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Abstract 
This paper presents several complementary methods for 
the parallel, bottom-up evaluation of Datalog queries. 
We mtroduce the notion of a dticruninatmg predicate, 
based on hash functions, that partitions the computa- 
tion between the processors m order to achieve par- 
allelism A parallebzation scheme with the property 
of non-redundant computation (no duplication of com- 
putation by processors) 1s then studied m detail The 
mappmg of Datalog programs onto a network of proces- 
sors, such that the result IS a non-redundant computa- 
tion, is also studied The methods reported in this pa- 
per clearly demonstrate the trade-offs between redun- 
dancy and mterprocessor-communication for this class 
of problems 

1 Introduction 
The efficient bottom-up evaluation of queries m a de- 
ductive database, defined by Datalog programs, is 
presently an active area of research([ 14,4]) The bulk of 
the work has centered around optimization techniques 
for the sequential evaluation of such programs Re- 
cently, the idea of using parallel evaluation as a means 
for lmprovmg performance has been suggested by Wolf- 
son, Sllberschatz and others [19, 18, 6, 81. 

The problem of characterlzmg Datalog programs 
that belong to the NC complexity class has been the- 
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orekcally investigated by Kanellakls, Van Gelder, Ull- 
man, and others [15, 1, 11) A program is m NC, d it 
can be evaluated m polylogarlthmic time given a poly- 
nomial number of processors This, however is not very 
useful for the type of database processmg that we are 
concerned with for the followmg two reasons 

l A polynomial number of processors m the size of the 
database may not be realistic given the current tech- 
nology, since the size of real database systems may 
be m the order of hundreds of megabytes 

l Algorithms m the NC class are assumed to commu- 
nicate extensively and hence, then theory is of little 
utility m non shared-memory architectures 

In this paper we assume an environment with a 
constant (though unbounded) number of processors, 
that communicate either through message passing, or 
through shared memory We present several meth- 
ods for the parallel, bottom-up evaluation of Datalog 
queries 

Our paper extends and generalizes the orlgmal re- 
sults of Wolfson et al 119, 18, S] In particular, our 
scheme differs from the published ones m the followmg 
respects 

1 The strategies presented m 119, 18, S] do not allow 
for partitioned base relations, 1 e , all of the partic- 
ipating processors are assumed to share the same 
base data The parallebzatlon scheme presented m 
this paper methods allows for evaluations over par- 
titioned base relations m many cases For Instance, 
the parallel computation of the transitive closure by 
Valdurlez and Khoshafian [16], 1s a particular case of 
our method, as we show m Section 4 

2 The strategy presented by Dong [8] IS based on de- 
composmg databases such that they do not share the 
set of constants appearing m each The practical 
limitations of this approach are the followmg First, 
arbitrary fragmentations of the database may actu- 
ally share constants Second, the scheme has limited 
scalabihty 
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3 Our method of mapping the Datalog programs to 
processors results m non-redundant computations m 
the sense that the same firing is never used by two 
distinct processors 

4 By restrictmg our attention to lmear sirups, we show 
that, often, limited forms of commumcatlon among 
the processors are sufficient For the class of lmear 
snups, we develop a technique for derivmg a mmlmal 
commumcatmg network m the sense, that links exist 
m this network only for those pairs of processors that 
need to communicate durmg the computation This 
derivation can be performed at compile time and can 
be used to adapt the parallel execution onto an ex- 
istmg parallel architecture 

5 We show that the scheme for parallebzmg lmear pro- 
grams without communication, as presented m [18], 
is a special case of a general scheme described m 
Section 6 Our scheme explicitly demonstrates the 
trade-off between non-redundancy and commumca- 
tlon, and IS similar m spirit to the results presented 
m 1131 

The remamder of the paper is organized as follows In 
Section 2 we present the prehmmarles and the nota- 
tion we use throughout the paper In Section 3 we 
Introduce a non-redundant parallebzatlon scheme for 
linear suups through the use of dlscrlmmatmg van- 
ables and hash functions In Section 4, we demonstrate 
the generality of our scheme by derivmg some prevl- 
ously known examples, and also a new example In 
Section 5 we discuss the relationship between the dls- 
crlmmatmg variables and the resulting mmimal com- 
munication network Section 6 generalizes our results 
for lmear srrups and shows that a trade-off exists be- 
tween non-redundancy and communication In Section 
7 we present a general non-redundant scheme appbca- 
ble to all Datalog programs We conclude m Section 8 
and suggest extensions to this work 

2 Preliminaries and Notation 
A Datalog program IS a finite set of rules A rule con- 
sists of an atom Q, designated as the head, and a con- 
Junction of one or more atoms, denoted by Qr, , , Qk 
designated as the body Such a rule is denoted as 
Q - 91, , Qk An atom IS a predicate symbol with 
a constant or a variable m each of its arguments. A 
ground atom IS an atom with a constant m each of its 
arguments A patom IS an atom having p as the pred- 
icate symbol 

A substitution 6 is a finite set of the form 
{Ullh, , u,/t,}, where each u, is a variable, each 
t, is a term (constant or variable) dlstmct from u, and 
the variables vi, , u, are distmct 6 IS called a ground 
substitution if the t, are all constants 

