
A Framework for the Parallel Processing of Datalog Queries

Sumit Ganguly
Avl Silberschatz’

Shalom Tsurt

Department of Computer Sciences
The University of Texas

Austin, Texas 78712

Abstract
This paper presents several complementary methods for
the parallel, bottom-up evaluation of Datalog queries.
We mtroduce the notion of a dticruninatmg predicate,
based on hash functions, that partitions the computa-
tion between the processors m order to achieve par-
allelism A parallebzation scheme with the property
of non-redundant computation (no duplication of com-
putation by processors) 1s then studied m detail The
mappmg of Datalog programs onto a network of proces-
sors, such that the result IS a non-redundant computa-
tion, is also studied The methods reported in this pa-
per clearly demonstrate the trade-offs between redun-
dancy and mterprocessor-communication for this class
of problems

1 Introduction
The efficient bottom-up evaluation of queries m a de-
ductive database, defined by Datalog programs, is
presently an active area of research([14,4]) The bulk of
the work has centered around optimization techniques
for the sequential evaluation of such programs Re-
cently, the idea of using parallel evaluation as a means
for lmprovmg performance has been suggested by Wolf-
son, Sllberschatz and others [19, 18, 6, 81.

The problem of characterlzmg Datalog programs
that belong to the NC complexity class has been the-

‘Thea material IS based m part upon work eupported by
NSF Grant IRI-8805215

+Mcroelectromcs and Computer Technology Corpora-
tlon, Au&m, Texas 78759

0 1990 ACM 089791365 Si9O/OIXX/0143 $150

orekcally investigated by Kanellakls, Van Gelder, Ull-
man, and others [15, 1, 11) A program is m NC, d it
can be evaluated m polylogarlthmic time given a poly-
nomial number of processors This, however is not very
useful for the type of database processmg that we are
concerned with for the followmg two reasons

l A polynomial number of processors m the size of the
database may not be realistic given the current tech-
nology, since the size of real database systems may
be m the order of hundreds of megabytes

l Algorithms m the NC class are assumed to commu-
nicate extensively and hence, then theory is of little
utility m non shared-memory architectures

In this paper we assume an environment with a
constant (though unbounded) number of processors,
that communicate either through message passing, or
through shared memory We present several meth-
ods for the parallel, bottom-up evaluation of Datalog
queries

Our paper extends and generalizes the orlgmal re-
sults of Wolfson et al 119, 18, S] In particular, our
scheme differs from the published ones m the followmg
respects

1 The strategies presented m 119, 18, S] do not allow
for partitioned base relations, 1 e , all of the partic-
ipating processors are assumed to share the same
base data The parallebzatlon scheme presented m
this paper methods allows for evaluations over par-
titioned base relations m many cases For Instance,
the parallel computation of the transitive closure by
Valdurlez and Khoshafian [16], 1s a particular case of
our method, as we show m Section 4

2 The strategy presented by Dong [8] IS based on de-
composmg databases such that they do not share the
set of constants appearing m each The practical
limitations of this approach are the followmg First,
arbitrary fragmentations of the database may actu-
ally share constants Second, the scheme has limited
scalabihty

143

r

3 Our method of mapping the Datalog programs to
processors results m non-redundant computations m
the sense that the same firing is never used by two
distinct processors

4 By restrictmg our attention to lmear sirups, we show
that, often, limited forms of commumcatlon among
the processors are sufficient For the class of lmear
snups, we develop a technique for derivmg a mmlmal
commumcatmg network m the sense, that links exist
m this network only for those pairs of processors that
need to communicate durmg the computation This
derivation can be performed at compile time and can
be used to adapt the parallel execution onto an ex-
istmg parallel architecture

5 We show that the scheme for parallebzmg lmear pro-
grams without communication, as presented m [18],
is a special case of a general scheme described m
Section 6 Our scheme explicitly demonstrates the
trade-off between non-redundancy and commumca-
tlon, and IS similar m spirit to the results presented
m 1131

The remamder of the paper is organized as follows In
Section 2 we present the prehmmarles and the nota-
tion we use throughout the paper In Section 3 we
Introduce a non-redundant parallebzatlon scheme for
linear suups through the use of dlscrlmmatmg van-
ables and hash functions In Section 4, we demonstrate
the generality of our scheme by derivmg some prevl-
ously known examples, and also a new example In
Section 5 we discuss the relationship between the dls-
crlmmatmg variables and the resulting mmimal com-
munication network Section 6 generalizes our results
for lmear srrups and shows that a trade-off exists be-
tween non-redundancy and communication In Section
7 we present a general non-redundant scheme appbca-
ble to all Datalog programs We conclude m Section 8
and suggest extensions to this work

2 Preliminaries and Notation
A Datalog program IS a finite set of rules A rule con-
sists of an atom Q, designated as the head, and a con-
Junction of one or more atoms, denoted by Qr, , , Qk
designated as the body Such a rule is denoted as
Q - 91, , Qk An atom IS a predicate symbol with
a constant or a variable m each of its arguments. A
ground atom IS an atom with a constant m each of its
arguments A patom IS an atom having p as the pred-
icate symbol

A substitution 6 is a finite set of the form
{Ullh, , u,/t,}, where each u, is a variable, each
t, is a term (constant or variable) dlstmct from u, and
the variables vi, , u, are distmct 6 IS called a ground
substitution if the t, are all constants

A Datalog program IS a finite set of rules whose
predicate symbols are divided mto two di.sJomt subsets
the base predicates, (also called extensIona predicates
) and the derwed predicates, (also called mtenslonal

predicates) The base predicates may not appear m the
head of any rule m a Datalog program An example of
a Datalog program is the followmg

anc(X, Y) - par(X Y)
anc(X, Y) - par(X, Z), anc(Z, Y)

