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Abstract: We define the mdependence-reducibility based on a
modification of key dependencies, which has better computa-
tional properttes and 1s more practically useful than the onginal
one based on key dependencies Using thus modification as a
tool, we design BCNF databases that are highly desirable with
respect to updates and/or query answening In particular, given a
set U of attributes and a set F of functional dependencies over
U, we characterize when F can be embedded in a database
scheme over U that 15 mdependent and 1s BCNF with respect to
F, a polynomial time algorithm that tests this charactenzation
and produces such a database scheme whenever possible 1s
presented The produced database scheme contams the fewest
possible number of relanon schemes Then we show that
designs of embedding constant-time-maintamnable BCNF
schemes and of embedding independence-reducible schemes
share exactly the same method with the above design Fmally, a
simple modification of this method yields a polynomial time
algorithm for desigming embedding separable BCNF schemes

1. INTRODUCTION

The Boyce-Codd normal formal (BCNF) [Co] 1s one of
the most important database normal forms aimed at reducmng
data redundancy and update anomahes Unfortunately, given a
set F of functional dependencies [A], the problem "does there
exist a non-BCNF database scheme that 1s embedding F" 1s
NP-complete [BB] ( The NP-completeness was proved in [BB]
for cover embedding BCNF schemes But since the scheme
constructed there happened to embed the given functional
dependencies, our statement 1s still correct ) Thus unless P=NP,
no polynomial tume algonthm for desigmng embedding BCNF
database schemes 1s likely to be found
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Recent work on database design addressed some proper-
ties that would allow data updates and/or query answering to be
performed efficiently In particular, within the context of the
weak instance model [HM,MUV,V,Y], there has been a good
deal of work being done on proposing and 1dentifying such nice
"data-manipulation” properties Among them there are indepen-
dence [GY,S1,52], independence-reducibility [CH], constant-
time-mamntamnability [HC,GW, W], and separabiity [CM] How-
ever, very hitle has been known about how to actually design
databases with these properties in general The design theory
should eventually provide algorithms and guides for deisgning
the goals 1t has proposed

In this paper, the above “data mamipulation” properties
are considered to be equally important as normalization of data-
bases That 1s, we behieve that useful systems should be free of
redundancy/anomalies as well as allow efficient data updates
and/or query answering We will focus on designs of databases
toward such combined goals It turns out that BCNF nteracts
with these properties 1n such a mce way that the above mtracta-
bility disappears

Under the weak mstance model, independence takes the
followng form A database state within which each relation
satisfies the dependencies local to it has a weak instance, 1e, 15
consistent [H,V,Y] Hence, only local dependencies need be
enforced n the process of updates 1f independence 1s provided
Independence meets the aesthetic principle of "separaton” or
"one thing mn one place” [BBG] and therefore 1s highly desir-
able 1n a distnbuted environment where data transmussions
between sites are supposed to be mummized Independent
schemes with dependencies given by keys of relations were
stuied by [S1,52] and those with functional dependencies plus
the jon dependency [ABU] of the database scheme were stu-
died by {GY,S3] Specially, 1t has been shown that independent
schemes are highly desirable with respect to query answerng as
well [AC,IIK,S2,S3]

Chan and Hemnandez [CH] defined a generalizaton of
Sagiv-independent  schemes [S2], called independence-
reducibleschemes This 1s exactly the class of database
schemes obtamned from decomposing, based on a set of so
called key dependencies, Sagiv-ndependent schemes in a
dependency preserving manner Independence-reducible



schemes mhert most desirable properties of independent
schemes and we shall see that they are always m BCNF In this
paper, mndependence-reducibility will be treated as a design
goal and more importantly used as a design tool In particular,
we will show that independence-reducibility of certain database
scheme charactenizes when our combined design goals are pos-
sible to fulfil, for a given set of functional dependencles and
g‘liiut‘;s the d Qesign proceuure whenever pGSSnnc nO“w‘e‘v'éf, to fit
into our framework, some modification to the onginal notion of