A Datalog program IS a finite set of rules whose 
predicate symbols are divided mto two di.sJomt subsets 
the base predicates, (also called extensIona predicates 
) and the derwed predicates, (also called mtenslonal 

predicates) The base predicates may not appear m the 
head of any rule m a Datalog program An example of 
a Datalog program is the followmg 

anc(X, Y) - par(X Y) 
anc(X, Y) - par(X, Z), anc(Z, Y) 

The relation par above IS an extensional relation, where 
par(X, Y) means that X IS a parent of Y The relation 
one above is a derived relation, where anc(X, Y) means 
that X is an ancestor of Y The first rule states that 
If X is a parent of Y, then X IS an ancestor of Y The 
second rule recursively states that, If X is a parent of 
Z, and Z and is an ancestor of Y, then X is an ancestor 
of Y 

An mput to a program P ls a relation for each base 
predicate An output of P is a relation for each derived 
predicate of P The declarative semantics for the out- 
put IS the smallest model satisfying P that contams the 
mput relations [2] A predicate Q m a program derwes 
a predicate R if it occurs m the body of a rule whose 
head is an R-atom A rule is recursive If the predicate m 
its head transitively derives some predicate m its body 
The theory of logic programmmg is comprehensively 
treated m [12] and m [2] 

In sections 3 through 6, we restrict our attention to 
hear slrups which are Datalog programs with one lm- 
ear recursive rule r and one non-recursive (exit) rule e 
Each such program may be canomcally represented as 

e VI - 42) 
r t(R) - t(y),h, ,bk 

where 

l t is the output (or derived) predicate symbol 

l s IS a base relation 

l 2 IS the sequence of variables appearing m the head 
of the exit rule 

l X 1s the sequence of variables appearing m the head 
of the recursive rule 

l Y is the sequence of variables which appear as argu- 
ments to the unique occurrence of t m the recursive 
rule 

l h,h, , bk are the atoms with base predicates ap 
pearmg m the body of the recursive rule 

l In order to ensure the safety property (1 e , finite set 
of answers), we assume that every variable appearing 
m the head of the recursive rule also appears m its 
body 

There are several known techmques for the bottom- 
up evaluation of Datalog programs, [4, 141 In this pa- 
per, we assume that the bottom-up evaluation of Data- 
log programs 1s done using semi-nawe evaluation [4, 141 
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3 No redundancy 
The basrc step m the semr-naive evaluation of Data- 
log programs [3] consists of substrtutmg the variables 
m a rule by constants m the database such that each 
ground atom m the body of the rule rs true m the ex- 
tensional database or m the (partrally computed) mten- 
sronal database We drvlde the workload between the 
processors by partltlonmg the set of possible ground 
substltutrons used by the semi-narve evaluation Thus 1s 
done by usmg dlscnmmatmg functions based on hash- 
mg Thus each processor uses only a subset of the set 
of possible ground substrtutions, and two dlstmct pro- 
cessors do not use the same ground substrtutlon We 
now formally describe our parallehzatron scheme 

Let L be a linear slrup wrth a recursrve rule r and 
an exrt rule e Let u(r) be any sequence of variables, 
all of which appear m the recursive rule r Thus se- 
quence 1s referred to as the &scrImmatmg sequence for 
the recursive rule Srmllarly, let v(e) be any sequence 
of vanables, all of whrch appear m the exit rule e This 
sequence 1s called the dIscrImmatmg sequence of van- 
ables for the exrt rule Fmally, let P be a finite set of 
processors, (e g , {1,2, , n}) on whrch the program 
1s to be executed, and let h and h’ be two functions 
defined as follows 

h set of ground mstances of v(r) -+ P 
h’ set of ground Instances of v(e) - P 

These two functions are referred to as the dIscrImmat- 
mg functions 

Given a lmear slrup L, we derive a set of Datalog pro- 
grams to be executed at the varrous processors The 
parallel executron of thus derived set of Datalog pro- 
grams 1s equrvalent (1 e , produces the same answer for 
every input) to the sequential execution of L Let Q, 
denote the program to be executed at processor t It 
consrsts of the followmg five execution steps 

Initialization. A new predicate tbt 1s defined 
whose mterpretatron 1s the set of all the t-tuples gen- 
erated at processor z 

cm* (2) - s(Z), h’(v(e)) = 2 
Processing. A new predrcate t:, 1s defined whose 
interpretation 1s the set of all t-tuples that are mput 
to processor a at some point m the executron t& IS 
the fragment of the base relahon b,,, that is accessed 
at processor t Its computation IS given later m thus 
sectron 

%Lt (4 - t:,(y), k , b;, NV(r)) = a 
Sending. For every 2 and J E P, the predicate sym- 
bol t,, represents the set of tuples transmitted from 
processor a to processor J For every 3 E P, we m- 
traduce the followmg rule m Q, 

tv (Y) - t’,,,(y), h(v(r)) = 3 
Receiving. For every z and 3 E P, the predicate 
t,, represents the set of all the tuples transmitted 
from processor J to processor 2 W 1s a sequence of 
new drstmct variables not appearmg m the orlgmal 

program For every J E P, we mtroduce the followmg 
rule m Q, 

5 Final pooling. Thus rule states that all the tuples 
generated by all the processors are stored m a smgle 
relation t as the answer to the query w 1s the same 
sequence of variables as m the recelvmg step 

The program Q, consrsts of several recursrvely de- 
fined predrcates, namely, t, t’mt, t,, and t:, The the- 
orem below asserts the relatlonshlp between the pred- 
icate t defined m the grven program L and one of the 
predicates of Q,s, namely, t 