The relation par above IS an extensional relation, where
par(X, Y) means that X IS a parent of Y The relation
one above is a derived relation, where anc(X, Y) means
that X is an ancestor of Y The first rule states that
If X is a parent of Y, then X IS an ancestor of Y The
second rule recursively states that, If X is a parent of
Z, and Z and is an ancestor of Y, then X is an ancestor
of Y

An mput to a program P ls a relation for each base
predicate An output of P is a relation for each derived
predicate of P The declarative semantics for the out-
put IS the smallest model satisfying P that contams the
mput relations [2] A predicate Q m a program derwes
a predicate R if it occurs m the body of a rule whose
head is an R-atom A rule is recursive If the predicate m
its head transitively derives some predicate m its body
The theory of logic programmmg is comprehensively
treated m [12] and m [2]

In sections 3 through 6, we restrict our attention to
hear slrups which are Datalog programs with one lm-
ear recursive rule r and one non-recursive (exit) rule e
Each such program may be canomcally represented as

e VI - 42)
r t(R) - t(y),h, ,bk

where

l t is the output (or derived) predicate symbol

l s IS a base relation

l 2 IS the sequence of variables appearing m the head
of the exit rule

l X 1s the sequence of variables appearing m the head
of the recursive rule

l Y is the sequence of variables which appear as argu-
ments to the unique occurrence of t m the recursive
rule

l h,h, , bk are the atoms with base predicates ap
pearmg m the body of the recursive rule

l In order to ensure the safety property (1 e , finite set
of answers), we assume that every variable appearing
m the head of the recursive rule also appears m its
body

There are several known techmques for the bottom-
up evaluation of Datalog programs, [4, 141 In this pa-
per, we assume that the bottom-up evaluation of Data-
log programs 1s done using semi-nawe evaluation [4, 141

144

3 No redundancy
The basrc step m the semr-naive evaluation of Data-
log programs [3] consists of substrtutmg the variables
m a rule by constants m the database such that each
ground atom m the body of the rule rs true m the ex-
tensional database or m the (partrally computed) mten-
sronal database We drvlde the workload between the
processors by partltlonmg the set of possible ground
substltutrons used by the semi-narve evaluation Thus 1s
done by usmg dlscnmmatmg functions based on hash-
mg Thus each processor uses only a subset of the set
of possible ground substrtutions, and two dlstmct pro-
cessors do not use the same ground substrtutlon We
now formally describe our parallehzatron scheme

Let L be a linear slrup wrth a recursrve rule r and
an exrt rule e Let u(r) be any sequence of variables,
all of which appear m the recursive rule r Thus se-
quence 1s referred to as the &scrImmatmg sequence for
the recursive rule Srmllarly, let v(e) be any sequence
of vanables, all of whrch appear m the exit rule e This
sequence 1s called the dIscrImmatmg sequence of van-
ables for the exrt rule Fmally, let P be a finite set of
processors, (e g , {1,2, , n}) on whrch the program
1s to be executed, and let h and h’ be two functions
defined as follows

h set of ground mstances of v(r) -+ P
h’ set of ground Instances of v(e) - P

These two functions are referred to as the dIscrImmat-
mg functions

Given a lmear slrup L, we derive a set of Datalog pro-
grams to be executed at the varrous processors The
parallel executron of thus derived set of Datalog pro-
grams 1s equrvalent (1 e , produces the same answer for
every input) to the sequential execution of L Let Q,
denote the program to be executed at processor t It
consrsts of the followmg five execution steps

Initialization. A new predicate tbt 1s defined
whose mterpretatron 1s the set of all the t-tuples gen-
erated at processor z

cm* (2) - s(Z), h’(v(e)) = 2
Processing. A new predrcate t:, 1s defined whose
interpretation 1s the set of all t-tuples that are mput
to processor a at some point m the executron t& IS
the fragment of the base relahon b,,, that is accessed
at processor t Its computation IS given later m thus
sectron

%Lt (4 - t:,(y), k , b;, NV(r)) = a
Sending. For every 2 and J E P, the predicate sym-
bol t,, represents the set of tuples transmitted from
processor a to processor J For every 3 E P, we m-
traduce the followmg rule m Q,

tv (Y) - t’,,,(y), h(v(r)) = 3
Receiving. For every z and 3 E P, the predicate
t,, represents the set of all the tuples transmitted
from processor J to processor 2 W 1s a sequence of
new drstmct variables not appearmg m the orlgmal

program For every J E P, we mtroduce the followmg
rule m Q,

5 Final pooling. Thus rule states that all the tuples
generated by all the processors are stored m a smgle
relation t as the answer to the query w 1s the same
sequence of variables as m the recelvmg step

The program Q, consrsts of several recursrvely de-
fined predrcates, namely, t, t’mt, t,, and t:, The the-
orem below asserts the relatlonshlp between the pred-
icate t defined m the grven program L and one of the
predicates of Q,s, namely, t

Theorem 1: Let Q = U,,gQ, as defined above ob-
tamed by rewriting a grven lmear soup L with recursive
predicate t Then for every input of base relations, the
mterpretatron of the predrcate t m the least model of Q
IS Identical to the mterpretatlon of t m the least model
OfL Cl