‘rn\l dependencies seems to be necessary We will show how to
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do ths and will argue that the modified notion has beeter com-
putational propertics and 1s more practiaily useful than the on-

ginal one
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posed as a systematic generahization of independence of [GY])
Very database
mamntainable [GW] if some algonthm can determine whether
consistency of a database state 1s preserved by an nsertion of a
new tuple in time independent of the state size (This will
depend on the computational model used) Independent
schemes with only functional dependencies are constant-time-
mamtanable because only local functional dependencies need
be enforced Constant-time-mamtamnability 15 a systematic gen-
erahzation of independence m the sense that the constant ime
solution captured by 1t 15 not necessarily achieved by assuming
the uniqueness [S2] and simple types of dependencies, but
rather 1s inherent in the scheme itseif This property 1s aghiy
desirable 1n a large and dynamic environment where scanning
entre database staic 15 not acceptable for uuuxu.ug constrainis
m the process of updates Recogmtion of constant-time-

mamtamable schemas and soma mice behaviours with respect to

query answening have recently been established m
[(HC.HW, W, WG], of them [HC] gave a polynomal time test of

constant-ime-maintamable schemes, prov1ded that schemes are
m BCNF

The notion of separability by Chan and Mendelzon [CM]
concerned with both consistency and completeness of informa-
tion of locally satisfying states A database state 1s complete I
any tuple that can be denved from the existing tuples and the
constramnts are already given explicitly 1n the state A database
scheme 1s separable if local satsfaction implies both con-
sistency and completeness of the state As mentioned 1n {CM],
this property captures the design goal of mmdependently updat-
able decomposition and 1t 1s equivalent to a specification of the
abstract mdependent mapping defined by Bancilhon and Spyra-

tos [BS] We shall also consider design of separabihity

mformally, a scheme 15 constant-time-

The central problems we shall address in this paper are
the following Given a set U of atinibutes and a set F of func-
tional dependencies over U, we charactenze under what condi-
tions there exists a database scheme over U that 1s embedding,
mdependent, and i BCNF with respect to F Then we address

IlUW {o test blibll WII.UlLlUllb u.llU, 11 LllG oL bu\«wcua, uuw' w

produce a database scheme satusfying these properties Very

mterestingly, we will show that if F cannot be embedded 1n an
mieresung:y, we win snow

mdependent BCNF scheme, then F cannot be embedded 1n any

75

constant-ume-maintainable BCNF  scheme nor in any
mdependence-reducible scheme Therefore, our method for
designing embedding independent BCNF schemes 1s exactly
those for designing embedding constant-ume-mamntainable
BCNF schemes and embedding mdependence-reducible
schemes This then would suggest that, withuin the context of
BCNF scheme design, not much needs be studied for constant-
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schemes other than imndependent schemes, provided that no con-

stramnts (nt‘\nr than functional Annmrlnnnnne\ are imnosed The
nposeg 1ne

ume of our tests 15 bounded by O(IEI2NEN+1U1), where
{F1 15 the number of functional dependencies m F, {Fll 1s the
size of the descnption of F, and |Ul 1s the number of attnbutes
m U Finally, a simple modification of the above method yields
a polynomial time algorithm for designing embedding separable

BCNF schemes

For each combined design goal considered, 1t 1s shown
that the produced database scheme contains the fewest possible
number of relation schemes Thus, data redundancy 1s
prevented both within (by BCNF) and between (by mmmizing
the number of relations) relations We shall also discuss how to
modify the produced scheme to make 1t lossless without
affecting the goals that have been designed for 1t

Our choice of embeddimg, rather than cover embedding,
functional dependencies 15 justified as follows Let XY be
any given functional dependency X—Y not only represents an
mtegnty constraint on the database, but also represents a rela-
uonship that the database 1s intended to store In other words,
we consider the given funcuonal dependencies to express as
well the information about what attributes at least should be put
mto one relation scheme Intutuvely, such a design will depend
on the choice of dependency covers m general It turns out,
however, that the design result 15 not affected by applications of
umnon and decomposition rules of functional dependencies On
the other hand, the treatment of cover embedding 1s a rather
syntactic one based on Armstrong’s axioms [A], and in the end,
not every cover embedding database scheme matches so well
our intwition about what information should be tabulated in the
database
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2. DEFINITIONS AND NOTATION

We now briefly describe the notaton and defimuions
required for the rest of this paepr