Theorem 1: Let Q = U,,gQ, as defined above ob- 
tamed by rewriting a grven lmear soup L with recursive 
predicate t Then for every input of base relations, the 
mterpretatron of the predrcate t m the least model of Q 
IS Identical to the mterpretatlon of t m the least model 
OfL Cl 

We first describe the abstract archrtecture on whrch 
the parallel program 1s executed Grven a set P of pro- 
cessors, we assume that a processor z m P may com- 
municate with every other processor J n-r P (This IS an 
rdeahzatlon and will be relaxed m the later sections ) 
We assume that commumcatlon rs done by a channel 
numbered 53, denoting that the sending processor 1s a 
and the recelvmg processor 1s 3 We reqmre that rf a 
processor a puts some data m channel 23, then processor 
3 (and no other processor except 3) receives thus data 
without error wlthm some fimte time Thus abstrac- 
tion IS easrly implementable by erther shared memory 
or message passing 

The parallel execution proceeds with each processor 
evaluatmg the Datalog program Q, using a semr-narve 
evaluation The relations t’,t and t:, are local to pro- 
cessor a, for each a E P The predicates t,, , for a, J E P, 
represent the channel a3 m the abstract archrtecture 
described above Hence, addrtlon of tuples to the pred- 
icate tll, durmg the semi-narve evaluation, should be 
interpreted as processor a sendmg the tuples to proces- 
sor 3, along channel a3 Slmdarly, assignment of tuples 
from the predrcate t,, onto another predicate should be 
interpreted as processor 1 recelvmg the tuples sent by 
processor a, along channel a3 The general structure of 
the parallel execution 1s 

evaluate initialization rule 
\ 

repeat 
evaluate processing rule 
evaluate sending rules 
evaluate receiving rules. 

until Utermmation” 

where “termmatron” 1s the condltlon that all processors 
are idle and all channels are empty 
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We now describe the rmplementatlon of each of the 
rules and the condrtlon for parallel termmatron m some 
detail 

Initialization. The followmg rule IS evaluated ac- 
cordmg to a semi-narve evaluation 

tiut(Z) -s(Z), h’(u(e)) = a. 

Processing. The followmg rule IS evaluated usmg a 
semr-naive evaluation scheme 

L* (Xl -t:,,(J?, 4, . , bk, h(v(r)) = a. 

If the variables appearing m v(r) do not appear m 
bk, then b; = bk Otherwise, b; is defined as follows 

4 - bk, h(V(r)) = a 
Sending. Once tuples are generated at some rter- 
atron by processor a, they must be sent to drfferent 
processors The followmg rule 

tv v7 -L* P?, h(4r) 1 = 3 
sends only those subset of tuples generated at pro- 
cessor a whrch might successfully fire the processmg 
rule of processor J Duplicate tuples generated by 
the same processor may be detected by a difference 
operation and need not be sent repeatedly 

Receiving. In the recerve step, dupbcate tuples re- 
ceived must be ehmmated Thus 1s done by a drffer- 
ence operation Thus, after executmg the processmg 
step and the sending step, each processor collects the 
tuples received from all other processors, selects the 
set of new tuples received and uses them to fire the 
processmg step m the next iteration Note that the 
receives are asynchronous, that rs, processor a does 
not wart for data from processor J If on a particular 
iteration, it does not receive any data from processor 
J Thus 1s a very important property of the parallel 
executions resultmg from our schemes 

Final Pooling. The tuples generated by all the pro- 
cessors are pooled together m a common relatron, 
which dependmg upon the requvements of the query 
and the underlying architecture, might reqmre com- 
mumcation from all processors to a single processor 
Parallel Termination. The parallel algorrthm ter- 
mmates when every processor m P IS idle and all 
channels are empty This may be detected by stan- 
dard algorrthms of Distributed Computmg as given 
ln [5, 71 

So far, we have descrrbed the parallel execution of the 
parallel program, and proved Its correctness However, 
m order to be effectively parallel, we must restrict the 
chorce of the dlscrlmmatmg sequences 

The rule m the processmg step of Q, would be eval- 
uated as the followmg relational algebra expressron, 
n(gh(v(r))=a(t:,, w bi 
found m [14) 

w b;)) The details may be 
C onslder the evaluation resultmg from a 

chorce of v(r) If the varrables appearing m v(r) do not 
appear m any of the atoms m the body, then the selec- 
tron cannot be pushed into the Jams In that case each 

processor computes the entire Jam expression, thus re- 
peating the computation done by a sequential processor 
and defeating the purpose of parallebsm Thus, for the 
remamder of the paper, we assume that all the variables 
appearing m a dlscnmmatmg sequence for the recursive 
rule must also appear m at least one atom 111 the body 
of the recursrve rule 

The followmg defimhon precisely defines the notron 
of non-redundancy 

DedMtion 1: A parallehzatlon scheme rs called 
semr-narve non-redundant, rf for any program wrthm 
the scheme, the total number of trmes a tuple rs gener- 
ated by all the processors 1s no more than the number of 
times the same tuple rs generated by a sequentral semr- 
naive evaluation of the same program on the same data 
Cl 

Theorem 2: The parallelrzatlon scheme described 
above IS semi-naive non-redundant o 

4 Examples 
In this section we demonstrate our parallehzatlon tech- 
nique by applying rt to the following Datalog program 

.?lc(X, Y) - pf-dx, Y) 