We first describe the abstract archrtecture on whrch
the parallel program 1s executed Grven a set P of pro-
cessors, we assume that a processor z m P may com-
municate with every other processor J n-r P (This IS an
rdeahzatlon and will be relaxed m the later sections)
We assume that commumcatlon rs done by a channel
numbered 53, denoting that the sending processor 1s a
and the recelvmg processor 1s 3 We reqmre that rf a
processor a puts some data m channel 23, then processor
3 (and no other processor except 3) receives thus data
without error wlthm some fimte time Thus abstrac-
tion IS easrly implementable by erther shared memory
or message passing

The parallel execution proceeds with each processor
evaluatmg the Datalog program Q, using a semr-narve
evaluation The relations t’,t and t:, are local to pro-
cessor a, for each a E P The predicates t,, , for a, J E P,
represent the channel a3 m the abstract archrtecture
described above Hence, addrtlon of tuples to the pred-
icate tll, durmg the semi-narve evaluation, should be
interpreted as processor a sendmg the tuples to proces-
sor 3, along channel a3 Slmdarly, assignment of tuples
from the predrcate t,, onto another predicate should be
interpreted as processor 1 recelvmg the tuples sent by
processor a, along channel a3 The general structure of
the parallel execution 1s

evaluate initialization rule
\

repeat
evaluate processing rule
evaluate sending rules
evaluate receiving rules.

until Utermmation”

where “termmatron” 1s the condltlon that all processors
are idle and all channels are empty

145

We now describe the rmplementatlon of each of the
rules and the condrtlon for parallel termmatron m some
detail

Initialization. The followmg rule IS evaluated ac-
cordmg to a semi-narve evaluation

tiut(Z) -s(Z), h’(u(e)) = a.

Processing. The followmg rule IS evaluated usmg a
semr-naive evaluation scheme

L* (Xl -t:,,(J?, 4, . , bk, h(v(r)) = a.

If the variables appearing m v(r) do not appear m
bk, then b; = bk Otherwise, b; is defined as follows

4 - bk, h(V(r)) = a
Sending. Once tuples are generated at some rter-
atron by processor a, they must be sent to drfferent
processors The followmg rule

tv v7 -L* P?, h(4r) 1 = 3
sends only those subset of tuples generated at pro-
cessor a whrch might successfully fire the processmg
rule of processor J Duplicate tuples generated by
the same processor may be detected by a difference
operation and need not be sent repeatedly

Receiving. In the recerve step, dupbcate tuples re-
ceived must be ehmmated Thus 1s done by a drffer-
ence operation Thus, after executmg the processmg
step and the sending step, each processor collects the
tuples received from all other processors, selects the
set of new tuples received and uses them to fire the
processmg step m the next iteration Note that the
receives are asynchronous, that rs, processor a does
not wart for data from processor J If on a particular
iteration, it does not receive any data from processor
J Thus 1s a very important property of the parallel
executions resultmg from our schemes

Final Pooling. The tuples generated by all the pro-
cessors are pooled together m a common relatron,
which dependmg upon the requvements of the query
and the underlying architecture, might reqmre com-
mumcation from all processors to a single processor
Parallel Termination. The parallel algorrthm ter-
mmates when every processor m P IS idle and all
channels are empty This may be detected by stan-
dard algorrthms of Distributed Computmg as given
ln [5, 71

So far, we have descrrbed the parallel execution of the
parallel program, and proved Its correctness However,
m order to be effectively parallel, we must restrict the
chorce of the dlscrlmmatmg sequences

The rule m the processmg step of Q, would be eval-
uated as the followmg relational algebra expressron,
n(gh(v(r))=a(t:,, w bi
found m [14)

w b;)) The details may be
C onslder the evaluation resultmg from a

chorce of v(r) If the varrables appearing m v(r) do not
appear m any of the atoms m the body, then the selec-
tron cannot be pushed into the Jams In that case each

processor computes the entire Jam expression, thus re-
peating the computation done by a sequential processor
and defeating the purpose of parallebsm Thus, for the
remamder of the paper, we assume that all the variables
appearing m a dlscnmmatmg sequence for the recursive
rule must also appear m at least one atom 111 the body
of the recursrve rule

The followmg defimhon precisely defines the notron
of non-redundancy

DedMtion 1: A parallehzatlon scheme rs called
semr-narve non-redundant, rf for any program wrthm
the scheme, the total number of trmes a tuple rs gener-
ated by all the processors 1s no more than the number of
times the same tuple rs generated by a sequentral semr-
naive evaluation of the same program on the same data
Cl

Theorem 2: The parallelrzatlon scheme described
above IS semi-naive non-redundant o

4 Examples
In this section we demonstrate our parallehzatlon tech-
nique by applying rt to the following Datalog program

.?lc(X, Y) - pf-dx, Y)

.nc(X, Y) - pat-(X, Z), anc(2, Y)

The relation pur above 1s a base relation, where,
par(X, Y) means that X P the parent of Y

We assume that there are N processors, numbered
from 1 through N Thus P = { 1,2, . , N} We present
three parallel algorrthms derived from our scheme by
using different choices of discnmmatmg sequence of
variables The first algonthm derived 1s the one pre-
sented by Wolfson and Sdberschatz m [19] This al-
gorithm does not require any commumcatlon between
the processors, but requires that the base relation par
be shared among the processors The second algorithm
derived rs presented by Valdurlez and Khoshafian m
[16] This algonthm works on any arbrtrary fragmenta-
tron of the relation par, although m general, rt requires
commumcatron The third algonthm 1s a new one that
was developed using our parallelrzatlon scheme. Thus
algonthm lies between the other two algonthms m the
sense that rt requires less commumcatron than the sec-
ond one, but only allows for some possible fragmenta-
tions, whereas rt requires more commumcatlon than the
first one, but does not require that the base relation be
shared

