs PI, PI and P2 of
Examples 2 and 3 The model 11 for PI m C1 as well as i1
for PI in C is assumption free The empty set is an
assumption-free model for P2 m C1 Take now the ordered
program P3 of Example 3 The empty set 1s the only
assumption-free model for P3 in C

Consider now the ordered program P4 with a umque com-
ponent C, consishng of the followmg rule

a-b

The only assumption-free model of P4 m C1 IS the empty set,
tins means that no ground literal 1s hue without makmg some
assumphon Note that the model (7a ,Tb) IS not assumphon
free m our defimhon Actually, It 1s not assumption-free even
for the tradihond program C, for It 1s based on some parhcu-
lar lmpllclt assumphon for asserting negahve ground hterals
(e g , negation by failure [Cl], stratified negahon [ABW. CH,
N, VG], perfect model [Pl, P2], well-founded model [VRS],
stable model [GLl], etc) The model (~a ,Ib) becomes the
only assumphon-free model of P m C1 if we add a second
component Cz with the followmg two rules

-?a

-,b

andC1<C2 Cl

As It has been sketched m the previous example and as it
will be formally shown m the next sechon, most of recent
semanhcs for negahon are subsumed by ordered program
semanhcs by JUSt expliclhng that every negahve lIteral 1s hue
unless it 1s overruled The advantage of our approach even
for the case of programs with only one component 1s that any
assumphon for derlvmg negahve laterals must be explicitly
declared, and, besides, it 1s possible to use more assumphons
at the same hme For instance, when definmg a predicate,
three different situahons may snse (1) every negahve literal
IS true unless it 1s overruled (classical situahon), (II) every
posihve hteral 1s tTue unless it is overruled (in tbls case, the
“sign” of the predicate could be changed to reduce to the pre-

vious case), and (m) every literal 1s undefined unless its value
1s expbatly derived All the three cases can be captured by
ordered programs

We now formalize the mhntion that an assumphon-free
model only contams ground bterals wluch can be mferred
from the rules of the program

Definatron 8 Let P be an ordered program, C be a com-
ponent of P and M be a model for P 111 C The enabled ver-
slon of ground(C*), denoted by Ch. 1s the program contam-
mg all applied rules of ground (C *) Cl

Let us now apply the mmedrate consequence transformatron
T as defined for semmegahve and positive programs to C&
Hence, given any mterpretahon I for P m C, Tch(I) = (A 1

there exists a rule r m C’s such that A = H (r) and
B(r)EI)
LEMMA 2 Let P be an or&red program, C be a com-
ponentofP andM beumodelforP mC ThenT

%
u

monotone and has the least jixpoant, denoted by TFh (0)

Moreover, T+, (0) c M

PROOF (sketch) It 1s easy to recognize that Tc’ IS defined m
the complete lattice 4,~, where Z 1s the family of all
mterpretations for C’ , smce no contradichons can anse m
C’, moreover, Tee 1s monotone It follows then Tee has the
least fixpomt Finally, since for each r m C’ , H (r) 1s m M
by construchon, T$ (0) E M Cl

THEOREM 1 Let P be a program and C be a component
of at

(a) A model M for P an C u assumptaon free af and only
tfT,“, (0) = M

(b) V;,,(O) as an assumptaon-free model for P an C and
as the mtersectron of all models for P an C

PROOF (sketch) (a) Suppose that M IS a model for P m C
and that Tpe (0) = M We prove by contradichon that M IS
assumphon free Let us assume that X E M 1s an assumphon
set w r t M It 1s easy to see that no rule m C’ 1s non-
applicable, overruled or defeated Hence, for each A m X,
every rule with H (r) = A contams at least an element of X
m its body Hence, M - X 1s a model (contradlchon with the
fact that M 1s the least fixpomt of T,, Hence M IS
assumption-free Suppose now that M 1s an assumphon free
model for P m C We agam proceed by contradichon to
prove that T; (0) = M Suppose then that TFe (0) # M By
Lemma 2, TFe(0)cM Let X= M-T,“,(0) By
definition of C’ , for each A m X, there exists no rule r of
C’ such that H (r) = A Hence X 1s an assumphon set and
we get a contradlchon Hence, TFe (0) = M

(6) The proof that V;,(0) 1s assumption free 1s rather
straightforward On the other side, it can be shown that
every model N for P m C 1s a fixpomt of Vp,c Therefore,