A ( database) scheme, denoted (R,X), consists of a col-

lection of relation schemes R—{Rh ,Rm} and a finite set of

dependencies T over UR defined below, where UR 15 the
abbreviation of the umons Ry UR,, Very often, a database
scheme refers to R alone if X 1s not of mterest A (database)
state over R, usually denoted p, 1s an assignment of relations to
relation schemes of R, with p(R;) denotng the relation
assigned to R, by p Let t be a tuple over some R, m R pu{t}

denotes the state p~ p'(R)=p(R,)), for R€R~{R,}, and



P’ R)=pRYV(t}

2 2 Dependencies and Normal Forms

An functional dependency (fd) [A] over a relation
scheme R, 15 a statement of the form X—Y, where X and Y
are sets of attnbutes such that R DXY, and they are called the
left-hand-side and right-hand-side of the fd, respecuvely F EF’
denotes F (logically) implies F° 1f FEG and G EF, denoted
F=G, F1s said to be equivalent to (or to be a cover of) G F*1s
the set of all fd's implied by F Let X be a set of attnibutes Xg
1s the set of attributes A such that FEX—A Fd’s can be
unioned and decomposed using the following rules [A,Ma,U]

» Union rule. {X—>Y,X-Z} EX—>YZ

» Decomposition rule* Let X—Y be an fd and ZY
Then XY EX—Z

An fd X—>Y 15 embedded m a relanon scheme R, if
R,2XY Let F be a set of fd’s F/R, denotes the fd's of F that
are embedded m R, and F/R denotes the fd’s of F that are
embedded in elements of R F 1s embedded m R, or R 1s
embedding F, if every fd in F 1s embedded in some element of
R A database scheme R 1s cover embedding F [BH] if there 1s
a cover of F that 1s embedded in R

The join dependency (yd) [ABU] defined by database
scheme R={R;j, ,Ry}, denoted *R, 1s satisfied by a relation I
over UR 1if TTg (I)* *IIg (D=, that 1s, the ongmal relation
can be reconstructed from joins of its projections onto R A
database scheme R 1s lossless with respect to (wrt) a set of X of
dependencies [ABU] if ZF*R Evidently, when jd *R 15
included in Z, R 15 trivially lossless wrt X

Let F be a set of fd's, R, a relation scheme of R, and
XcR, Xscalled a key of R, wrt F1f F EX—R, and no proper
subset of X has this property A superkey of R, wrt F 1s any set
of attributes m R, that contans a key of R, A relauon scheme
R, 1s m Boyce-Codd normal form (BCNF) wrt F [Co] if for
every nontnivial fd X—Y€eF/R,, X 1s a superkey of R, wrt F
We say that a database scheme R 1s n BCNF wrt F1f R, 1s n
BCNF wrt F for every R, m R More generally, R is n BCNF
wrt a set of dependencies £ 1f R 1s in BCNF wrt the fd’s
mmplied by

2.3 Weak Instances, Chase, and Representative Instances.

Let (R,X) be a database scheme, p astatcover R, and I a
relation over \UR 1 15 called a weak instance of p wrt Z1f I
sansfies £ and TR (D)Dp(R,) foreach R, m R A state p1s a
consistent state of (R,Z), or p 1s consistent wrt I, 1f there exists
a weak mstance of p wrt Z [H,M,V,Y] CONS(R,X) denotes the
collection of all consistent states of (R,X)

We can test whether a database state p 1s consistent wrt a
set T of dependencies by applying the chase process [MMS] to
the umversal relation aug(p), where aug(p) 1s obtamned from p
by augmenting out to UR every tuple of p with unique vari-
ables The chase process modifies this relation by applymng
rules associated with dependencies m Z to aug(p) as far as pos-
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sible, until either a contradiction 1s found, 1e, two constants
are equated, mn which case p 1s nconsistent, or no rule can
further modify the relation, 1n which case p 15 consistent --- the
final relation 15 a weak mstance of p If p 1s consistent wrt X,
we shall denote by CHASEx(aug(p)) the final chased relation
and call 1t the representative instance of p wrt Z [M,52] Given
a consistent state p and any set X of attributes of UR, the X-
total pro;ectzon of the representative instance of p wrt F,
denoted by Hx(CHASEz(aug(p))) 1s the set of tuples (pro-
Jected onto X) of the representative instance of p that contamn
no vanables over X