4.1 Example 1
Let v(r) = v(e) = (Y), and let h’ = h be an arbrtrary
drscrlmmatmg function on the domain of Y with range
= UJ, , N) The rewritten program for processor
a, denoted Q, earher, is defined as follows

0 Initialization

~~cLa (X Y) - par(X, Y), h(Y) = a

146

l Processmg

ww(X, Y) - p&(X, Z), anc(Z, Y), h(Y) = a

l Sendmg For every 3, 1 < J 5 N,

an&) (Z, Y) - d,,,(Z, Y), h(Y) = I
l Recervmg For every 1, 1 5 J 5 N,

aq,(w,W2) - ~nC,t(K, W2)

l Final Poolmg

anc(K,W2) - a+,,(w,wa)

Smce v(r) = (Y), and Y does not appear m par(X, Z),
rt follows that par’ = par In other words, the base
relatron par must be either shared or replicated by the
processors

The first two rules are the only rules that derive
tuples in an& Therefore, If (a, b) E an&,,, then
h(b) = a Hence, If a # 3, then evaluatmg the
sending rule from processor a to processor 3 (namely,
anc,,(Z, Y) - anc&,,(Z, Y),h(Y) = 3) does not
yield any tuple That 18, ant,, = 4, whenever a # 3
Thus, by the above choice of the discruminating se-
quence of variables, no commumcatlon IS mcurred, dur-
mg the recursive computatron Some commumcatlon 1s
mcurred, however, dunng the final poolmg of the out-
put to a common destmatlon

4.2 Example 2
Suppose that the base relation par 1s horrzontally par-
trtroned among the processors Let the part&on m
processor a be denoted by par’ Thus, for a # J,
par’ fl purl = 4, and U:,lpar’ = par

Let v(r) = (X, Z) and v(e) = (X, Y) Let h’ = h be
defined as follows

h(a, b) = a If and only If (a, b) 1s a tuple m par’

Hence, (pur(X, Y) A (h(X, Y) = a)) s p&(X, Y). The
rewritten program Q, executed by processor a 1s defined
as

Imtialrzation

ancut w, Y) * - pur*(X, Y)
Processing

ancut (X8 Y) - par’ (X, Z), uric:, (Z, Y)

Sending For every 3, 1 5 3 5 N,

anctJ (Z, Y) - a&&t(Z, Y), h(X Z) = 3
Recelvmg For every 3 ,l < J < N,

anc:,(W,W2) - ~q,(%Pz)

Final Poolmg

~~C(W,~2) - anc',,,(W,W2)

Thus the execution of Q, needs access to only a given
fragment par’ of the par relatron, as Intended

Consrder the rule that represents the sendmg op
eration from processor a to processor 3, namely,
awl (4 Y) - u~c’,,~ (Z, Y), h(X, Z) = J J3quw
alently, thus may be rewritten as follows

ancal = {(a, b) [(a, b) E ant’,,, A 3c(c, u) E pm’}

Thus, ant,) C an&,, Since the relatron palj 1s
not available at processor a, the second conJunct of
the above expression cannot be verified at processor a
Hence, all tuples m ar~cb,~ are commumcated to proces-
sor J Note, that m this case, the extra commumcatron
does not make the parallel execution either mcorrect or
redundant

4.3 Example 3
The two examples presented above depict two extremes
m the properties of mterprocessor commumcatlon and
sharmg/replrcatlon of the base relation par We now
present an algonthm that lies between these two ex-
tremes Let v(e) = (X), v(r) = (Z) and let h’ = h be
any dlscrrmmatmg function on the domain of X and Z
The rewritten program Q, executed by processor a 1s

Imtialization

ancut (X Y) - par(X, Y), h(X) = a

Processing

anc’,,(X, Y) -par(X, Z), onc:,(Z, Y), h(Z) = a

Sending For every 3, 1 5 J 5 N,

ancal (4 Y) - ancb,t(Z Y), h(Z) = I

Receiving For every 1, 1 5 3 < N,

anc:,(W,~2) - f=qt(W,~2)

Final Poolmg

We note the followmg propertres of Qr

Let (a, b) be a tuple m an~&,~ Then, according to the
sendmg rule, a tuple (a, b) IS sent to processor J only
if hb) = a Thus every tuple 1s sent to, and processed
by a unique processor Thus differs from Example 2,
where, the output of a processor was sent to all the
processors

After the firing of the mltrahzatron rule, the pro-
cessing step of Q, requires access to those tuples of
par(X, Z) such that h(Z) = a. Hence the accesses to
the par relation by different processors do not over-
lap, and thus there is no contentron during the recur-
sive processing

The extent of commumcatron 1s less here, as compared
to Example 2 However, all possrble horrzontal frag-
mentations of par IS allowed m Example 2, but not all
fragmentatrons are allowed here In Example 1, the
relatron par was rephcated/shared among all the pro-
cessors, whereas, m thus case, each of the processors ac-
cesses a drsJomt fragment of the par relatron However,
the algorithm here mvolves commumcatron, whereas m
Example 1, there 1s no commumcatlon between the pro-
cessors Thus, thus example essentrally deprcts a trade-
off between fragmentation and commumcatlon

147

5 Network Connectivity
In Section 3, we presented a general strategy for the
parallel execution of linear Datalog slrups on a set of
processors The abstract architecture assumed that ev-
ery processor could communicate with every other pro-
cessor In this sectron, we study how the rules of a
program and the choice of the dlscrlmmatmg varrables
affect the mterconnectlons necessary between the pro-
cessors We show that a given dlscrlmmatmg sequence
and a given drscrlmmatmg function may yield a parallel
execution where some of the communication channels
are never utlhzed Thus property 1s data-Independent,
m the sense that for every input of base relations to the
linear snup, the parallel execution never utlhzes those
channels This lmphes that rt may not be necessary for
a processor to communicate with every other processor
Moreover, rf the dlscrlmmatmg functions are chosen to
be hnear functrons (sublect to some restnctrons), then
one can derive the optimal topological structure of the
network of processors (defined later) by solvmg a sys-
tem of linear equations

