A Framework for the Parallel Processing of Datalog Queries

Sumit Ganguly
Aw1 Silberschatz*
Shalom Tsur!

Department of Computer Sciences

The University of Texas
Austin, Texas 78712

S ASUiddy

Abstract

This paper presents several complementary methods for
the parallel, bottom-up evaluation of Datalog queries.
We introduce the notion of a discruminating predicate,
based on hash functions, that partitions the computa-
tion between the processors 1 order to achieve par-
allehsm A parallelization scheme with the property

dant caomnntatian (nao dunheatinan of cam.

of nan-radun
i diiv LUBIPUYALIUI (4L Wupaalavnia Ui LUaas

Wi ajuarricuau

putation by processors) is then studied in detail The
mapping of Datalog programs onto a network of proces-
sors, such that the result 1s a non-redundant computa-
tion, 15 also studied The methods reported in this pa-
per clearly demonstrate the trade-offs between redun-
dancy and interprocessor-communication for this class
of problems

luatxon of queries m a de-

ev
o | P,
(9} y Ud.lod.lUs progl dHlS, is

duc
presently an active area of research([14, 4]) The bulk of

the work }\aq centered around ontimization techniaues

A work nhas centered around CpriliiliatiQll SeLigw

for the sequential evaluation of such programs Re-
cently, the 1dea of using parallel evaluation as a means
for improving performance has been suggested by Wolf-
son, Silberschatz and others [19, 18, 6, 8].

The problem of characterizing Datalog programs
that belong to the NC complexity class has been the-

TMhuin vmndbamal 1o hoaad 10 mant svman Amls avvmriawdad ke

41110 UlalClial 1D VadbTu i1l PGJU HPU L VLA SuppviIleu vy
NSF Grant IRI-8805215

tMicroelectronics and Computer Technology Corpora-

tion, Austin, Texas 78759

Permission to copy without fee all or part of this matenal 18 granted provided

that the contes are not made or distributed for direct commarcial advantase the
that the COpies ar¢ not Mmade or districuled or Girect commerdia: advantiage, ne

ACM copyright notice and the title of the publication and its date appear, and
notice 1s given that copying is by permission of the Association for Computing
Machinery To copy otherwise, or to republish, requires a fee and/or specific

permission

© 1990 ACM 089791 365 5/90/0005/0143 $150

E R PR

oretically investigated by Kanellakis, Van Gelder, Ull-
man, and others {15, 1, i1 A program 1s mn NC, if 1t
can be evaluated in polyloganthmxc time given a poly-
nomlal Tliifx‘loer 01 pf‘écéSSOrs J.ﬂls, nowever 1S not very
useful for the type of database processing that we are

.
concarnad with far tha fallawine twa reaasans
CORLETNCR Wival 201 wil€ LCLOWIIE WO TCadTNs

e A polynomial number of processors 1n the size of the
database may not be realistic given the current tech-
nology, since the size of real database systems may
be 1n the order of hundreds of megabytes

e Algonthms in the NC class are assumed to commu-
nicate extensively and hence, their theory 1s of httle
utility in non shared-memory architectures

In this paper we assume an environment with a
constant (though unbounded) number of processors,
that communicate either through message passing, or
through shared memory We present several meth-
ods for the parallel, bottom-up evaluation of Datalog
queries

Our paper extends and generalizes the original re-
sults of Wolfson et al [19, 18, 6] In particular, our
scheme differs from the published ones in the following
respects

1 The strategies presented 1n [19, 18, 6] do not allow
for partitioned base relations, 1e, all of the partic-
ipating processors are assumed to share the same
base data The parallehization scheme presented
this paper methods allows for evaluations over par-
titioned base relations in many cases For 1nstance,
the parallel computation of the transitive closure by
Valduriez and Khoshafian [16], 1s a particular case of
our method, as we show 1n Section 4

2 The strategy presented by Dong [8] 1s based on de-
composing databases such that they do not share the
set of constants appearing in each The practical
hmitations of this approach are the following Firsi,

arbitrary fragmentations of the database may actu-
SnannA tha ecrchame hae laimitad

ally share constants
SCONG, vild SLLUCIHIT 1as allfiavel

Ceddy PiLGL T LUISVAILLIVE

scalability

3 Our method of mapping the Datalog programs to
processors results in non-redundant computations in
the sense that the same firing 1s never used by two
distinct processors

4 By restricting our attention to linear sirups, we show
that, often, himited forms of communication among
the processors are sufficient For the class of hnear
strups, we develop a technique for deriving a minimal
communicating network 1n the sense, that links exist
1 this network only for those pairs of processors that
need to communicate during the computation This
derivation can be performed at compile time and can
be used to adapt the parallel execution onto an ex-
1sting parallel architecture

5 We show that the scheme for parallehzing linear pro-
grams without communication, as presented 1n [18],
18 a special case of a general scheme described 1n
Section 6 Our scheme explicitly demonstrates the
trade-off between non-redundancy and communica-
tion, and 1s similar in spirit to the results presented
n [13]

The remainder of the paper 1s orgamized as follows In
Section 2 we present the preliminaries and the nota-
tion we use throughout the paper In Section 3 we
mntroduce a non-redundant parallelization scheme for
hnear sirups through the use of discriminating van-
ables and hash functions In Section 4, we demonstrate
the generality of our scheme by deriving some prewvi-
ously known examples, and also a new example In
Section 5 we discuss the relationship between the dis-
criminating variables and the resulting minimal com-
munication network Section 6 generalizes our results
for linear sirups and shows that a trade-off exists be-
tween non-redundancy and communication In Section
7 we present a general non-redundant scheme apphca-
ble to all Datalog programs We conclude in Section 8
and suggest extensions to this work