188

the least fixpomt of Vplc 1s contamed m N 0

It follows that V&(0) is the least model for P m C Let us
now tum our attention to maxnnal assumphon-free models
for P m C, I e , any assumption-free model that 1s a proper
subset of no other assumption-free model for P m C

Defitutaon 9 Let P be an ordered program and C a com-
ponent of it A model M for P m C IS stable if M IS a max-
imal assumphon-free model 0

We pomt out that the umqueness of stable models 1s not
guaranteed

Example 5 Let P5 be the ordered program <(Cl, C,),
(C, c C2)> where C2 has the followmg rules

a

6

C

and C1 consists of

-a - b,c

76 - u

76 - 76

[a, 76, c) and (-~a, 6, c) are two stable models for Ps m
Cl, whereas (c) 1s an assumption-free (but not stable) model
forPgmC1 Cl

The next result shows that every assumphon-free model IS an
“approxunahon” of a total or exhaushve model m the sense
that, by asslgmng value to some of the undefined elements
and without changmg the value for those hterals that are
already m the model, a total or exhaustive model can be
achieved

PROPOSITION 2 Let P be a program and C be u com-
ponent of at Then every model for P an C 1s a (not neces-
sarily proper) subset of an exhaustrve model for P In C

PROOF (sketch) Let M be an assumption-free model for P
m C Let L be the fannly of all consistent subsets of
R u -@ such that M u L IS a model for P m C If L 1s
empty then M 1s obvtously exhaustive and, then, the propoa-
tlon holds Otherwlse, we select a maxnnal element L m L,
1 e , L 1s m L and 1s not a proper subset of any other element
m L It 1s easy to see that M u L 1s an exhaushve model
for P m C Cl

It turns out that a stable model 1s the maxlmal subset of some
exhaustive model that can be mferred from the rules

3. Semlnegatlve Programs

In this sectron we show that the semantics for ordered pro-
gram 1s able to capture the semanhcs for clssslcal semmega-
tive programs

Let C be a semmegahve program We say that the ordered
versaon of C , denoted by OV(C). 1s the ordered program
<(Y&, C), (C < -&)> (note that the Herbrand Base -&

1s here considered as a set of negahve rules with empty
body) As it will be shown next, the component 4~
corresponds to an explicit closed world assumphon declara-
hon [R] “every element of the Herbrsnd Base 1s false unless
its truth is proved” Note that, mstead of wrltmg down all
the elements m Bc it is sufficient to wnte a rule

-P(X,, , x,>

where X1, X,, are &stmct vanables, for each n-ary
predicate symbol p occurrmg m C In tis case the srze of
OV(C) 1s polynomlally bounded m the size of C (the size of
a program is the total number of symbols that occur m tt)

We now show that there ae close relahonships between the
models of C (as m c1ass~a.l logic programmmg) and the
models for OV(C) 1~1 C

Example 6 Consider the ancestor program C

anc(XB)

unc(X,Y) - parent(X,Z), anc(Z,Y)

where parent 1s defined through a database relanon [U]
Then OV(C) = <(C, 6), (C c d)>, where c 1s

-parent (X ,Y)

,anc(X,Y)

Note that we have used a reduced form to write down BC q

Let us now mtroduce the notlon of 3-valued model for sem-
megatlve programs, as given m [P3] Let C be a semmega-
hve program and I be an mterpretatlon of it Gwen a ground
literal A , value (A) IS equal to T (rue) if A IS m I, F (alse) If
-A IS m I and V(n&fined) otherwlse (1 e, either A or 4
1s m T) Moreover, we assume that F c U c T and that the
value of a conJunchon J of ground hterals 1s the nummal
value of these hterals, I e , value(J) = mrnA mJ (value (A))
If J 1s empty then we assume that value(J) = T Then I IS a
3-valued model for C if for each rule r m ground(C),
value(H (r)) 2 value@(r)) Note that d a 3-valued model 1s
total then it makes true all the rules m ground(C) and every
exhaushve model for C IS total

PROPOSITION 3 Let C be u semrnegutave program Then
every model for OV(C) an C as a 3-valued model for C