Definition 2: Consider a linear recursrve rule with
the head t(Xl,Xz, ,X,.,,) and the recursive atom m
the body t(Yl,Yz, , Y,,,) A datatlow graph for this
rule IS a directed graph G = (V, E) where

l v c {v, ,m} and a E V If 3~ E {1,2, 94
such that Y, = X,

l An edge a --* J exists m the graph If Y, = X, 0

Example 4: Consrder the followmg recursive rule

P(QV,W) -P(V,WJ),#u)

The dataflow graph for this recursive rule rs presented
m Frgure 1

l-+2-+3

Figure 1
The edge 1 -+ 2 IS m the graph because the variable V
appears m the first attrrbute positron m the predrcate
p m the body and also appears m the second attrrbute
positron m the head Slmrlarly, the edge 2 + 3 IS m the
graph because the varrable W appears m the second
attribute positron m the predicate p in the body and
also appears m the third attribute posltlon of the head
0

The followmg theorem states a property of dataflow
graphs It IS similar to the theorem presented about
pIvotal programs in 1191

Theorem S: Consider a set of processes P and a
linear slrup with a correspondmg dataflow graph G If
G contams a cycle, then there exists a choice of dlscnm-
mating sequence of variables, and functions such that
the parallel execution of the linear srrup on P, does not
require any communication Cl

Example 5: Consider the ancestor example pre-
sented m the earber section The dataflow graph for
rt 1s presented m Figure 2 Hence, as shown m Section
4, there 1s no requirement for commumcatron between
the processors when the drscnmmatmg varrable rs Z
0

0

z

Figure 2

Unfortunately, rt 1s not always the case that a
datafiow graph contains a cycle, as shown m Exam-
ple 4 In such cases, the dataflow graph still provrdes
us with an msrght mto the choice of the drscnmmatmg
variables so that the mterconnectlons between the pro-
cessors can be reduced To formalize thus, we define the
notron of a network graph

Dehition 3: Given a set of processors P, we define
a network graph over P as a directed graph N = (V,
E) where V = P and E IS any subset of P x P EI

A dvected edge a -) J m N means that m the par-
allel execution of a program, data commumcatlon from
processor a to processor J rs permmnble The absence
of a directed edge from a to J indicates, that processor a
may not communicate with processor 3, either directly
or indirectly Hence routmg of mformatlon from a to
J via other mtermedmry processors 1s not permitted
dunng the parallel execution

Example 6: Consider the followmg program

P(X> Y) - p(Y, Z), r(X Z)
P(X, Y) - n(XJ)

Let g be any arbitrary functron on the domain of varr-
ables X, Y and Z, with range (0, 1) Let v(e) = (X, Y),
and u(r) = (Y, Z)

Let h’(a, b) = h(a, b) = (g(a), g(b)) Thus, there are
four possible values that h can take, (00), (Ol), (10) and
(11) Accordmgly, let P = {(00), (Ol), (lo), (11)) Be-
low, we consider some of the rules of the rewrrtten pro-
gram executed at processor (00)

0 Imtialrzatron

P!2 (X9 Y) * - 4X, Y), WC Y) = (00)
0 Processing

pZ’(X,Y) : - P!~)(Y, Z), r(X, Z), h(Y, 4 = (00)
l Sending

P(OO)(*,) (Y, Z) * - P%(Y, Z), h(Y, Z) = (53)

We see from the processmg and the mrtlallzatron rules
that If (a, b) E p(“), then g(b) = 0 Consider the rule
that represents the operation of sending tuples from
processor (00) to processor (01) Then, If (a, b) E

P(OO)(Ol), then by the sending rule, (a, b) E pff:), and
h(a, b) = (01) If h(a, b) = (Ol), then g(b) must be

148

1. Thus we conclude that for any mput of the base
relatrons and any choice of the function g, there 1s no
commumcatron from processor (00) to processor (Ol),
By the same argument, there 1s no commumcatlon from
processor (00) to processor (11)

On the other hand, rf (a, b) E pz’, then g(a) could
be 1, and there IS the posslbllrty of commumcatlon from
processor (00) to processor (10) Canymg out this anal-
ysis for every other processor, yrelds the network graph
shown in Figure 3 0

Given a

JO)
Figure 3 ‘tLiJ

linear slrup L, a sequence of drscnmmat- - _
mg variables, and drscnmmatmg functions satlsfymg
some condrtlons, there 1s an algonthm to generate the
mmimal network graph N to evaluate L The network
1s mmimal m the sense that, for every commumcatlon
edge m the network, there exists an input database,
such that the parallel execution of L on this database,
results m commumcatron along that edge Thus algo-
rithm and its proof of correctness 1s described m [9]
Here we show an example to illustrate our ideas It
further shows that d the discriminating functions are
chosen to be linear functions, then the network graph
can be derived by solvmg a system of hear equations
subject to some constramts

Example 7: Consider the Datalog program

Pm v, WI - s(KV,W)
P(KV,W) - P(V w, q, q(G 4

The dataflow graph for thus program as explamed m
Example 4 1s 1 - 2 --t 3 Let v(r) be (V, W,Z), and
v(e) be (U, V, W) Let g be an arbrtrary function from
the constants of the database to the set (0, 1) Define
the dlscnmmatmg functions h and h’ to be the followmg
linear function

h(al, ~2, ~3) = h'(al, ~4 = stall - g(w) + g(a3)