.nc(X, Y) - pat-(X, Z), anc(2, Y) 

The relation pur above 1s a base relation, where, 
par(X, Y) means that X P the parent of Y 

We assume that there are N processors, numbered 
from 1 through N Thus P = { 1,2, . , N} We present 
three parallel algorrthms derived from our scheme by 
using different choices of discnmmatmg sequence of 
variables The first algonthm derived 1s the one pre- 
sented by Wolfson and Sdberschatz m [19] This al- 
gorithm does not require any commumcatlon between 
the processors, but requires that the base relation par 
be shared among the processors The second algorithm 
derived rs presented by Valdurlez and Khoshafian m 
[16] This algonthm works on any arbrtrary fragmenta- 
tron of the relation par, although m general, rt requires 
commumcatron The third algonthm 1s a new one that 
was developed using our parallelrzatlon scheme. Thus 
algonthm lies between the other two algonthms m the 
sense that rt requires less commumcatron than the sec- 
ond one, but only allows for some possible fragmenta- 
tions, whereas rt requires more commumcatlon than the 
first one, but does not require that the base relation be 
shared 

4.1 Example 1 
Let v(r) = v(e) = (Y), and let h’ = h be an arbrtrary 
drscrlmmatmg function on the domain of Y with range 
= UJ, , N) The rewritten program for processor 
a, denoted Q, earher, is defined as follows 

0 Initialization 

~~cLa (X Y) - par(X, Y), h(Y) = a 
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l Processmg 

ww(X, Y) - p&(X, Z), anc(Z, Y), h(Y) = a 

l Sendmg For every 3, 1 < J 5 N, 

an&) (Z, Y) - d,,,(Z, Y), h(Y) = I 
l Recervmg For every 1, 1 5 J 5 N, 

aq,(w,W2) - ~nC,t(K, W2) 

l Final Poolmg 

anc(K,W2) - a+,,(w,wa) 

Smce v(r) = (Y), and Y does not appear m par(X, Z), 
rt follows that par’ = par In other words, the base 
relatron par must be either shared or replicated by the 
processors 

The first two rules are the only rules that derive 
tuples in an& Therefore, If (a, b) E an&,,, then 
h(b) = a Hence, If a # 3, then evaluatmg the 
sending rule from processor a to processor 3 (namely, 
anc,,(Z, Y) - anc&,,(Z, Y),h(Y) = 3 ) does not 
yield any tuple That 18, ant,, = 4, whenever a # 3 
Thus, by the above choice of the discruminating se- 
quence of variables, no commumcatlon IS mcurred, dur- 
mg the recursive computatron Some commumcatlon 1s 
mcurred, however, dunng the final poolmg of the out- 
put to a common destmatlon 

4.2 Example 2 
Suppose that the base relation par 1s horrzontally par- 
trtroned among the processors Let the part&on m 
processor a be denoted by par’ Thus, for a # J, 
par’ fl purl = 4, and U:,lpar’ = par 

Let v(r) = (X, Z) and v(e) = (X, Y) Let h’ = h be 
defined as follows 

h(a, b) = a If and only If (a, b) 1s a tuple m par’ 

Hence, (pur(X, Y) A (h(X, Y) = a)) s p&(X, Y). The 
rewritten program Q, executed by processor a 1s defined 
as 

Imtialrzation 

ancut w, Y) * - pur*(X, Y) 
Processing 

ancut (X8 Y) - par’ (X, Z), uric:, (Z, Y) 

Sending For every 3, 1 5 3 5 N, 

anctJ (Z, Y) - a&&t(Z, Y), h(X Z) = 3 
Recelvmg For every 3 ,l < J < N, 

anc:,(W,W2) - ~q,(%Pz) 

Final Poolmg 

~~C(W,~2) - anc',,,(W,W2) 

Thus the execution of Q, needs access to only a given 
fragment par’ of the par relatron, as Intended 

Consrder the rule that represents the sendmg op 
eration from processor a to processor 3, namely, 
awl (4 Y) - u~c’,,~ (Z, Y), h(X, Z) = J J3quw 
alently, thus may be rewritten as follows 

ancal = {(a, b) [(a, b) E ant’,,, A 3c(c, u) E pm’} 

Thus, ant,) C an&,, Since the relatron palj 1s 
not available at processor a, the second conJunct of 
the above expression cannot be verified at processor a 
Hence, all tuples m ar~cb,~ are commumcated to proces- 
sor J Note, that m this case, the extra commumcatron 
does not make the parallel execution either mcorrect or 
redundant 

4.3 Example 3 
The two examples presented above depict two extremes 
m the properties of mterprocessor commumcatlon and 
sharmg/replrcatlon of the base relation par We now 
present an algonthm that lies between these two ex- 
tremes Let v(e) = (X), v(r) = (Z) and let h’ = h be 
any dlscrrmmatmg function on the domain of X and Z 
The rewritten program Q, executed by processor a 1s 

Imtialization 

ancut (X Y) - par(X, Y), h(X) = a 

Processing 

anc’,,(X, Y) -par(X, Z), onc:,(Z, Y), h(Z) = a 

Sending For every 3, 1 5 J 5 N, 

ancal (4 Y) - ancb,t(Z Y), h(Z) = I 

Receiving For every 1, 1 5 3 < N, 

anc:,(W,~2) - f=qt(W,~2) 