PROOF (sketch) Let M be a model for OV(C) m C Obvl-
ously M 1s an interpretation for C Let r be any rule m
ground(C) In order to prove that M 1s a 3-valued model for
C it IS sufficient to show that value (H (r)) 2 value@ (r))
Suppose that value (H (r)) < U otherwlse the proof would be
tnvlal If vulue(H (r)) = (I, then H(r) IS m R Since r can-
not be overruled or defeated, by definition of model for
ordered programs r 1s not apphcable, 1 e value (B (r)) 5 U
If vulue(H(r)) = F. then -&Z(r) 1s m M Since r cannot be
overruled, by defimhon of model for ordered programs r 1s
blocked, 1 e , value (B (r)) = F 0
Note that the converse of Proposition 3 does not hold

189

,?hmpfe 7 Corder the progrsm C conslshng of the fol-
lowing rule

P - YP

We have that (p) 1s a 3-valued model for C but not for
OV(C) m C smce the unphctt rule up IS not overruled by a
non-blocked rule In fact, the rule of C 1s not apphcable 0

Let us now mtroduce the concept of founded model as given
m [SZ] To tins end, we apply the stability transformation
condihon for a semmegahve program given m [GLl] to 3-
valued models Gwen a semmegahve program C and a 3-
valued model M for C, the posrtave version of C w r t M,
denoted CM, 1s the posihve program obtamed from
ground(C) by delehng (a) each not applied rule and (c) all
negahve laterals from the remammg rules Then M IS
founded If T& (0) = M’ Moreover, M IS stable when it 1s
maxnnally founded (I e , it 1s founded and IS a proper subset
of no other founded model) Note that if M IS total then M
1s stable also accordmg to the defimhon of [GLl] We recall
that the latter delimhon only refers to total models

PROPOSITION 4 Let C be u semanegatave program Then
every rnterpretatwn M for C as a 3-valued, founded model
for C af and only af M LF an assumptwn-free model for
OV(C) an C

PROOF (sketch) Suppose that M 1s an assumption-free
model for OV(C) III C Then, by Proposlhon 3, M IS a 3-
valued model for C It IS easy to see that T& (0) c M’
Moreover. it can be shown that TFM (0) = M+ smce other-

wise M - TFM (0) would be an assumption set w r t M
Hence M 1s also founded Suppose now tbat M IS a 3-valued,
founded model for C It 1s easy to see that the condlhon (a)
of Definition 3 1s sahsfied because M 1s a founded model and
the condihon (b) of Definition 3 is sahsfied because M IS a
3-valued model Hence M 1s a model for OV(C) m C
Fmally, the fact that M 1s assumption free denves from the
fact that M 1s founded 0

COROLLARY 1 Let C be a semanegatave program Then
an rnterpretataon M for C IS a stable model for C af and
only af M 1s a stable model for OV(C) an C

PROOF It follows from Proposition 4 and the definitions of
stable models Cl

We have then shown that recent semanhcs for negahon such
as stable model semantics can be also explamed m the fiame-
work of ordered programs Nevertheless, Example 7 has
pomt out that not all 3-valued models are captured by an
ordered program To remove tius hmltahon, we mtroduce a
different ordered version of a semmegahve program C , called
the extended version of C and denoted by Ev(C), that 1s
obtamed from OV(C) by addmg the rule A - A, for every
A m Bc, to the component C The above rules are called
reflexave rules Also m this case the number of such addl-
tlonal rules can be dramatlcly reduced by wrltmg them m a
non-ground form

PROPOSITION 5 L.et C be a semmegatrve program and M
be an interpretation for C

(a) M as a 3-valued model for C af ana’ only af M ts a
model for EV(C) an C

(b) Every assumption-free model for OV(C) m C u an
assumptwn-free model for EV(C) an C

(c) Every asswnptron-free model for EV(C) m C IS a (not
necessarily proper) subset of un assumptron-free model
for OV(C) an C

(d) M u a stable model for OV(C) an C If and only af M
as u stable model for EV(C) an C

PROOF (sketch) (a) The proof that if M IS a model for
EV(C) m C then M 1s a 3-valued model for C IS slfTular to
the proof of Proposihon 3 Let us now assume that M 1s a
3-valued model for C We have to prove that M IS a model
for EV(C) m C Let A be any element m M If A IS nega-
hve then for each rule r m ground(C) with H (r) = -IA,
value (H (r)) = F by defimhon of 3-valued model Hence r IS
blocked If A 1s positive then the fact +i m Bc 1s ovenuled
by the reflexive rule