24 Independence, and Constant-time-

maintainability

Separability,

Sagiv [S2] defined and studied the notion of independent
schemes when fd's are given by keys of relations Let
R={R;, .R.)} andlet F=F;U UF,, be a set of fd’s such that
F,, 1<i€m, contans only (but not necessanly all) fd’s of the
form X—R—X, where X 1s akey of R, wit F R 1s said to be
independent [S1,52] wrt F if every state p such that p(R)
satisfies F, for 1<1<m 1s consistent wrt F It was shown 1n {S2]
that R 1s independent wrt Fif and only if, for all 1<1<m,

R, satisfies the uniqueness condition [S2] for no 15)<m
with j1 does (R,)f-g, contamn a left-hand-side K of some fd m
F, and an attnibute A n Ri-K

Graham amd Yannakakis [{GY] studied independent
schemes m more general cases Let (R,F) be a database scheme
, where F 15 a set of fd’s over UR A database scheme R 1s
independent wrt F 1if every state p such that p(R,) satisfies
F*/R, for every R,eR 15 consistent wrt F By a result m [GY],
when dependencies are given by keys of relations, this
defimition comncides with the above Sagiv’s defimtion Let G be
the set of fd’s implies by FU{*R} R 1s wndependent wrt
FU{*R]} if every state p such that p(R,) satsfies G*/R, for
every ReR 15 consistent wrt FU{*R} More results on
mndependent schemes, including some desirable properties with
respect to query answering, can be found m [AC,IIK,S3]

Let (R,X) be a database scheme A consistent state p of
R,Z) 15 complete if te HR,(CHASEZ(aug(p))) implies
tep®R), R,eR As explaned m [GMV], the idea 15 that a
complete state contamns explicitly all the tuples whose existence
can be derived from the state and the dependencies R 1s
everywhere-complete wrt T 1f every consistent state of (R,X) 1s
complete [GMV] R 1s separable wrt £ 1f R 1s both independent
and everywhere-compelete wrt X [CM]

The maintenance problem of a database scheme (R,X) 1s
the following decision problem [GW,GY] Let p be a consistent
state of (R,X) and we want to mnsert a tuple (over some R, in R)
mto p, called an tnstance <p,t> below, 15 pU{t} a consistent
state of (R,X)? Assume that the database state p 1s stored in a
device that responds to requests of the form <R,'¥> by return-
mg, if 1t exists, an arbitrary tuple satsfying ¥ from the relation
P(R,), where R,€R, and ¥ 15 a Boolean combination of equal-
ity of form B=b, for some attmbute BER, and constant ’b’ i



the domain of B Furthermore, every request <R,,¥> obeys the
no guess assumption [GW] in the scnse that the constants used
m equalities of ¥ appear eather in the inserted tuple or 1n some
previously returned tuples Suppose that some algorithm A
solves the mamntenance problem of (R,Z) by making requests to
the current state as above For any instance <p,t>, we define
#A(p,t) to be the number of requests made on <p,t> by A m
determming consistency of puU{t} A database scheme R 1s
said to be constant-time-maintainable (ctm) wrt X 1f there exists
an integer k 20 such that k 2#A(p,t) for all instance <p,t> of the
maintenance problem of (R,2) Ctm schemes are important in
the case where states are large and modifications are frequent
More results on ctm database schemes were reported m
{HC,W, WG]

It should be noted that the properties of BCNF, indepen-
dence, separabihity, and constant-time-mamntamability are all
msensitive to the choice of dependency covers

3 A MODIFIED NOTION OF KEY DEPENDENCIES

As a design goal 1in captuning efficient query answering
and constramnt enforcement, Chan and Hernandez [CH] defined
a notion of independence-reducibility wrt a set of so called "key
dependencies” We shall use this notion as a tool in our design
framework Essentially, our design algonithm 1s a modification
of the 3NF synthesizing method [B] Furst, we shall construct,
for each given fd, one relation scheme consisting of the attri-
butes m that fd Then, while the embedding 3NF 1s always pos-
sible to fulfil for the given fd's, we show that embedding
mdependent BCNF design goal 1s possible to fulfil exactly
when the constructed database scheme 1s mdependence-
reducible Third, when the design 1s possible, mstead of merg-
ing relanon schemes corresponding to the fd’s with the
equivalent left-hand-sides as in [B], we merge the relation
schemes that are equivalent wrt their embedded key dependen-
cies, mn other words, we find "the key-equivalent partition”
[CH] of the constructed database scheme and merge the relation
schemes m each block of the pariton By some results n
[CH], such a merged database scheme 1s independent and n
BCNF However, certain modification to the key dependencies
seems to be necessary for our purpose In this section we
present such a modification and show a few nice properties of
1t We will returan to a presentation of design algorithm 1n the
subsequent sections