Final Poolmg 

We note the followmg propertres of Qr 

Let (a, b) be a tuple m an~&,~ Then, according to the 
sendmg rule, a tuple (a, b) IS sent to processor J only 
if hb) = a Thus every tuple 1s sent to, and processed 
by a unique processor Thus differs from Example 2, 
where, the output of a processor was sent to all the 
processors 

After the firing of the mltrahzatron rule, the pro- 
cessing step of Q, requires access to those tuples of 
par(X, Z) such that h(Z) = a. Hence the accesses to 
the par relation by different processors do not over- 
lap, and thus there is no contentron during the recur- 
sive processing 

The extent of commumcatron 1s less here, as compared 
to Example 2 However, all possrble horrzontal frag- 
mentations of par IS allowed m Example 2, but not all 
fragmentatrons are allowed here In Example 1, the 
relatron par was rephcated/shared among all the pro- 
cessors, whereas, m thus case, each of the processors ac- 
cesses a drsJomt fragment of the par relatron However, 
the algorithm here mvolves commumcatron, whereas m 
Example 1, there 1s no commumcatlon between the pro- 
cessors Thus, thus example essentrally deprcts a trade- 
off between fragmentation and commumcatlon 
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5 Network Connectivity 
In Section 3, we presented a general strategy for the 
parallel execution of linear Datalog slrups on a set of 
processors The abstract architecture assumed that ev- 
ery processor could communicate with every other pro- 
cessor In this sectron, we study how the rules of a 
program and the choice of the dlscrlmmatmg varrables 
affect the mterconnectlons necessary between the pro- 
cessors We show that a given dlscrlmmatmg sequence 
and a given drscrlmmatmg function may yield a parallel 
execution where some of the communication channels 
are never utlhzed Thus property 1s data-Independent, 
m the sense that for every input of base relations to the 
linear snup, the parallel execution never utlhzes those 
channels This lmphes that rt may not be necessary for 
a processor to communicate with every other processor 
Moreover, rf the dlscrlmmatmg functions are chosen to 
be hnear functrons (sublect to some restnctrons), then 
one can derive the optimal topological structure of the 
network of processors (defined later) by solvmg a sys- 
tem of linear equations 

Definition 2: Consider a linear recursrve rule with 
the head t(Xl,Xz, ,X,.,,) and the recursive atom m 
the body t(Yl,Yz, , Y,,,) A datatlow graph for this 
rule IS a directed graph G = (V, E) where 

l v c {v, ,m} and a E V If 3~ E {1,2, 94 
such that Y, = X, 

l An edge a --* J exists m the graph If Y, = X, 0 

Example 4: Consrder the followmg recursive rule 

P(QV,W) -P(V,WJ),#u) 

The dataflow graph for this recursive rule rs presented 
m Frgure 1 

l-+2-+3 

Figure 1 
The edge 1 -+ 2 IS m the graph because the variable V 
appears m the first attrrbute positron m the predrcate 
p m the body and also appears m the second attrrbute 
positron m the head Slmrlarly, the edge 2 + 3 IS m the 
graph because the varrable W appears m the second 
attribute positron m the predicate p in the body and 
also appears m the third attribute posltlon of the head 
0 

The followmg theorem states a property of dataflow 
graphs It IS similar to the theorem presented about 
pIvotal programs in 1191 

Theorem S: Consider a set of processes P and a 
linear slrup with a correspondmg dataflow graph G If 
G contams a cycle, then there exists a choice of dlscnm- 
mating sequence of variables, and functions such that 
the parallel execution of the linear srrup on P, does not 
require any communication Cl 

Example 5: Consider the ancestor example pre- 
sented m the earber section The dataflow graph for 
rt 1s presented m Figure 2 Hence, as shown m Section 
4, there 1s no requirement for commumcatron between 
the processors when the drscnmmatmg varrable rs Z 
0 

0 

z 

Figure 2 

Unfortunately, rt 1s not always the case that a 
datafiow graph contains a cycle, as shown m Exam- 
ple 4 In such cases, the dataflow graph still provrdes 
us with an msrght mto the choice of the drscnmmatmg 
variables so that the mterconnectlons between the pro- 
cessors can be reduced To formalize thus, we define the 
notron of a network graph 

Dehition 3: Given a set of processors P, we define 
a network graph over P as a directed graph N = (V, 
E) where V = P and E IS any subset of P x P EI 

A dvected edge a -) J m N means that m the par- 
allel execution of a program, data commumcatlon from 
processor a to processor J rs permmnble The absence 
of a directed edge from a to J indicates, that processor a 
may not communicate with processor 3, either directly 
or indirectly Hence routmg of mformatlon from a to 
J via other mtermedmry processors 1s not permitted 
dunng the parallel execution 

Example 6: Consider the followmg program 

P(X> Y) - p(Y, Z), r(X Z) 
P(X, Y) - n(XJ) 

Let g be any arbitrary functron on the domain of varr- 
ables X, Y and Z, with range (0, 1) Let v(e) = (X, Y), 
and u(r) = (Y, Z) 

Let h’(a, b) = h(a, b) = (g(a), g(b)) Thus, there are 
four possible values that h can take, (00), (Ol), (10) and 
(11) Accordmgly, let P = {(00), (Ol), (lo), (11)) Be- 
low, we consider some of the rules of the rewrrtten pro- 
gram executed at processor (00) 