A -A

Hence, the condihon (a) of Defimhon 3 IS satisfied Let us
now consider any element A III fl By defimhon of 3-valued
model, for each rule r m ground(C) with H(r) = -A,
value(H (r)) I U Hence, r 1s not applicable and also the
condihon (b) of Definition 3 1s sahsfied Therefore, M 1s a
model for Ev(C) m C

(6) Let M be any assumphon-free model for OV(C) III C
By Proposihon 3, M 1s a 3-valued model for C By Propon-
hon 5 (part a), M IS a model for E’V(C) Let X be any non-
empty subset of M and A be any element m X By
hypothesis, X IS not an assumphon set w r t OV(C) III C,
so, by Defimhon 6, there exists an applied rule r m
ground (C’) wrt OV(C) such that H(r)=A.
B (r) u X = 0 and r 1s neither overruled or defeated By
defimhon of extended version, r IS also m growrd(C’ w r t
EV(C) Moreover, r cannot be overruled or defeated by any
reflexive rule Hence, X 1s not an assumphon set w r t
Ev(C) m C It follows that every subset of M 1s not an
assumption set w r t EV(C) m C , 1 e , M 1s an sssumphon-
free model for i%(C) m C

(c) It follows from the fact that reflexive rule cannot play
any role for assumpaon sets

(d) Let M be a stable model for OV(C) m C Smce M 1s
also an assumption-free model for OV(C) m C by defimhon
of stable model, M 1s an assumphon-free model for Ev(C)
m C by Proposihon 5 (part 6) We show that M 1s actually a
stable model for Ev(C) m C by contradichon Let us then
assume that fi 1s an assumption set for ,!i’V(C) m C such
that M c h? By Proposihon 5 (part c), there ex=ts an
assumption-free model N for OV(C) m C such that Q G N
Hence, M c N (contradtchon with the fact that M 1s a stable
model for OV(C) m C) Therefore, M 1s also a stable model

190

for EV(C) m C Suppose now that M 1s a stable model for
Ev(C) m C We have to prove that M IS also a stable model
for OV(C) m C By Proposlhon 5 (part c), there exists an
assumphon-free model N for OV(C) III C such that M E N
But If M were a proper subset of N then M would not be a
stable model for EV(C) m C smce N would be a larger
assumphon-free model for L’V(C) m C by Proposlhon 5
(part 6) Hence, M = N and, then, M 1s a stable model for
OV(C)mC 0

It turns out that ordered programs subsume 3-valued seman-
tics for semmegahve programs

4 Negative Programs.

Let us now consider a negahve program C A striughtforwsrd
way to provide a semantics for C 1s to follow the approach
used in the previous section ana therefore, to state that the
models of C are those of OV(C) or, better, those of EV(C)
The followmg example shows that, m tlus framework, nega-
tive rules do no play any constructive role

Example 8 Consider now the negahve program C conslstmg
of the followmg two rules

fly(X) - bard(X)

7f ly (X) - ground_anml (X)

and of a number of database facts de&g bard and
ground_anunal In tlus case, accordmg to the two-level
semanhcs, we cannot state anything about the flying capablh-
hes of any ground bud Cl

The previous example has pointed out that two-level seman-
tics for negahve programs is rather poor smce negahve rules
either defeat the derlVation of A posihve literal or Just confirm
the trutbness of a negative lrteral, already asserted m the first
level We then propose a different semanhcs for negative pro-
gram
Let C be a negative program The 3-level verston of C,
denoted by 3V(C). 1s the ordered program <(-&.C’,C-),
(C- < C+. C+ < --&, C- < Y&J>, where C’ contams both
all semmegahve rules of C and all reflexive rules, and C-
contams all negative rules Note that C- can be thought of as
a set of exceptions to the general rules of C+ We can now
define the semanhcs of a negahve program C by referrmg to
its 3-level version 3V(C) To dus end, we observe that a set
of bterals 1s an mterpretahon of C if and only If It 1s an
mterpretahon for 3V(C) m C-

Dejirutaon 10 Let C be a negative program and I be an
mterpretahon for C

(a) I 1s a model for C if I 1s a model for 3V(C) 111 C-

(b) I 1s an assumptaon-free model for C d I 1s an
assumphon-free model for 3V(C) m C-

(c) I 1s a stable model for C d I 1s a stable model for
3v(c)mc- Cl

Example 9 Consider the program C of Example 8 We have
that 3V(C) = <(Co, C+, C-), C- < C+, C- c Co, C+ < Co)>,

where CO, m the reduced form, consists of the followmg
rules

-fly(X)