2 Preliminaries and Notation

A Datalog program 1s a finite set of rules A rule con-
sists of an atom Q, designated as the head, and a con-
Junction of one or more atoms, denoted by @;, .,Qxk
designated as the body Such a rule is denoted as
Q «—Qi, ,Qr An atom is a predicate symbol with
a constant or a variable in each of its arguments. A
ground atom 1s an atom with a constant in each of its
arguments A p-atom 1s an atom having p as the pred-
1cate symbol

A substitution 4 13 a fimte set of the form
{vi/t1, ,vn/tn}, where each v, 18 a vanable, each
t, 15 a term (constant or variable) distinct from v, and
the variables v;, ,v, are distinct 6 1s called a ground
substitution if the ¢, are all constants

A Datalog program 1s a finite set of rules whose
predicate symbols are divided 1nto two disjoint subsets
the base predicates, (also called extensional predicates
) and the derived predicates, (also called intensional

predicates) The base predicates may not appear in the
head of any rule in a Datalog program An example of
a Datalog program 1s the following

anc(X,Y) -
anc(X,Y) -

par(X,Y)
par(X, Z),anc(Z,Y)

The relation par above 13 an extensional relation, where
par(X,Y) means that X 1s a parent of Y The relation
anc above 13 a derived relation, where anc(X, Y) means
that X 1s an ancestor of Y The first rule states that
if X 18 a parent of Y, then X 1s an ancestor of Y The
second rule recursively states that, if X 1s a parent of
Z,and Z and 1s an ancestor of Y, then X 13 an ancestor
of Y

An mput to a program P 1s a relation for each base
predicate An output of P 1s a relation for each derived
predicate of P The declarative semantics for the out-
put 1s the smallest model satisfying P that contains the
mput relations [2] A predicate Q in a program derives
a predicate R if 1t occurs 1n the body of a rule whose
head is an R-atom A rule 1s recursive if the predicate in
1ts head transitively derives some predicate 1n 1ts body
The theory of logic programming 1s comprehensively
treated in [12} and 1 [2]

In sections 3 through 6, we restrict our attention to
linear sirups which are Datalog programs with one hn-
ear recursive rule r and one non-recursive (exit) rule e
Each such program may be canonically represented as

e t2) -
HX) -

s(2)
t(Y))bls ;bk

where

e t1s the output (or derived) predicate symbol
e 515 a base relation

e 7 1s the sequence of variables appearing in the head
of the exit rule

o X 1s the sequence of variables appearing 1n the head
of the recursive rule

e Y 1s the sequence of variables which appear as argu-
ments to the unique occurrence of ¢ in the recursive
rule

e by,ba, ,bi are the atoms with base predicates ap-
pearing 1n the body of the recursive rule

e In order to ensure the safety property (1e , finite set
of answers}, we assume that every variable appearing
in the head of the recursive rule also appears 1n 1ts
body

There are several known techniques for the bottom-
up evaluation of Datalog programs, [4, 14] In this pa-
per, we assume that the bottom-up evaluation of Data-
log programs 1s done using semi-naive evaluation [4, 14]

144

3 No redundancy

The basic step 1n the semi-naive evaluation of Data-
log programs 3] consists of substituting the varables
in a rule by constants in the database such that each
ground atom 1in the body of the rule 1s true in the ex-
tensional database or in the (partially computed) inten-
sional database We divide the workload between the
processors by partitioning the set of possible ground
substitutions used by the semi-naive evaluation Thisis
done by using discriminating functions based on hash-
ing Thus each processor uses only a subset of the set
of possible ground substitutions, and two distinct pro-
cessors do not use the same ground substitution We
now formally describe our parallehzation scheme

Let L be a hnear sirup with a recursive rule r and
an exit rule ¢ Let v(r) be any sequence of vanables,
all of which appear in the recursive rule r This se-
quence 13 referred to as the discriminating sequence for
the recursive rule Similarly, let v(e) be any sequence
of variables, all of which appear in the exat rule e This
sequence 18 called the discriminating sequence of van-
ables for the exit rule Finally, let P be a finite set of
processors, (eg, {1,2, ,n}) on which the program
1s to be executed, and let h and h' be two functions
defined as follows

h set of ground instances of v(r) — P

k' set of ground instances of v(e) — P
These two functions are referred to as the discriminat-
ing functions

Given a linear sirup L, we derive a set of Datalog pro-
grams to be executed at the various processors The
parallel execution of this derived set of Datalog pro-
grams 1s equivalent (1 e , produces the same answer for
every mput) to the sequential execution of L Let Q,
denote the program to be executed at processor : It
consists of the following five execution steps

1 Initiahzation. A new predicate t},, 18 defined
whose interpretation 1s the set of all the t-tuples gen-
erated at processor @

out(2) — 3(2), K (v(e)) =2

2 Processing. A new predicate t} 13 defined whose
interpretation 1s the set of all t~tuples that are input
to processor ¢ at some point 1n the execution b}, 1s
the fragment of the base relation b,, that is accessed
at processor 1+ Its computation 1s given later 1n this
section

toue(X) — 8. (F), 01, 85, h(v(r)) =1

3 Sending. For every 1 and j € P, the predicate sym-
bol t,, represents the set of tuples transmitted from
processor 1 to processor 3 For every 7 € P, we -
troduce the following rule in @,

to(¥Y) - t:mt(Y), h(v(r)) =2

4 Receiving. For every : and 3 € P, the predicate

t,, represents the set of all the tuples transmitted

from processor 7 to processor 1 W 1s a sequence of
new distinct variables not appearing in the original

program For every 7 € P, we introduce the following
rule m Q,

B W) -t (W)