0 Imtialrzatron 

P!2 (X9 Y) * - 4X, Y), WC Y) = (00) 
0 Processing 

pZ’(X,Y) : - P!~)(Y, Z), r(X, Z), h(Y, 4 = (00) 
l Sending 

P(OO)(*,) (Y, Z) * - P%(Y, Z), h(Y, Z) = (53) 

We see from the processmg and the mrtlallzatron rules 
that If (a, b) E p(“), then g(b) = 0 Consider the rule 
that represents the operation of sending tuples from 
processor (00) to processor (01) Then, If (a, b) E 

P(OO)(Ol), then by the sending rule, (a, b) E pff:), and 
h(a, b) = (01) If h(a, b) = (Ol), then g(b) must be 
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1. Thus we conclude that for any mput of the base 
relatrons and any choice of the function g, there 1s no 
commumcatron from processor (00) to processor (Ol), 
By the same argument, there 1s no commumcatlon from 
processor (00) to processor (11) 

On the other hand, rf (a, b) E pz’, then g(a) could 
be 1, and there IS the posslbllrty of commumcatlon from 
processor (00) to processor (10) Canymg out this anal- 
ysis for every other processor, yrelds the network graph 
shown in Figure 3 0 

Given a 

JO) 
Figure 3 ‘tLiJ 

linear slrup L, a sequence of drscnmmat- - _ 
mg variables, and drscnmmatmg functions satlsfymg 
some condrtlons, there 1s an algonthm to generate the 
mmimal network graph N to evaluate L The network 
1s mmimal m the sense that, for every commumcatlon 
edge m the network, there exists an input database, 
such that the parallel execution of L on this database, 
results m commumcatron along that edge Thus algo- 
rithm and its proof of correctness 1s described m [9] 
Here we show an example to illustrate our ideas It 
further shows that d the discriminating functions are 
chosen to be linear functions, then the network graph 
can be derived by solvmg a system of hear equations 
subject to some constramts 

Example 7: Consider the Datalog program 

Pm v, WI - s(KV,W) 
P(KV,W) - P(V w, q, q(G 4 

The dataflow graph for thus program as explamed m 
Example 4 1s 1 - 2 --t 3 Let v(r) be (V, W,Z), and 
v(e) be (U, V, W) Let g be an arbrtrary function from 
the constants of the database to the set (0, 1) Define 
the dlscnmmatmg functions h and h’ to be the followmg 
linear function 

h(al, ~2, ~3) = h'(al, ~4 = stall - g(w) + g(a3) 

Hence the range of h 1s (0, 1 - 1,2} and thus, P = 
(0, 1 - 1,2} If processor a commumcates with proces- 
sor 3, then, there must be a tuple p(a1, as, as) that 1s 
produced by processor a and used as input by proces- 
sor 3 Let g(ar) = bl, g(a2) = bz and g(us) = b3 If 
p(al, ~22, as) 1s used as input at processor J then, 

h(m, ~2, ~3) = 11 - b2 + b3 = 3 (1) 

If p(al, (~2, 03) 1s produced by processor a , It could be 
produced by firing either the recursive rule or the exit 
rule If the exit rule IS used then, 

h’(al,a2,ag) = h(al,az, 03) = bl - bz + b3 = t (2) 

The only solutions of equations (1) and (2) above are 
when a = J This means that processor a communicates 
with processor J only when a = J Hence, this solution 
1s tnvlal Suppose that the tuple p(al, a2, as) IS pro- 
duced at processor a by finng the recursive rule Then 
there must be a tuple p(az,a3, ~4) for some 04 which 
enables the successful firing of the processmg step at 
geoc;sor a to produce p(a~, ~22, US) Let g(a4) = b4 

I 

b2 - b3 + b4 = a (3) 

Equations (1) and (3) are subJect to the constraint that 
61, bz, b3, h E IO,1 ) S mce we are interested m finding 
all pans of processors a and J such that there 1s com- 
munrcatlon from a to J, we solve the set of equatrons 
(1) and (3) for all values of bl, bz, b3, b4 E {O,l} and 
a,] E (0, -1, 1,2} Equivalently, we solve the followmg 
system of equations 

Xl -22 + 23 = v (4 
22 - z3 + 24 = u (5) 

subject to the constramts that 21, 52,23,24 E (0, 1) 
A solution to the above system of equations rs a vec- 

tor of the form (zi,zz, 23, ~4, u, v) Smce we are mter- 
ested m the last two components alone, we introduce 
an edge from processor u to processor v m the network 
graph whenever u and v appear as the last two compo- 
nents of some solution vector The network graph thus 
obtained 1s shown m the Figure 4 

Frgure 4 

6 Trade-Off 
In this sectron we present a scheme that exhibrts a 
trade-off between redundancy and commumcatlon We 
start our drscussron by presentmg a parallehzatlon 
scheme that requires no commumcatlon Thus scheme 
was first presented in [18] 

Let L be a linear soup, and let v(e), P and h’ be 
as defined m Section 3 The program to be executed 
at processor a, consrsts of the followmg three execution 
steps 
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Inltlahzation. A new predrcate t’ IS defined whose 
mterpretatron IS the set of all t-tuples that are pro- 
cessed at processor z at some point m the executron 

t’(2) -s(Z), h’(u(e)) = a 

Recursive Processmg 

t’(x) -t’(y), h, , h 
Final Pooling. 

t(*) -t*(X) 

This program scheme and Its proof of correctness was 
first presented m [18] Here we list some of the proper- 
ties of this scheme 