[CH] defined a notion of independence-reducibility as
follows A partition of a set S 1s a collection of nonempty sub-
sets of S such that elements m the collection are pairwise dis-
jomnt and the union of the collection 1s S Each subset in a parti-
tion 1s called a block Given a set of fd’s F and a relation
scheme R, 1f K 15 a key of R wrt F and A€ R-K, K—A 1s said
to a key dependency m R wrt F A set of fd’s G 1s a set of key
dependencies in (a relation scheme) R wrt F 1f G 1s equivalent
to the set {K—A |IK—A 15 a key dependency n R wrt F },
1e, the set of all key dependencies in R F 1s a set of key depen-
dencies i (a database scheme) R=(R;, Rpn} if
F=F,u UF,, where each F, 1s a set of key dependencies m
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R, wrt F Let FsFju UF,, be a set of key dependencies in
R={R;, Ry}, andlet SCR F(S) denotes U{F,IR€S] S1s
key-equivalent wrt F(8) if for any R, Ri€S, (R)is=R))s)
R 1s said to be independence-reducible wrt F if there 1s a parti-
tion T={T;, ,Ty} of R such that

(a) database scheme D={\UT, | Ty T} 15 independent wrt F,
and

(b) forany T,e T, Ty 1s key-equivalent wrt F(Ty)

It has been shown m [CH] that independence-reducible
database schemes mnhent most of the properties of independent
schemes and are highly desirable with respect to query answer-
mg and constramt enforcement The test algorithm of
mdependence-reducibiity m [CH] (e, funcion KEP and
Algonithm 4) has assumed that the key dependencies are exph-
citly given as Fy, » Fm, where F, 15 a set of key dependen-
ciesmR,

Some Negative Results of Key Dependencies. Let F be
a set of fd’s over U, let RCU be a relation scheme, and let G be
some set of fd’s embedded mn R By shghtly modifying the
proof of the NP-completeness of the additional key problem m
[BB] (1e, Theorem 5), we can show that the problem "Is G a
set of key dependencies n R wrt F?" 1s CoNP-complete This
result strongly suggests that no polynomial tume algorithm for
generating a set of key dependencies in R (for a given set F of
fd’s over U) 1s likely to exist Therefore 1t 15 unreasonable to
assume that any set equivalent to a set of key dependencies m R
1s always given exphcilty as sets F’s of key dependencies in
R,’s Moreover, as illustrated by Example 31 below many
redundant fd’s are mcluded in sets F,'s of key dependencies, we
doubt that any algonthms taking such sets as input in a non-
trivial manner can be considered "truly" efficient To get over
these problems as well as to fit into our design framework, we
now modify the above notion of key dependencies as follows

A Modified Notion of Key Dependencies. Let
R={R;, ..Rn} and F=FjU UFy, where F, 1s a set of fd’s
embedded 1in R, 1<1€m F, 15 a set of key-dependencies (1¢,
with "-" m between for distinction) m R, if for every fd X—Y
m F,, FEX—5R, Fis called a set of key-dependencies m R o
F 1s equvalent to the umons Fju UF,,, where F, 1s a set of
key-dependencies in R,, 1<1€m Assume that Fju UF, 15 2
set of key-dependecies in R={R;, R}, and let SCR It fol-
lows that the U(F,IR,€ S} 1s a set of key-dependencies 1n sub-
scheme S

Example 3.1 Consider the database scheme (R,F),
where

R=(R1(AB),R3(BC).R3(AC),R4(AD) Rs(DEF)R¢(DEG)},
F=(A-B,B—C,C—A,A—D,D—EF,D—EG)