5 Final pooling. This rule states that all the tuples

generated by all the processors are stored 1n a single
relation t as the answer to the query W 1s the same
sequence of variables as 1n the receiving step

tW) - thu(W)

out

The program @, consists of several recursively de-
fined predicates, namely, ¢t, t},,,t;, and ¢!, The the-
orem below asserts the relationship between the pred-
icate ¢t defined 1n the given program L and one of the

predicates of Q,s, namely, t

Theorem 1: Let Q@ = U,cp @, as defined above ob-
tained by rewniting a given linear sirup L with recursive
predicate ¢ Then for every input of base relations, the
nterpretation of the predicate ¢ i the least model of Q
1s 1dentical to the interpretation of ¢ 1n the least model
of L O

We first describe the abstract architecture on which
the parallel program 1s executed Given a set P of pro-
cessors, we assume that a processor : in P may com-
municate with every other processor j in 7 (Thisis an
1dealization and will be relaxed in the later sections)
We assume that communication 18 done by a channel
numbered 27, denoting that the sending processor 1s 2
and the recerving processor 1s 7 We require that if a
processor 1 puts some data 1n channel 17, then processor
7 (and no other processor except j) receives this data
without error within some fimte time This abstrac-
tion 1s easily implementable by either shared memory
or message passing

The parallel execution proceeds with each processor
evaluating the Datalog program @, using a semi-naive
evaluation The relations ¢t} , and ¢t} are local to pro-
cessor 1, for each: € P The predicates t,,, fors,j € P,
represent the channel :7 1n the abstract architecture
described above Hence, addition of tuples to the pred-
1cate t,;, during the semi-naive evaluation, should be
interpreted as processor 2 sending the tuples to proces-
sor 7, along channel 13 Similarly, assignment of tuples
from the predicate ¢,; onto another predicate should be
mterpreted as processor j receirving the tuples sent by
processor 1, along channel 17 The general structure of
the parallel execution 1s

evaluate initialization rule A
repeat
evaluate processing rule
evaluate sending rules
evaluate receiving rules.
until “termination”

where “termination” 1s the condition that all processors
are 1dle and all channels are empty

145

We now describe the mmplementation of each of the
rules and the condition for parallel termination in some
detail

1 Imitialization. The following rule 1s evaluated ac-

cording to a semi-naive evaluation

tout(Z2) —3(2), B (v(e)) =1.
Processing. The following rule 1s evaluated using a
semi-naive evaluation scheme

t:)ut (X) _t:n (Y)) btl’ *3 b;‘, h(v(r)) =t
If the vanables appearing 1 v(r) do not appear n
bk, then b} = bi Otherwise, b} 1s defined as follows

b;c - bka h‘(v(r)) =1
Sending. Once tuples are generated at some 1iter-

ation by processor 1, they must be sent to different
processors The following rule

ta(Y) —toue(Y), h(v(r)) =2
sends only those subset of tuples generated at pro-
cessor + which might successfully fire the processing
rule of processor 3 Duplicate tuples generated by
the same processor may be detected by a difference
operation and need not be sent repeatedly

Receiving. In the receive step, duplicate tuples re-
ceived must be eliminated This 1s done by a differ-
ence operation Thus, after executing the processing
step and the sending step, each processor collects the
tuples received from all other processors, selects the
set of new tuples received and uses them to fire the
processing step 1n the next iteration Note that the
receives are asynchronous, that 18, processor & does
not wait for data from processor 7 if on a particular
1teration, it does not receive any data from processor
7 This 1s a very important property of the parallel
executions resulting from our schemes

Final Pooling. The tuples generated by all the pro-
cessors are pooled together in a common relation,
which depending upon the requirements of the query
and the underlying architecture, might require com-
munication from all processors to a single processor

Parallel Termination. The parallel algorithm ter-
minates when every processor in P 1s 1dle and all
channels are empty This may be detected by stan-
dard algonithms of Distributed Computing as given
m [5, 7]

So far, we have described the paralle] execution of the
parallel program, and proved 1its correctness However,
n order to be effectively parallel, we must restrict the
choice of the discriminating sequences

The rule in the processing step of @, would be eval-
uated as the following relational algebra expression,
[T(on(u(ry=2(t;, > by > b})) The details may be
found 1n [14] Consider the evaluation resulting from a
choice of v(r) If the variables appearing 1n v(r) do not
appear 1 any of the atoms in the body, then the selec-
tion cannot be pushed into the jomns In that case each

146

processor computes the entire join expression, thus re-
peating the computation done by a sequential processor
and defeating the purpose of parallehsm Thus, for the
remainder of the paper, we assume that all the variables
appearing i a discriminating sequence for the recursive
rule must also appear in at least one atom in the body
of the recursive rule

The following definition precisely defines the notion
of non-redundancy

Deflnition 1: A parallelization scheme 1s called
semi-naive non-redundant, if for any program within
the scheme, the total number of times a tuple 18 gener-
ated by all the processors 1s no more than the number of
times the same tuple 1s generated by a sequential semi-
naive evaluation of the same program on the same data
O

Theorem 2: The parallehization scheme described
above 1s semi-naive non-redundant O

4 Examples

In this section we demonstrate our parallelization tech-
nique by applying 1t to the following Datalog program

anc(X,Y)
anc(X,Y)

par(X,Y)
~ par(X, Z),anc(Z,Y)
The relation par above 13 a base relation, where,
par(X,Y) means that X 1s the parent of Y