Tbrrd (X)

7ground-anunal (X)

C’ consists of all facts definmg bard and ground_anrmal and
of the followmg rule

fly(X) - bard(X)

C- only contams the rule

-7f ly (X) - ground~anamal (X)

According to the three-level semanhcs, every ground ammal
wluch IS also a bird does not fly

Consider now the negative program C consrstmg of the fol-
lowmg two rules

colored(X) - color(X), -colored(Y), XtY

Tcolored (X) - ugly-color (X)

and of a number of database facts defimng color and
ugly-color Obviously every ugly-color 1s also a color The
mesnmg of the program 1s rather clear “select exactly one of
the avnlable non-ugly colors” Cl

As promised m Section 2. we have provided a semanhcs for
negahve programs, where negahve rules play the mtereshng
role of excephons to general rules We now propose a dmzct
semanhcs for a negahve program winch does not make any
reference to ordered programs

Let C be a negative program A subset X of I+ 1s an assump-
taon set w.r t I d for each A m X. every rule r m
ground(C) with H (r) = A sahsfies one of the followmg con-
dlhons either value(B(r))SU or B(r)nX#0 Tins 1s
the defimhon of assumphon set given m [SZ] and comcldes
with the defimhon of unfounded set [VRS] if the con&hon
value (B (r)) I U 1s changed mto value (B (r)) = F

Definrtaon II Let C be a negahve program and I be an
mterpretation of C

(a) I 1s a model for C if for each rule r m ground(C).
either (1) value(H (r)) 2 value (B (r)) or (u) there 1s an
exception, 1 e , H(r) 1s m I’ and there exists a nega-
tlve rule i m ground(C) for wluch both
H(i) = 4(r) and value@(i)) = T

(b) I is an assumption-free model for C if no non-empty
subset of I’ is an assumphon set w r t I

(c) I 1s a stable model for C if I 1s a maximal
assumption-free model for C, i e , it is a proper subset
of no other assumphon-free model for C 0

Note that Defimhon 11 only uses concepts mtroduced m clas-
sical logic programmmg For reasons of space, we state the
next result without any proof

191

THEOREM 2 Definrtaons 10 and 11 are equavulent 0

Thus Defimtlon 11 can be seen as a smple, dmct extension
of semmegatlve program semanhcs to negahve programs

5. Conclusion

We have mtroduced an extension of logic programmmg,
called ordered logrc progrummang. whch mcludes some
abstractions of the object-onented paradigm In fact, an
ordered logic program consists of a number of modules, each
module bemg composed by a set of rules possibly with
negated head predicate A sort of “isa” luerarchy can be
defined among modules m order to provide the ground for
rule mhentance In fact, every module sees its own rules as
local rules and the rules of the other modules to which it 1s
connected m herarchy as global rules Therefore, as local
rules may hide global rules, it 1s possible to deal with default
propeties and excephons Moreover, smce a most specific
module can be also thought of as the new vemon of a more
general module, also verstomng can be dealt with by our
approach It turns out that modules correspond to obJects
smce they already include such concepts as methods,
defaults, mhentance and version while an effechve support
for obJect idenhty can be easily provided (see, for mstance,
[K]) On the other side. because of its capablhty to deal with
default properhes and excephons, ordered logic programmmg
can be seen as a powerful language for non-monotomc rea-
somng as well as a new formalism for explammg some recent
proposals of semantics for classical logic programs with
negahon m the rule bodes In sum, ordered logic programs
appear to be a step toward the construchon of knowledge
base systems of great flexlblhty for they mclude two relevant
features (a) combmahon of logic progr ammmg and obJect-
onented paradigms, and (b) treatment of logic programs with
negated rule heads As for the issue (a), we note that two
mterestmg proposals have been recently proposed m [AK]
and [KL], on the other side, recent work 1s dealmg with the
issue (b) (see, for mstance, [KS, GL2]) The advantage of our
approach 1s that the two issues are treated m a untied frame-
work

We conclude by mentlonmg that further work 1s presently
devoted to better support object identity and to extend well-
founded semantics [VRS] to ordered logic programs In this
context, a proof procedure for mfemng conclusions from
some classes of ordered logic programs has been devised m
[LVI

ACKNOWLEDGMENT Thrs work has been carrred out
wrthan the project KIWIS that as partially supported by the
Comnussron of the European Communrtaes an the framework
of the ESPRIT program