We claim that F 1s a set of key-dependencies in R In particular,
F=F;u UFg, where  Fi={A—-B}, F={B-—C)},
F;={C—A)}, F=(A-D]}, Fs={D—EF}, F=[D—EG},
and each F, 1s a set of key-dependencies m R, Note that F, for
1€5<3, 1s not equivalent to the set {X—AIX—>A 15 a key



dependency m R; wrt F}, and thus F; 15 not a set of key depen-
dencies m R, To make F a set of key dependencies m R, F
needs be given as F=F'u UFg, where
Fi'={A-B,B—A}, F;={B—5C,C-B}, Fy={C-oA,
A—C}, F4'={A—>D]}, Fs'={D—EF]}, Fs'={D—EG], each
F,” being a set of key dependencies m R, [J

Better Computational  Properties of  Key-
dependencies. As pointed out above, there 1s a lack of polyno-
mial ume algonthm for testing and generating key dependen-
cies Now we show that key-dependencies are free of these
problems Given a set of fd's F, 1t 1s not hard to see the follow-
mg If F 1s equivalent to a set of key-dependencies m R, then F
1s cover embedded in R, and if F 1s embedded n R, then Fis a
set of key-dependencies m R if and only 1f, for each fd X—Y mn
F, there 1s at least one relation scheme R,€ R such that R XY
and X 15 a superkey of R, wrt F Thus we can test whether F 1s
equivalent to a set of key-dependencies m R={R;, R}, and
find such an equivalent set 1f 1t 1s, in polynomial time as fol-
lows

First, by a polynomial ume algorithm m [BH] or [GY],
we test whether F 1s cover embedded If not, then F 1s not
equivalent to a set of key-dependencies mn R, otherwise, that
algonthm also returns an embedded cover F “ of F Then we
verify, for each fd X—Ye F", that there exists at least one rela-
uon scheme R € R such that R 2XY and X 1s a superkey of R,
wrt F F 1s equivalent to a set of key-dependencies in R if and
only 1f no violation of these verification 1s found In the case of
no violation, the sets of key-dependencies F,’s in R,'s, such that
F=Fyu UF,, are constructed as follows For each fd
X—>YeF’, choose arbitranily exact one relation scheme R € R,
such that R DXY and X 15 a superkey of R, wrt F, and include
fd X—»R-XmF,

Clearly, the above test and transformation take polyno-
mual time m the number of relation schemes and 1n the size of
description of F More specifically, IFI<IF/R,|, for all
R,eR, where F’ 1s the embedded cover of F used in the above
transformation

Test of Independence-reducibility Based on Key-
dependencies. First, we define the mdependence-reducibility
wrt a set of key-dependencies Let F=F;uU UF,, be a set of
key-dependencies in R, and let SCR As before, we define
F(S)=U(F,IR,e S}, and we say that S 1s key-equivalent wrt
FS) iof for any R,R, m S, R)is=R)fsy R 15
independence-reducible wrt F 1f there 1s a partition
T=(T;, .,Tx} of R such that

(a) database scheme D={UT;,
wrt F, and

() for any Tpe T, T} 1s key-equivalent wrt F(T})

We shall say that the above parttion T 1s an independence-
reduced partition of R wrt F and the above scheme D 1s an
independence-reduced scheme of R wrt F Also, 1f a partitton T
of R satisfies condition (b), independently of condition (a), we
say that T 1s a key-equivalent partition of R (wrt F) (Note that
this notion 1s different from "the key-equivalent partition”

,UTy} 1s mndependent
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defined i [CH] ) If T={T;, ,T;} 15 a key-equvalent partiuon
of R, then the database scheme {UT;, ,UTy} 1s induced by
T Clearly,F 1s also a set of key-dependencies i any induced
scheme {UT), WUTy), where the set of key-dependencies mn
JT, 1s F(T), for 1<isk Note that any database scheme
mdependent wrt a set of key-dependencies 1s trnivially
mdependence-reducible

In the following, we show that replacement of key
dependencies by key-dependencies 1s only a matter of choices
of dependency covers in the sense that 1t gives an equivalent
defimtion and the same test algorithm of independence-
reducibihity