We assume that there are N processors, numbered
from 1 through N Thus P ={1,2, .,N} We present
three parallel algorithms derived from our scheme by
using different choices of discriminating sequence of
variables The first algorithm derived 1s the one pre-
sented by Wolfson and Silberschatz in [19] This al-
gorithm does not require any communication between
the processors, but requires that the base relation par
be shared among the processors The second algorithm
derived 1s presented by Valdurez and Khoshafian in
[16] This algorithm works on any arbitrary fragmenta-
tion of the relation par, although in general, 1t requires
communication The third algorithm 1s a new one that
was developed using our parallelization scheme. This
algorithm lies between the other two algorithms mn the
sense that 1t requires less communication than the sec-
ond one, but only allows for some possible fragmenta-
tions, whereas 1t requires more communication than the
first one, but does not require that the base relation be
shared

4.1 Example 1

Let v(r) = v(e) = (Y), and let ' = h be an arbitrary
discriminating function on the domain of Y wath range
= {1,2, ,N} The rewntten program for processor
1, denoted Q, earlier, is defined as follows

o Initiahization

anct (X,Y) - par(X,Y),h(Y)=1

Processing

anch(X,Y) =~ par*(X,Z),anc(Z,Y),h(Y) =1
Sending For every 7,1 <3 < N,

anc,,(Z2,Y) - anct . (Z,Y),h(Y)=7
Recewving For every 7,1 <3 <N,

anc, (W1, W2) — anc, (W, Ws)

Final Pooling

anc(W,,W3) - ancl,, (W, Ws)

Since v(r) = (Y), and Y does not appear 1n par(X, Z),
it follows that par* = par In other words, the base
relation par must be either shared or replicated by the
processors

The first two rules are the only rules that derive
tuples i anc’,, Therefore, if (a,b) € anct,,, then
h{b) Hence, if + # 3, then evaluating the
sending rule from processor : to processor j (namely,
anc,(Z,Y) — anct,(Z,Y),h(Y) = 7) does not
yield any tuple

= 1

That 18, anc,; = ¢, whenever ¢ # 3
Thus, by the above choice of the discriminating se-
quence of variables, no communication 1s incurred, dur-
ing the recursive computation Some communication 1s
incurred, however, during the final poohing of the out-
put to a common destination

4.2 Example 2
Suppose that the base relation par 1s horizontally par-
titioned among the processors Let the partition 1n
processor ¢+ be denoted by par* Thus, for 2+ # 3,
par* Npar? = ¢, and UL par* = par

Let v(r) = (X, Z) and v{e) = (X,Y) Let h' = h be
defined as follows

h(a,b) = 1 1f and only if (a,b) 1s a tuple i par*

Hence, (par(X,Y) A (R(X,Y) =1)) = par*(X,Y). The
rewritten program Q, executed by processor 1 1s defined
as

o Imtiahzation
anct (X, Y) - par'(X,Y)
e Processing
anch,,(X,Y) - par(X, 2Z),anc,(2,Y)

Sending Forevery 3,1 <37 <N,
anc,,(Z,Y) — anct (Z,Y),h(X,Z) =
Receiving For every 3,1 <7 < N,

anct, (W1, W2) — anc, (W, W3)

Final Pooling

anc(Wy,W3) — ancl,, (Wi, W)

out
Thus the execution of @, needs access to only a given
fragment par* of the par relation, as intended
Consider the rule that represents the sending op-
eration from processor ¢ to processor 7, namely,
anc,,(2,Y) - anc,,(Z,Y),h(X,Z) =3 Equv-
alently, this may be rewritten as follows
anc,; = {(a,b)|(a,b) € anct, A 3c(c, a) € par*}

1 Let (a,b) be a tuple in anc},,

147

Thus, anc,, € ancl,, Since the relation par? 1s
not available at processor i, the second conjunct of
the above expression cannot be venfied at processor 1
Hence, all tuples 1n ancl,,, are communicated to proces-
sor 7 Note, that 1n this case, the extra communication
does not make the parallel execution either incorrect or
redundant

4.3 Example 3

The two examples presented above depict two extremes
m the properties of interprocessor communication and
sharing/replication of the base relation par We now
present an algorithm that lies between these two ex-
tremes Let v(e) = (X), v(r) = (Z) and let b’ = h be
any discriminating function on the domain of X and Z
The rewrnitten program @, executed by processor 1 1s

Initiahzation
anct,.(X,Y)
Processing
anct,(X,Y) —par(X,2Z),anc}, (2,Y),h(Z) =1
Sending For every 3, 1< 7 <N,

anc,,(Z,Y) — anct (Z2,Y),h(Z) =
Receiving For every 3,1 <3 <N,

anct, (W1, W2) — anc,,(W,, W)

Final Pooling
anc(W,, W)

- par{X,Y),h{X) =1

— ancl. (W, W)

We note the following properties of Q,

3

Then, according to the
sending rule, a tuple (a, b) 1s sent to processor 3 only
if h(a) =+ Thus every tuple 1s sent to, and processed
by a unique processor This differs from Example 2,
where, the output of a processor was sent to all the
processors

After the firng of the imitialization rule, the pro-
cessing step of Q, requires access to those tuples of
par(X, Z) such that A(Z) =1. Hence the accesses to
the par relation by different processors do not over-
lap, and thus there is no contention during the recur-
slve processing