Hence the range of h 1s (0, 1 - 1,2} and thus, P =
(0, 1 - 1,2} If processor a commumcates with proces-
sor 3, then, there must be a tuple p(a1, as, as) that 1s
produced by processor a and used as input by proces-
sor 3 Let g(ar) = bl, g(a2) = bz and g(us) = b3 If
p(al, ~22, as) 1s used as input at processor J then,

h(m, ~2, ~3) = 11 - b2 + b3 = 3 (1)

If p(al, (~2, 03) 1s produced by processor a , It could be
produced by firing either the recursive rule or the exit
rule If the exit rule IS used then,

h’(al,a2,ag) = h(al,az, 03) = bl - bz + b3 = t (2)

The only solutions of equations (1) and (2) above are
when a = J This means that processor a communicates
with processor J only when a = J Hence, this solution
1s tnvlal Suppose that the tuple p(al, a2, as) IS pro-
duced at processor a by finng the recursive rule Then
there must be a tuple p(az,a3, ~4) for some 04 which
enables the successful firing of the processmg step at
geoc;sor a to produce p(a~, ~22, US) Let g(a4) = b4

I

b2 - b3 + b4 = a (3)

Equations (1) and (3) are subJect to the constraint that
61, bz, b3, h E IO,1) S mce we are interested m finding
all pans of processors a and J such that there 1s com-
munrcatlon from a to J, we solve the set of equatrons
(1) and (3) for all values of bl, bz, b3, b4 E {O,l} and
a,] E (0, -1, 1,2} Equivalently, we solve the followmg
system of equations

Xl -22 + 23 = v (4
22 - z3 + 24 = u (5)

subject to the constramts that 21, 52,23,24 E (0, 1)
A solution to the above system of equations rs a vec-

tor of the form (zi,zz, 23, ~4, u, v) Smce we are mter-
ested m the last two components alone, we introduce
an edge from processor u to processor v m the network
graph whenever u and v appear as the last two compo-
nents of some solution vector The network graph thus
obtained 1s shown m the Figure 4

Frgure 4

6 Trade-Off
In this sectron we present a scheme that exhibrts a
trade-off between redundancy and commumcatlon We
start our drscussron by presentmg a parallehzatlon
scheme that requires no commumcatlon Thus scheme
was first presented in [18]

Let L be a linear soup, and let v(e), P and h’ be
as defined m Section 3 The program to be executed
at processor a, consrsts of the followmg three execution
steps

149

Inltlahzation. A new predrcate t’ IS defined whose
mterpretatron IS the set of all t-tuples that are pro-
cessed at processor z at some point m the executron

t’(2) -s(Z), h’(u(e)) = a

Recursive Processmg

t’(x) -t’(y), h, , h
Final Pooling.

t(*) -t*(X)

This program scheme and Its proof of correctness was
first presented m [18] Here we list some of the proper-
ties of this scheme

1 No commumcatron 1s necessary dunng the recursive
computation

2 The same tuple may be generated m the parallel ex-
ecution more times than m the sequential semr-narve
evaluation Hence computation may be duplicated at
the processors

3 In general base relations need to be erther shared or
replicated

The scheme presented above 1s a special case of a
more general parallehzatlon scheme whrch exhrblts a
trade-off between non-redundancy and commumcatron
Thus general scheme IS presented below

The defimtlons of u(e), P and h’ are the same as m
Section 3 We requu-e that every variable m u(r) also
appear m F Also, for every processor s In P, we define
a dlscrrmmatmg function h, as follows

h, set of ground instances of u(r) + P

As m Sectron 3, we derive a set of Datalog programs to
be executed at the various processors, and whose par-
allel execution 1s eqmvalent to the sequential execution
of the given Datalog slrup Let R, denote the program
to be executed at processor t It consists of the follow-
mg five execution steps The meaning of the predicate
symbols t:,, tLut etc are the same as m Sectlon 3
Therefore, we do not repeat the explanations here

1 Initialization.

Cut(z) --a(z), h’(u(e)) = *
2 Processmg.

L(x) -t:,.,(~), h, , bk
3 Sending. For every 3 E P, we mtroduce the follow-

ing rule in R,

tt,V) -tl,,m h*W) = 3
4 Receiving. For every J E P, we mtroduce the fol-

lowing rule in R,

LW -tJ*w
5 Final Pooling.

t(W -L (W

The parallel execution of the above program on the
abstract architecture proceeds m exactly the same man-
ner as described m Section 3 Note that the major drs-
tmctlon between the program R, and the program Q,
defined m Section 3 1s that the drscrlmmatmg functrons
h, used by the processors may be drfferent from one an-
other In Q,, thus was not allowed

In operational terms, this rewriting allows a proces-
sor to transmit any arbdrary fragment of the computed
result to the other processors and retam the remammg
for self-processing The declsron as to whether to com-
mumcate tuples 1s a local decrslon, smce the various
h,s may be drstmct. However, such flexlblllty may re-
sult m redundant computation with the advantage of
less commumcatlon The correctness of the transfor-
mation 1s asserted m the next theorem The rewntten
program R, consists of several recursively derived predr-
cates, %& ,,,, %J t' t and t The theorem below asserts the
relationship between the predrcate t m the & and the
predrcate t given m the ongmal linear srrup L

Theorem 4: Let R = U,,Q&, where the & are
obtained from a given linear srrup L as defined above
Then for every input of base relations, the mterpre-
tatron of t m the least model of R 1s identical to the
mterpretatlon oft m the least model of L q