1 No commumcatron 1s necessary dunng the recursive 
computation 

2 The same tuple may be generated m the parallel ex- 
ecution more times than m the sequential semr-narve 
evaluation Hence computation may be duplicated at 
the processors 

3 In general base relations need to be erther shared or 
replicated 

The scheme presented above 1s a special case of a 
more general parallehzatlon scheme whrch exhrblts a 
trade-off between non-redundancy and commumcatron 
Thus general scheme IS presented below 

The defimtlons of u(e), P and h’ are the same as m 
Section 3 We requu-e that every variable m u(r) also 
appear m F Also, for every processor s In P, we define 
a dlscrrmmatmg function h, as follows 

h, set of ground instances of u(r) + P 

As m Sectron 3, we derive a set of Datalog programs to 
be executed at the various processors, and whose par- 
allel execution 1s eqmvalent to the sequential execution 
of the given Datalog slrup Let R, denote the program 
to be executed at processor t It consists of the follow- 
mg five execution steps The meaning of the predicate 
symbols t:,, tLut etc are the same as m Sectlon 3 
Therefore, we do not repeat the explanations here 

1 Initialization. 

Cut(z) --a(z), h’(u(e)) = * 
2 Processmg. 

L(x) -t:,.,(~), h, , bk 
3 Sending. For every 3 E P, we mtroduce the follow- 

ing rule in R, 

tt,V) -tl,,m h*W) = 3 
4 Receiving. For every J E P, we mtroduce the fol- 

lowing rule in R, 

LW -tJ*w 
5 Final Pooling. 

t(W -L (W 

The parallel execution of the above program on the 
abstract architecture proceeds m exactly the same man- 
ner as described m Section 3 Note that the major drs- 
tmctlon between the program R, and the program Q, 
defined m Section 3 1s that the drscrlmmatmg functrons 
h, used by the processors may be drfferent from one an- 
other In Q,, thus was not allowed 

In operational terms, this rewriting allows a proces- 
sor to transmit any arbdrary fragment of the computed 
result to the other processors and retam the remammg 
for self-processing The declsron as to whether to com- 
mumcate tuples 1s a local decrslon, smce the various 
h,s may be drstmct. However, such flexlblllty may re- 
sult m redundant computation with the advantage of 
less commumcatlon The correctness of the transfor- 
mation 1s asserted m the next theorem The rewntten 
program R, consists of several recursively derived predr- 
cates, %& ,,,, %J t' t and t The theorem below asserts the 
relationship between the predrcate t m the & and the 
predrcate t given m the ongmal linear srrup L 

Theorem 4: Let R = U,,Q&, where the & are 
obtained from a given linear srrup L as defined above 
Then for every input of base relations, the mterpre- 
tatron of t m the least model of R 1s identical to the 
mterpretatlon oft m the least model of L q 

Having estabhshed the correctness of the transfor- 
matron, let us now examme some of the propertres of 
thus scheme 

Let h,(w 02, ,%J = a for every tuple 
(al, ,a,) If r,~ E P, and a # J, the set of tu- 
ples transmitted from processor t to processor 3 rs 
empty Hence for this specific choice of the dlscrrm- 
matmg functrons, the parallel execution does not re- 
qmre any commumcatlon, and proceeds exactly like 
the one presented m the begmnmg of the section 

Suppose that h, = h, for every z E P The rewritten 
program for processor a now looks as follows 

w - a(Z), h’(u(e)) = t 

L* m - t:,.,(P), bl, , bk, h(u(r)) = 2 

t*J (‘1 - L,(U, +(r)) = 3 

%a WI - tJ*(W) 

w - LAW 

Recall that for thus section, we have restricted that 
all variables in u(r) must also appear m P Hence 
t:,(P) + (h(u(r)) = a) Therefore, this program 1s 
rdentlcal to the program Q, presented m section 3 
Thus d each processor uses the same dlscrrmmatmg 
function for the recursrve rule, then the parallel com- 
putation 1s non-redundant 
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Different choices of drscrrmmatmg functrons h, and 
h’ may result m different executron schemes In general, 
the parallel execution IS not completely non-redundant, 
and may require communrcatlon We see that in non- 
redundant execution (1 e, when h, = h for all a), every 
tuple IS processed by a umque processor, and hence 
rf this tuple 1s produced by different processors, then 
some communrcatron IS mcurred to transfer all of them 
to the same destmatron However, If uniqueness of pro- 
cessmg sites 1s not mamtamed for every tuple, but m- 
stead, some tuples are processed at the the same pro- 
cessor where they were generated, then non-redundancy 
may be lost, at the advantage of less communrcatron 
In general, more communrcatron would lead to lesser 
redundancy, and vice-versa The above parallehza- 
tron scheme vividly demonstrates the trade-off between 
communrcatlon and redundancy 

By varymg the extent of communrcatron m a substr- 
tutron based parallel executron, we get executrons whrch 
are points along a spectrum whose extremes are char- 
acterrzed by non-redundancy and no communication 

7 A General Scheme 
In this sectron we extend the parallehzatron scheme pre- 
sented m Section 3 to include all Datalog programs 
(that is, non-linear programs, and programs wrth more 
than one recursive rule) 