The extent of communication 18 less here, as compared
to Example 2 However, all possible horizontal frag-
mentations of par 1s allowed in Example 2, but not all
fragmentations are allowed here In Example 1, the
relation par was replicated/shared among all the pro-
cessors, whereas, 1n this case, each of the processors ac-
cesses a disjoint fragment of the par relation However,
the algorithm here involves communication, whereas m
Example 1, there is no communication between the pro-
cessors Thus, this example essentially depicts a trade-
off between fragmentation and communication

5 Network Connectivity

In Section 3, we presented a general strategy for the
parallel execution of hinear Datalog sirups on a set of
processors The abstract architecture assumed that ev-
ery processor could communicate with every other pro-
cessor In this section, we study how the rules of a
program and the choice of the discriminating variables
affect the interconnections necessary between the pro-
cessors We show that a given discriminating sequence
and a given discriminating function may yield a parallel
execution where some of the communication channels
are never utihized This property 18 data-independent,
1n the sense that for every mnput of base relations to the
linear sirup, the parallel execution never utilizes those
channels This imphes that it may not be necessary for
a processor to communicate with every other processor
Moreover, if the discriminating functions are chosen to
be hnear functions (subject to some restrictions), then
one can derive the optimal topological structure of the
network of processors (defined later) by solving a sys-
tem of linear equations

Definition 2: Consider a hinear recursive rule with
the head ¢(X;, X2, ,Xm) and the recursive atom 1n
the body t(Y1,Y2, ,Y,n) A dataflow graph for this
rule 1s a directed graph G = (V, E) where

e VC{1,2 ,m}and:e Vi3I € {1,2
such that ¥, = X,
e An edger — j exasts mn the graph f ¥, = X, 0O

»m}

Example 4: Consider the following recursive rule
p(U: V; W) "P(V, W’ Z)) q(U) Z)

The dataflow graph for this recursive rule 1s presented
m Figure 1

1—-2—3

Figure 1

The edge 1 — 2 15 1n the graph because the variable V'
appears 1n the first attribute position in the predicate
p 1n the body and also appears 1n the second attribute
position in the head Similarly, the edge 2 — 3 15 1n the
graph because the variable W appears in the second
attribute position in the predicate p in the body and
also appears 1n the third attribute position of the head
O

The following theorem states a property of dataflow
graphs It 1s similar to the theorem presented about
pivotal programs 1 [19]

Theorem 38: Consider a set of processes P and a
linear sirup with a corresponding dataflow graph G If
G contains a cycle, then there exists a choice of discrim-
mating sequence of variables, and functions such that
the parallel execution of the hinear sirup on P, does not
require any communication O

148

Example 5: Consider the ancestor example pre-
sented 1n the earler section The dataflow graph for
1t 18 presented in Figure 2 Hence, as shown 1n Section
4, there 18 no requirement for communication between
the processors when the discriminating variable 18 Z

” 9
2

Figure 2

Unfortunately, 1t 1s not always the case that a
dataflow graph contains a cycle, as shown in Exam-
ple 4 In such cases, the dataflow graph still provides
us with an msight mnto the choice of the discriminating
variables so that the interconnections between the pro-
cessors can be reduced To formalize this, we define the
notion of a network graph

Definition 3: Given a set of processors P, we define
a network graph over P as a directed graph N = (V,
E) where V = P and E 1s any subset of P x P O

A directed edge + — 7 1n N means that in the par-
allel execution of a program, data communication from
processor t to processor j 18 permissible The absence
of a directed edge from 2 to 7 indicates, that processor 2
may not communicate with processor 3, either directly
or indirectly Hence routing of information from 1 to
7 via other intermediary processors 1s not permitted
during the parallel execution

Example 6: Consider the following program

p(X,Y) (Y, 2),r(X, Z)
p(X,Y) 9(X,Y)

Let g be any arbitrary function on the domain of vari-
ables X,Y and Z, with range {0,1} Let v(e) = (X,Y),
and v(r) = (Y, 2)

Let h'(a,b) = h(a,b) = (g(a), g(b)) Thus, there are
four possible values that h can take, (00), (01), (10) and
(11) Accordingly, let P = {(00), (01), (10), (11)} Be-
low, we consider some of the rules of the rewritten pro-
gram executed at processor (00)

o Imtialization

©0(X,Y) - - q(X,Y),h(X,Y) = (00)

p out
e Processing

PON(X,Y) : - p20(Y, 2),7(X, 2), h(Y, Z) = (00)
e Sending
P00)s2) (Y, Z) . — P (Y, Z), (Y, Z) = (13)

We see from the processing and the imtialization rules
that if (a,b) € p(°%), then g(b) = 0 Consider the rule
that represents the operation of sending tuples from

processor (00) to processor (01) Then, if (a,b) €

P(0o)(o1), then by the sending rule, (a,0) € pf,?g), and

h(a,b) = (01) If h(a,b) = (01), then g(b) must be

1. Thus we conclude that for any input of the base
relations and any choice of the function g, there 1s no
communication from processor (00) to processor (01),
By the same argument, there 1s no communication from
processor (00) to processor (11)

On the other hand, if {a,b) € pf‘,?::', then g{a} could
be 1, and there 1s the possibility of communication from
processor (00) to processor (10) Carrying out this anal-
ysis for every other processor, yields the network graph
shown in Figure 3 O

(01)

(00)<

(10)— >(11)