Having estabhshed the correctness of the transfor-
matron, let us now examme some of the propertres of
thus scheme

Let h,(w 02, ,%J = a for every tuple
(al, ,a,) If r,~ E P, and a # J, the set of tu-
ples transmitted from processor t to processor 3 rs
empty Hence for this specific choice of the dlscrrm-
matmg functrons, the parallel execution does not re-
qmre any commumcatlon, and proceeds exactly like
the one presented m the begmnmg of the section

Suppose that h, = h, for every z E P The rewritten
program for processor a now looks as follows

w - a(Z), h’(u(e)) = t

L* m - t:,.,(P), bl, , bk, h(u(r)) = 2

t*J (‘1 - L,(U, +(r)) = 3

%a WI - tJ*(W)

w - LAW

Recall that for thus section, we have restricted that
all variables in u(r) must also appear m P Hence
t:,(P) + (h(u(r)) = a) Therefore, this program 1s
rdentlcal to the program Q, presented m section 3
Thus d each processor uses the same dlscrrmmatmg
function for the recursrve rule, then the parallel com-
putation 1s non-redundant

150

Different choices of drscrrmmatmg functrons h, and
h’ may result m different executron schemes In general,
the parallel execution IS not completely non-redundant,
and may require communrcatlon We see that in non-
redundant execution (1 e, when h, = h for all a), every
tuple IS processed by a umque processor, and hence
rf this tuple 1s produced by different processors, then
some communrcatron IS mcurred to transfer all of them
to the same destmatron However, If uniqueness of pro-
cessmg sites 1s not mamtamed for every tuple, but m-
stead, some tuples are processed at the the same pro-
cessor where they were generated, then non-redundancy
may be lost, at the advantage of less communrcatron
In general, more communrcatron would lead to lesser
redundancy, and vice-versa The above parallehza-
tron scheme vividly demonstrates the trade-off between
communrcatlon and redundancy

By varymg the extent of communrcatron m a substr-
tutron based parallel executron, we get executrons whrch
are points along a spectrum whose extremes are char-
acterrzed by non-redundancy and no communication

7 A General Scheme
In this sectron we extend the parallehzatron scheme pre-
sented m Section 3 to include all Datalog programs
(that is, non-linear programs, and programs wrth more
than one recursive rule)

Let M be a Datalog program whose rules are num-
bered from 1 to n, m some order For each rule r, m
M, we choose a drscrrmmatmg sequence u(r,) and a drs-
crrmmatmg function h, The drscrimmatmg function 1s
defined as follows

h, set of ground mstances of u(r,) - P

The meanmg of the predicate symbols t:,, trt, tbut
etc , and of P are the same as m Section 3 If A IS any
atom with predicate symbol t, then A:, 1s the atom
with the predicate symbol t:, and the same arguments
Thus, for example, If A denotes the atom sg(V, V), then
A:, denotes the atom sg:n (V, V) Likewise, we define

A’,,‘, and A,,
The program to be executed at processor t consrsts

of the followmg four steps, and is denoted by T,

Processing. Let A -B, , C be a rule r m M,
with drscrrmmatmg sequence u(r) and drscrimmatmg
function h Then, mclude the followmg rule m T,

4ut -%a1 , CL,, Wr)) = t
Sending. Let r be a rule m M, with drscrrmmatmg
sequence u(r) and drscrrmmatmg function h For ev-
ery recursrve atom C appearmg m r and every J E P,
mclude the followmg rule m T,

C,, -CLut h(u(r)) = 3
Receiving. Let W be a sequence of all drstmct varr-
ables not appearmg m the orlgmal program For ev-
ery recursrve predrcate t appearmg m the program
M and every J E P, mtroduce the followmg rule m
T,, where S denotes t(W)

s:, -s,,

4 Final Pooling. Let S be as defined m the recelvmg
step above For every recursive predicate t, include
the followmg rule m T,

S -%bt

Example 8 : Let M be the followmg non-linear
program to compute the ancestor relatron ant of a grven
parent relation par

rl anc(X, Y) - p4X Y)
7-2 anc(X, Y) - onc(X, Z), anc(Z, Y)

Suppose u(rl) = (Y), and u(r2) = (Z), and hl = hp =
h, where h is some arbitrary drscrrmmatmg function
The four executron steps of the program T, are

Processing.

anc&(X, Y)
anc;,,(X, Y) *

-par(X, Y), h(Y) = t
- anc;,(X, Z), anc;,(Z, Y), h(Z) = 2

Sending.

ancsJ (X, 2) -anCut(X, z), h(Z) = 3
arqJ (2, Y) -anc’,,(Z, Y), h(Z) = J

Receiving.

W,(wl,wz) --aq,(wl,W2)

Final Pooling.

anc(hW2) -~~c:,,(w,~2) q

The followmg theorem asserts the correctness of the
transformation

Theorem 5 : Let T = U,cpT, For every input of
the base relations, the mterpretatron of every derived
predicate symbol m the least model of M 1s :dentical to
the mterpretatron of the same predrcate symbol m the
least model of T •I

The base relations are distributed among the proces-
sors m the followmg manner Suppose r 1s a rule wrth
drscrrmmatmg sequence u(r) and D rs a base atom ap-
pearmg m r If the vanables appearing m u(r) do not
appear m D, then D 1s shared/replicated among the
processors Otherwise, the fragment of L) accessed by
processor s 1s denoted by 01, and rs defined by

D:, - D, h(u(r)) = t
As argued m Sectron 3, all variables appearmg m a

drscrrmmatmg sequence of a rule r must also appear m
atleast one atom m the body of r The parallehzatlon
scheme presented above IS non-redundant m the precise
sense described below