Let M be a Datalog program whose rules are num- 
bered from 1 to n, m some order For each rule r, m 
M, we choose a drscrrmmatmg sequence u(r,) and a drs- 
crrmmatmg function h, The drscrimmatmg function 1s 
defined as follows 

h, set of ground mstances of u(r,) - P 

The meanmg of the predicate symbols t:,, trt, tbut 
etc , and of P are the same as m Section 3 If A IS any 
atom with predicate symbol t, then A:, 1s the atom 
with the predicate symbol t:, and the same arguments 
Thus, for example, If A denotes the atom sg(V, V), then 
A:, denotes the atom sg:n (V, V) Likewise, we define 

A’,,‘, and A,, 
The program to be executed at processor t consrsts 

of the followmg four steps, and is denoted by T, 

Processing. Let A -B, , C be a rule r m M, 
with drscrrmmatmg sequence u(r) and drscrimmatmg 
function h Then, mclude the followmg rule m T, 

4ut -%a1 , CL,, Wr)) = t 
Sending. Let r be a rule m M, with drscrrmmatmg 
sequence u(r) and drscrrmmatmg function h For ev- 
ery recursrve atom C appearmg m r and every J E P, 
mclude the followmg rule m T, 

C,, -CLut h(u(r)) = 3 
Receiving. Let W be a sequence of all drstmct varr- 
ables not appearmg m the orlgmal program For ev- 
ery recursrve predrcate t appearmg m the program 
M and every J E P, mtroduce the followmg rule m 
T,, where S denotes t(W) 

s:, -s,, 

4 Final Pooling. Let S be as defined m the recelvmg 
step above For every recursive predicate t, include 
the followmg rule m T, 

S -%bt 

Example 8 : Let M be the followmg non-linear 
program to compute the ancestor relatron ant of a grven 
parent relation par 

rl anc(X, Y) - p4X Y) 
7-2 anc(X, Y) - onc(X, Z), anc(Z, Y) 

Suppose u(rl) = (Y), and u(r2) = (Z), and hl = hp = 
h, where h is some arbitrary drscrrmmatmg function 
The four executron steps of the program T, are 

Processing. 

anc&(X, Y) 
anc;,,(X, Y) * 

-par(X, Y), h(Y) = t 
- anc;,(X, Z), anc;,(Z, Y), h(Z) = 2 

Sending. 

ancsJ (X, 2) -anCut(X, z), h(Z) = 3 
arqJ (2, Y) -anc’,,(Z, Y), h(Z) = J 

Receiving. 

W,(wl,wz) --aq,(wl,W2) 

Final Pooling. 

anc(hW2) -~~c:,,(w,~2) q 

The followmg theorem asserts the correctness of the 
transformation 

Theorem 5 : Let T = U,cpT, For every input of 
the base relations, the mterpretatron of every derived 
predicate symbol m the least model of M 1s :dentical to 
the mterpretatron of the same predrcate symbol m the 
least model of T •I 

The base relations are distributed among the proces- 
sors m the followmg manner Suppose r 1s a rule wrth 
drscrrmmatmg sequence u(r) and D rs a base atom ap- 
pearmg m r If the vanables appearing m u(r) do not 
appear m D, then D 1s shared/replicated among the 
processors Otherwise, the fragment of L) accessed by 
processor s 1s denoted by 01, and rs defined by 

D:, - D, h(u(r)) = t 
As argued m Sectron 3, all variables appearmg m a 

drscrrmmatmg sequence of a rule r must also appear m 
atleast one atom m the body of r The parallehzatlon 
scheme presented above IS non-redundant m the precise 
sense described below 

Defimtion 4: Let M be a Datalog program, and 
I be the input database to M Then, we say that a 
substrtutron B 1s a successful ground substltutlon for a 
rule r A -B, ,CmM,rf 

1 0 mstantrates all the varrables occurrmg m rule r by 
constants and doesn’t mstantrate any other variable 
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2 Each of the atoms m the set {AB, BB, , CO} is el- 
ther a fact m the database I or 1s a fact m the output 
(1 e , the least model) 

Theorem 6 . Let M be a given Datalog program 
Let T be the Datalog program obtamed by rewrltmg M 
using any choice of dlscrrmmatmg sequences and drs- 
crrmmatmg functions Then, given any input database 
I, the number of drstmct successful ground substrtu- 
trons of rules m M IS atleast equal to the number of 
dlstmct successful ground substrtutrons of the process- 
mg rules m T q 

8 Conclusions 
In thnr paper we have burlt on prevrously reported work 
and extended the results Our results Include the re- 
sults by Wolfson, Sdberschatz and Cohen [19, 18, S] and 
Valdurlez [16] as special cases 

We have observed that, for the class of programs con- 
sidered, there 1s a spectrum of equivalent parallel execu- 
tions, and that a tradeoff between non-redundancy and 
communrcatron exists for these Consequently, the par- 
ticular scheme used m a comprler may be dependent on 
the underlying characterrstlcs of the archrtecture e g , 
computation cost as opposed to commumcatron cost 
Our results m Section 5 further show how the rewrrtmg 
method at compile time can be adapted to the archr- 
tecture of the system 

The results m thus paper are quahtatrve and obvr- 
ously, are no substitute for detarled performance stud- 
ies that would consider such issues as load balancing, 
processor utrhzatron etc We mtend to mvestrgate these 
systematically m the future 

The results presented m this paper and others, that 
we Intend to drscuss m future work, form the beginnmg 
of a theory for bottom-up, parallel evaluation that IS 
controlled by drscrrmmatmg functrons based upon hash- 
lw 
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