Figure 3

Given a lnear sirup L, a sequence of discriminat-
ing variables, and discriminating functions satisfying
some conditions, there 1s an algorithm to generate the
mimimal network graph N to evaluate L The network
1s minimal 1n the sense that, for every commumication
edge 1n the network, there exists an mnput database,
such that the parallel execution of L on this database,
results 1mn communication along that edge This algo-
rthm and 1ts proof of correctness 1s described in [9]
Here we show an example to illustrate our ideas It
further shows that if the discriminating functions are
chosen to be linear functions, then the network graph
can be derived by solving a system of linear equations
subject to some constraints

Example 7: Consider the Datalog program

p(U,V, W)
p(U,V, W)

s(U,V, w)
- P(Vr W, Z)’q(U’ Z)

The dataflow graph for this program as explaned 1n
Example 41381 — 2 — 3 Let v(r) be (V,W, Z), and
v(e) be (U,V,W) Let g be an arbitrary function from
the constants of the database to the set {0,1} Define
the discriminating functions h and A’ to be the following
hnear function

h(a1,az,a3) = h'(ay, az, as) = g(a,) — g(az) + g(as)

Hence the range of h 1s {0,1 - 1,2} and thus, P =
{0,1—- 1,2} If processor 1 communicates with proces-
sor j, then, there must be a tuple p(a;, a2, as) that 13
produced by processor ¢ and used as input by proces-
sor 3 Let g(a;) = by, g(az2) = b2 and g(a3) = b3 If
p(a.l, as,as) 15 used as mput at processor) then,

(1)

h(ay,az,a3) =by — by + b3 =3

149

If p(ay, a2, a3) 15 produced by processor z , 1t could be
produced by firing either the recursive rule or the exit
rule If the exit rule 1s used then,

k'(a1,az,a3) = h(ay,az,a3) =by —ba + b3 =12 (2)

The only solutions of equations (1) and (2) above are
when 2 = 3 This means that processor + communicates
with processor j only when 1 = 3 Hence, this solution
1s trivial Suppose that the tuple p(ay, a2, a3) 1s pro-
duced at processor 1 by firing the recursive rule Then
there must be a tuple p(az,as, a4) for some a4 which
enables the successful firing of the processing step at
processor @ to produce p(a;,az,a3) Let g(ay) = by
Hence,

by ~ b3+ by =1 (3)

Equations (1) and (3) are subject to the constrant that
by, b2,b3,04 € {0,1} Since we are interested in finding
all pairs of processors : and 3 such that there 1s com-
munication from ¢ to 7, we solve the set of equations
(1) and (3) for all values of by,bo,bs,bs € {0,1} and

1,7 € {0,~1,1,2} Equivalently, we solve the following
system of equations

1

v (4)
u (5)

subject to the constramts that z,,z,, 23,24 € {0,1}

A solution to the above system of equations 1s a vec-
tor of the form (21, z2, 3, Z4,4,v) Since we are inter-
ested 1 the last two components alone, we introduce
an edge from processor u to processor v in the network
graph whenever u and v appear as the last two compo-
nents of some solution vector The network graph thus
obtained 1s shown 1n the Figure 4

%

Ty — 22+ 23
Ty — T3+ T4

i

L
e
-

\r

2=

6 Trade-Off

In this section we present a scheme that exhibits a
trade-off between redundancy and communication We
start our discussion by presenting a parallelization
scheme that requires no communication This scheme
was first presented in {18]

Let L be a linear sirup, and let v(e), P and h' be
as defined 1 Section 3 The program to be executed
at processor 1, consists of the following three execution
steps

=

Figure 4

Initialization. A new predicate t* 1s defined whose
interpretation 1s the set of all t-tuples that are pro-
cessed at processor : at some point 1n the execution

t'(2) —s(2),h'(v(e)) =1
Recursive Processing

t(X) —¢(¥),by,
Final Pooling.

)bk

(W) -t(X)

This program scheme and 1ts proof of correctness was
first presented in {18] Here we list some of the proper-
ties of this scheme

1 No commumnication 18 necessary during the recursive

computation

The same tuple may be generated 1n the parallel ex-
ecution more times than in the sequential semi-naive
evaluation Hence computation may be duplicated at
the processors

In general base relations need to be either shared or
rephcated

The scheme presented above 1s a special case of a
more general parallehization scheme which exhibits a
trade-off between non-redundancy and communication
This general scheme 1s presented below

The definitions of v(e), P and k' are the same as n
Section 3 We require that every variable in v{r) also
appear m Y Also, for every processor t in P, we define
a discriminating function h, as follows

h, set of ground instances of v(r) — P

As 1n Section 3, we derive a set of Datalog programs to
be executed at the various processors, and whose par-
allel execution 18 equivalent to the sequential execution
of the given Datalog sirup Let R, denote the program
to be executed at processor ¢ It consists of the follow-
ing five execution steps The meaning of the predicate
symbols ¢, t;,, etc are the same as in Section 3
Therefore, we do not repeat the explanations here

1 Initialization.

tout(Z2) —s(2), K (v(e)) =+
Processing.

tout (X) —t1,(¥), 01, bk

Sending. For every 3 € P, we introduce the follow-
ing rule 1n R,

ty(¥) —toue(F)s hu(v(r)) =1

Receiving. For every 3 € P, we introduce the fol-
lowing rule in R,

(W) -t (W)
Final Pooling.
tW) —tou(W)

1 Let

150

The parallel execution of the above program on the
abstract architecture proceeds in exactly the same man-
ner as described 1n Section 3 Note that the major dis-
tinction between the program R, and the program Q,
defined 1n Section 3 1s that the discriminating functions
h, used by the processors may be different from one an-
other In @,, this was not allowed