6 References

[ABW] Apt, K, Bau, H, and Walker, A, “Towards a
Theory of Declurutrve Knowledge,” Mmker, J (ed),
Morgan Kaufman, Los Altos, 1987, pp 89-148

WI

EL11

EL11

Kl

WI

KS1

u-1

[LVI

M

WI

WI

P31

Ablteboul, S , Kanellakls, PC , “GbJect Idenhty as a
Query Language Pnmltlve”. ACM SIGMOD Conf on
the Management of Data, SIGMOD Record, Vol 18.
No 2, June 1989, pp 159-173

Chandra, A, Harel, D , “Horn Clauses and Generah-
zatlon”. Journal of Logic Programmmg 2, 1, 1985,
pp 320-340

Clark, KL, “Negation as Failure”. m bgrc and
Data Base, (Gulluare and Ma&r, eds), Plenum
Press, New York, 1978, pp 293-322

Rttmg, M , Ben-Jacob, M , “Strahfied and Three-
valued Logic Programmmg Semantics”, Proc 5th
Int Conf and Symp on Logic Progr ammang. MIT
Press, Cambndge, Ma, 1988, pp 1054-1068

Gelfond, M , Llfschltz, V , ‘The Stable Model
Semsntlcs for Logic Programmmg”, Proc 5th Int
Conf and Symp on Logic Programmmg. MF Press,
Cambndge, Ma, 1988. pp 1070-1080

Gelfond, MI Llfschltz, V , “Logic Programs with
Classical Negahon”, unpublished manuscript. Sep-
tember 1989

KIWIS Team, “The specificahons of BQM”, ESPRlT
Technical Report, February 1990

Klfer, M , Lausen, G , “F-Logic A Higher-Order
Language for Reasomng about Objects, Inhentance
and Scheme” ACM SIGMOD Conf on the Munage-
rnenf of Data, SIGMOD Record, Vol 18, No 2, June
1989. pp 134-146

Kowalsla, R A, Sadn, F, “Logic Programs with
Exceptions”, unpublished manuscript, November
1989

Lloyd, J W , Foumiatwns of Logic Progrummmg,
Sprmger Verlag, Berlm, 1987

Laenens, E , Vermelr, D , “A Flxpomt Semantics for
Ordered Logic”, Journal of Logic and Computahon,
to appear

Naqvl, S A, “A Logic for Negahon m Database Sys-
tems,” UI FourmUons of Deductive Databases and
Logic Programmang, (Manker, J ed), Morgan Kauf-
man, Los Altos, 1987

Przymusmsh, T C , “On the Semantics of Stratified
Deduchve Databases and Logic Programs”, Journal
of Automated Reasonang, to appear

Przymusmskl, T C , “On the Declarative and Pro-
cedural Semantics of Deductive Databases and Logic
Programs”, m Foundutaons of Deductive Databases
and Logrc Programmang, (Manker, J ed), Morgan
Kaufman, Los Altos, 1987, pp 193-216

Przymusmskl, T C , “Well-founded models are mter-
sechons of three-valued stable models”, unpubhshed
manuscript, 1989

192

[RI

wcl

U-1

WI

WI

[VW

Relter, R , “On Closed World Databases”, m Lqlc
and Data Base, (Gallave and Mnker, eds), Plenum
Press, New York, 1978, pp 55-76

Sac& D , Zamolo, C , “Stable models and Non-
determm~sm for logic programs wrth negation”, to
appear m Proc ACM Symp on Prmclples of Data-
base System, 1990

Tarskl. A “A Lattice Theoreacal Flxpomt Theorem
and its Apphcatlon,” Pa@ Journal of Mathematrcs
5, 1955. pp 285-309

Ullman, JD, Prrnclples of Database and
Knowledge-Base Systems, Vol 1 and 2, Computer
Science Press, Rockvllle. Md , 1988

Van Gelder, A, “Negation as Fdme Using Tight
Derlvatlons for Logic Programs.” Prac 3rd IEEE
Symp on Logic Programming. Sprmger-Verlag,
1986, pp 127-138

Van Gelder. A, Ross. K, Schhpf, J S , “Unfounded
Sets and Well-Founded Semantics for General Logic
Programs”, ACM SIGMOD-SIGACT Symp on Prm-
crples of Database Systems, March 1988, pp 221-
230

193