Defimtion 4: Let M be a Datalog program, and
I be the input database to M Then, we say that a
substrtutron B 1s a successful ground substltutlon for a
rule r A -B, ,CmM,rf

1 0 mstantrates all the varrables occurrmg m rule r by
constants and doesn’t mstantrate any other variable

151

2 Each of the atoms m the set {AB, BB, , CO} is el-
ther a fact m the database I or 1s a fact m the output
(1 e , the least model)

Theorem 6 . Let M be a given Datalog program
Let T be the Datalog program obtamed by rewrltmg M
using any choice of dlscrrmmatmg sequences and drs-
crrmmatmg functions Then, given any input database
I, the number of drstmct successful ground substrtu-
trons of rules m M IS atleast equal to the number of
dlstmct successful ground substrtutrons of the process-
mg rules m T q

8 Conclusions
In thnr paper we have burlt on prevrously reported work
and extended the results Our results Include the re-
sults by Wolfson, Sdberschatz and Cohen [19, 18, S] and
Valdurlez [16] as special cases

We have observed that, for the class of programs con-
sidered, there 1s a spectrum of equivalent parallel execu-
tions, and that a tradeoff between non-redundancy and
communrcatron exists for these Consequently, the par-
ticular scheme used m a comprler may be dependent on
the underlying characterrstlcs of the archrtecture e g ,
computation cost as opposed to commumcatron cost
Our results m Section 5 further show how the rewrrtmg
method at compile time can be adapted to the archr-
tecture of the system

The results m thus paper are quahtatrve and obvr-
ously, are no substitute for detarled performance stud-
ies that would consider such issues as load balancing,
processor utrhzatron etc We mtend to mvestrgate these
systematically m the future

The results presented m this paper and others, that
we Intend to drscuss m future work, form the beginnmg
of a theory for bottom-up, parallel evaluation that IS
controlled by drscrrmmatmg functrons based upon hash-
lw

References

Ill

PI

PI

kl

Afratr F and Papadrmrtrou C H “Parallel Com-
plexrty of Sample Chain Queries”, In Proceedtngs of
the 6th ACM Sympoatum on Prtncrples of Database
Systems, 1987

Apt K R Introductron to Logrc Programmrng
Techmcal Report TR-87-35, Department of Com-
puter Sciences, The Umverslty of Texas at Austin,
1988

Bancrlhon F =Narve Evaluatron of Recursrvely De-
fined Relatrons”, MCC Techmcal Report Number
DB-004-85

Bancrlhon F and Ramakrrshnan R ‘An Ama-
teur’s Introductron to Recursrve Query Processmg
Strategies”, In Proceedrnga of the 1986 ACM SIG-
MOD Internattonal Conference on the Management
of Data

I51

PI

PI

181

PI

Chandy K M and J Mrsra ‘An Example of Step-
wise Refinement of Drstrlbuted Programs Qules-
ence Detection’, ACM TOPLAS, July 1986

Cohen S and 0 Wolfson ’ Why A Smgle Par-
allehzatron Strategy 1s not enough m Knowledge
Bases”, In Proceedrnga of the 8th ACM Sympoarum
on Prrnctplea of Database Systems, March 1989

Dijkstra E W and C S Scholten “Termmatron De-
tection for Drffusmg Computations”, Informatron
Proceaatng Letters, August 1980

Dong G “On Drstrrbuted Processrbrhty of Data-
log Queries by Decomposmg Databases n, In Pro-
ceedrnga of the 1989 ACM SIGMOD Internatronal
Conference on Management of Data

Ganguly S , Sllberschatz A and S Tsur ’ Deriv-
mg Networks for the Parallel Evaluation of Datalog
Querres”, Technical Report, Unruerarty of Tezaa at
Au&n, m preparatron

[101 Houtsma M A W et al ’ A Logic Query Language
and Its Algebraic Optrmizatron for a Multrprocessor
Database Machine”, Technical Report INF-88-52,
Untuerstty of Twenete, December 1988

[ll] Kanellakrs P “Parallel Complexity of Logrc Pro-
grams”, In Foundattona of Logrc Programmtng and
Deductrve Databases, Morgan-Kauffmann 1988

1121 Lloyd J W F oundatrons of Logtc Programmrng
Springer-Verlag, Second edition, 1987

[13] Papadrmrtrou C H and J Ullman “A
Communrcation-Time Trade-Off”, SIAM Journal
of Computrng, Vol 16, No 14, 1987

[14] Ullman J Pranczplea of Database and Knowledge
Base Systems Computer Science Press, 1989

(151 Ullman J and Van Gelder A ‘Parallel Complex-
rty of Logic Programs”, TR STAN-CS-85-1089,
Stanford Untverazty

[16] Valdurlez P and S Khoshafian “Parallel evalua-
tion of the transrtrve closure of a database relation”,
In Internatronal Journal of Parallel Programmzng,
March 1989

[17] van Emden, M H and R A Kowalskr ‘The Se-
mantics of Predicate Logrc as a Programmmg Lan-
guage”, Journal of the ACM, October 1976

[18] Wolfson 0 “Sharmg the load of Logic Program
Evaluatron”, In Proceedrngs of the 1988 Interna-
ttonal Symposium on Databases an Parallel and Daa-
trrbuted Systems, December 1988

[19] Wolfson 0 and A Srlberschatz “Distributed pro-
cessmg of logic programs”, In Proceedtnga of the
1988 ACM SIGMOD Internataonal Conference on
Management of Data, June 1988

152