In operational terms, this rewriting allows a proces-
sor to transmit any arbitrary fragment of the computed
result to the other processors and retamn the remaining
for self-processing The decision as to whether to com-
municate tuples 1s a local decision, since the various
h,s may be distinct. However, such flexibility may re-
sult 1n redundant computation with the advantage of
less communication The correctness of the transfor-
mation 18 asserted in the next theorem The rewnitten
program R, consists of several recursively derived predi-
cates, ti,,,t,, &y and ¢t The theorem below asserts the
relationship between the predicate ¢ in the R,s and the
predicate ¢ given 1n the original hnear sirup L

Theorem 4: Let R = U,gpR,, where the R,s are
obtained from a given linear sirup L as defined above
Then for every input of base relations, the interpre-
tation of ¢ in the least model of R 1s 1dentical to the
mterpretation of ¢ in the least model of L O

Having established the correctness of the transfor-
mation, let us now examine some of the properties of
this scheme

h.(ay,a82, ,am) = 1+ for every tuple
(a1, ,am) If1,7 € P, and @ # 3, the set of tu-
ples transmitted from processor 1 to processor 3 1s
empty Hence for this specific choice of the discrim-
inating functions, the parallel execution does not re-
quire any communication, and proceeds exactly hike

the one presented in the beginning of the section

. Suppose that h, = h, for every 1 € P The rewntten
program for processor 1 now looks as follows

82~ a(2),K(u(e)) =

bel®) = Ba(P)by, e A(u(r) =
() = a(®)A0() =
W)~ (W)

Hw) toe (V)

Recall that for this section, we have restricted that
all vanables in v(r) must also appear in ¥ Hence
t:,(¥) = (h(v(r)) = 1) Therefore, this program 1s
identical to the program @), presented in section 3
Thus if each processor uses the same discriminating
function for the recursive rule, then the parallel com-
putation 18 non-redundant

Dafferent choices of discrimimnating functions h, and
h' may result 1n different execution schemes In general,
the parallel execution 1s not completely non-redundant,
and may require communication We see that in non-
redundant execution (1e, when h, = h for all 1), every
tuple 18 processed by a unique processor, and hence
if this tuple 13 produced by different processors, then
some communication 18 incurred to transfer all of them
to the same destination However, if uniqueness of pro-
cessing sites 18 not maintained for every tuple, but in-
stead, some tuples are processed at the the same pro-
cessor where they were generated, then non-redundancy
may be lost, at the advantage of less communication
In general, more communication would lead to lesser
redundancy, and vice-versa The above parallehza-
tion scheme vividly demonstrates the trade-off between
communication and redundancy

By varying the extent of communication 1n a substi-
tution based parallel execution, we get executions which
are points along a spectrum whose extremes are char-
acterized by non-redundancy and no communication

7 A General Scheme

In this section we extend the parallelization scheme pre-
sented 1n Section 3 to include all Datalog programs
(that is, non-linear programs, and programs with more
than one recursive rule)

Let M be a Datalog program whose rules are num-
bered from 1 to n, in some order For each rule r,
M, we choose a discriminating sequence v(r,) and a dis-
criminating function A, The discriminating function 1s
defined as follows

h, set of ground instances of v(r,) — P

The meaning of the predicate symbols ¢} ,t,,,t,,,
etc, and of P are the same as 1n Section 3 If A1s any
atom with predicate symbol ¢, then A! 1s the atom
with the predicate symbol ¢}, and the same arguments
Thus, for example, if A denotes the atom sg(U, V), then
A, denotes the atom sg},(U,V) Likewise, we define
Ay, and A,

The program to be executed at processor i consists
of the following four steps, and is denoted by T,

1 Processing. Let A —B, ,C be arulerin M,
with discriminating sequence v(r) and discrimnating
function b Then, include the following rule in 7

A:mt _B:n’ ’ C:n’ h(v(r)) =1

2 Sending. Let r be a rule in M, with discriminating
sequence v(r) and discriminating function h For ev-
ery recursive atom C appearing in r and every 7 € P,

mclude the following rule n T,
Ci; =Chuph{v(r)) =1
3 Receiving. Let W be a sequence of all distinct van-
ables not appearing 1n the original program For ev-
ery recursive predicate ¢ appearing in the program

M and every 3 € P, introduce the following rule in
T., where S denotes t(W)

S:n —SJ‘

4 Final Pooling. Let S be as defined in the receiving
step above For every recursive predicate ¢, include
the following rule in T,

s =S

out

Example 8 : Let M be the following non-linear
program to compute the ancestor relation anc of a given
parent relation par

par(X,Y)
anc(X, Z),anc(Z,Y)

rn ance(X,Y) -
r2 anc(X,Y) -

Suppose v(r;) = (Y), and v(rz) = (Z), and hy = hy =
h, where h is some arbitrary discriminating function
The four execution steps of the program T, are

1 Processing.
anch,,(X,Y) —par(X, Y),h(Y) =1
anct (X,Y) . —anc, (X, Z),anc},(2,Y),h(Z) =1
2 Sending.
anc,,(X,Z) —ancl,(X,Z),h(Z) =,
anc,,(Z2,Y) —anct (Z,Y),h(Z) =
3 Receiving.
anct, (Wy,W3) —anc,,(W,W>)
4 Final Pooling.
anc(Wl,Wz) —anc:m(Wl,Wg) O

The following theorem asserts the correctness of the
transformation

Theorem 5 : Let T = U,gpT, For every mput of
the base relations, the interpretation of every derived
predicate symbol 1n the least model of M 1s 1dentical to
the interpretation of the same predicate symbol 1n the
least model of T I

The base relations are distributed among the proces-
sors 1n the following manner Suppose r 13 a rule with
discriminating sequence v(r) and D 1s a base atom ap-
pearing 1n r If the vanables appearing 1n v(r) do not
appear 1 D, then D 1s shared/rephicated among the
processors Otherwise, the fragment of D accessed by
processor 1 13 denoted by D, and 1s defined by

Di, = D,h(v(r)) =2

As argued i Section 3, all variables appearing mn a
discriminating sequence of a rule r must also appear 1n
atleast one atom 1in the body of r The parallelization
scheme presented above 1s non-redundant 1n the precise
sense described below

Definition 4: Let M be a Datalog program, and
I be the input database to M Then, we say that a
substitution 4 1s a successful ground substitution for a
ruler A —-B, ,Cwm M,

1 0 instantiates all the vanables occurring in rule r by
constants and doesn’t instantiate any other vanable

151

2 Each of the atoms 1n the set {44, B8, ,Ch}1s er-
ther a fact in the database I or 1s a fact in the output
(re, the least model)

Theorem 6 . Let M be a given Datalog program
Let T be the Datalog program obtained by rewniting M
using any choice of discriminating sequences and dis-
criminating functions Then, given any mput database
I, the number of distinct successful ground substitu-
tions of rules 1n M 1s atleast equal to the number of
distinct successful ground substitutions of the process-
mgrulesin T 0O

8 Conclusions

In this paper we have built on previously reported work
and extended the results Our results include the re-
sults by Wolfson, Silberschatz and Cohen |19, 18, 6] and
Valduriez [16] as special cases

We have observed that, for the class of programs con-
sidered, there 1s a spectrum of equivalent parallel execu-
tions, and that a tradeoff between non-redundancy and
communication exists for these Consequently, the par-
ticular scheme used 1n a compiler may be dependent on
the underlying characteristics of the architecture e g,
computation cost as opposed to communication cost
Our results 1n Section 5 further show how the rewriting
method at compile time can be adapted to the archi-
tecture of the system

The results in this paper are qualitative and obwi-
ously, are no substitute for detailed performance stud-
1es that would consider such 1ssues as load balancing,
processor utilization etc We intend to investigate these
systematically in the future

The results presented in this paper and others, that
we ntend to discuss 1n future work, form the beginning
of a theory for bottom-up, parallel evaluation that 1s
controlled by discriminating functions based upon hash-
ng

References

[1] Afrati F and Papadimitrou CH “Parallel Com-
plexity of Symple Chain Queries”, In Proceedings of
the 6th ACM Symposium on Principles of Database
Systems, 1987

[2] Apt K R Introduction to Logic Programmang
Technical Report TR-87-35, Department of Com-
puter Sciences, The University of Texas at Austin,
1988

[3] Bancilhon F “Naive Evaluation of Recursively De-
fined Relations”, MCC Technical Report Number
DB-004-85

[4] Banalhon F and Ramaknishnan R “An Ama-
teur’s Introduction to Recursive Query Processing
Strategies”, In Proceedings of the 1986 ACM SIG-
MOD International Conference on the Management
of Data

(5] Chandy KM and J Misra “An Example of Step-
wise Refinement of Distributed Programs Quies-
ence Detection”, ACM TOPLAS, July 1986

[6] Cohen S and O Wolfson “ Why A Single Par-
allehization Strategy 1s not enough in Knowledge
Bases”, In Proceedings of the 8th ACM Symposium
on Principles of Database Systems, March 1989

[7] DykstraE W and CS Scholten “Termination De-
tection for Diffusing Computations”, Information
Processing Letters, August 1980

[8] Dong G “On Distributed Processibihty of Data-
log Queries by Decomposing Databases », In Pro-
ceedings of the 1989 ACM SIGMOD International
Conference on Management of Data

[9] Ganguly S, Silberschatz A and S Tsur “ Derv-
ing Networks for the Parallel Evaluation of Datalog
Queries”, Technical Report, University of Tezas at
Austin, 1n preparation

[10] HoutsmaM A W et al “ A Logic Query Language
and 1ts Algebraic Optimization for a Multiprocessor
Database Machine”, Techmical Report INF-88-52,
Unaversity of Twenete, December 1988

[11] Kanellakis P “Parallel Complexity of Logic Pro-
grams”, In Foundations of Logic Programmaing and
Deductive Databases, Morgan-Kauffmann 1988

[12] Lloyd J W Foundations of Logic Programmang
Springer-Verlag, Second edition, 1987

[13] Papadimitrou CH and J Ullman “A
Communication-Time Trade-Off”, SIAM Journal
of Computing, Vol 16, No 14, 1987

[14] Ullman J Principles of Database and Knowledge
Base Systems Computer Science Press, 1989

[15] Ullman J and Van Gelder A “Parallel Complex-
ity of Logic Programs”, TR STAN-CS-85-1089,
Stanford Unwversity

[16] Valduriez P and S Khoshafian “Parallel evalua-
tion of the transitive closure of a database relation”,
In International Journal of Parallel Programmang,
March 1989

(17] van Emden, M H and R A Kowalski “The Se-
mantics of Predicate Logic as a Programming Lan-
guage”, Journal of the ACM, October 1976

[18] Wolfson O “Sharing the load of Logic Program
Evaluation”, In Proceedings of the 1988 Interna-
tional Symposium on Databases in Parallel and Dis-
tributed Systems, December 1988

[19] Wolfson O and A Silberschatz “Distributed pro-
cessing of logic programs”, In Proceedings of the
1988 ACM SIGMOD International Conference on
Management of Data, June 1988

152