Lemma 3.1: (a) Every set of key-dependencies m R 1s
equivalent to a set of key dependencies m R (b) Every set of
key dependencies 1n R 1s a set of key-dependencies in R (c)
Let F be a set of key-dependencies m R and let F* be an
equvalent set of key dependencies m R Then R s
mdependence-reducible wrt F if and only if R 15 independence-
reducible wrt F *

An important observation 1s that the key proofs in [CH}
do not need the stronger assumption of having key dependen-
cies and (therefore) the test method of independence-reducible
schemes in [CH] stll works when a set of key-dependencies
rather than a set of key dependencies 1s taken as mput Then 1t
follows, from Lemma 3 1 and the polynomual transformation of
key-dependencies, that we can test independence-reducibility
truly efficiently For our convenience, mn the following we bor-
row from [CH] the test algonthm, with the mput replaced by a
set of key-dependencies

Let F be a set of key-dependencies in R and let R, be a
relation scheme i R Define [R] to be the largest subset of R
contamung R, such that [R,] 1s key-equvalent wrt F([R,]) The
collection of {[R]IRER)} 1s called the maximum key-
equivalent partiion of R (wrt F) (which corresponds to the
term "key-equivalent partition” in [CH]) As an important com-
ponent of testing independence-reducibility, the function KEP
below generates the maximum key-equivalent partitions

Function KEP(R,F),

R={Ri, Ry} and F=FjU UF,, where F, 15 a
set of key-dependencies m R,, 1<1<m

Input

Output  The maximum key-equivalent partition of R wrt F
Notation R:‘:{RJ IR)F=R)r)

Method

begin

(1) Let PARTITION={R,'IReR},
2) ifPARTITION={R] then return ({R})

else return (KEP(P),F(P))u. UKEP(P,F(P,),
where PARTITION={P,, ,P,}

end



With R and F as nput, funcuon KEP(R,F) partiuons R,
as in step (1), on the basis of the equivalence of relation
schemes under F and invocates a recursive call for each block
Since R can be "split” at most IRI-1 tumes, the total number of
mvocations of KEP 1s bounded by IRI-1,where IR| 1s the number
of relation schemes in R Within each mnvocation of KEP(R,F),
PARTITION can be found by computing (R,){, for each R, m
R, and grouping those having the same closure As (R)f can
be computed m time O( Il Fll) by an algorithm i [BB], where
HF Il 1s the size of description of F, finding PARTITION n
step (1) takes time O(IR | IFI}) Thus function KEP(R,F) 1s
bounded by O(IRI12IIF1l)

The following algonthm 1s a rewnte of Algorithm 4 mn
[CH], except that 1t now takes a set of key-dependencics, rather
than a set of key dependencies, as input

Algorithm 1

R=(R;, ,R,} and F=Fju UF,, where F, 15 a
set of key-dependencies m R, 1<i<m

Input

Output  Accept or reject, 1f accept 1s output, then the max-

imum key-equivalent partition of R 1s also output
Method

(1) generate the maximum key-equivalent
{MKE,, ,MKE,) of R wrt F via KEP(R,F),

@2 if {UMKE;, ,UMKE,} 1s not independent wrt F then
output reject

else output accept and {MKE;, ,MKE,)

partition

The following lemma follows from [CH]

Lemma 32: Let F be a set of key-dependencies n R
When R and F are mput, Algorithm 1 outputs accept, 1, the
scheme induced by the maximum key-equvalent partition of R
wrt F 1s independent wrt F, if and only if R 1s mdependence-
reducible wrt F

Example 3.2: Consider the database scheme (R,F) of
Example 3 1, where R={R;(AB),R5(BC),R3(AC), R4(AD),
Rs(DEF),R¢((DEG)} and F={A-B, B-C, C-A,
A-DD—EF,D—EG} Smce (Ry)fr2AB, where
Fi={A—B}, R, violates the uniqueness condition and thus R
1s not independent wrt F However, R 1s mdependence-
reducible wrt F The maximum key-equivalent partition of R 1s
{{R1,R3,R3,R4},{Rs,R¢}] and 1ts 1induced scheme
{D,(ABCD),D,(DEFG)} 1s independent wrt F []

In fact, a close inspection of [CH] discovers that the
proofs that concerned with boundedness and algebraic-
mamtamabihty of independence-reducible schemes hold just as
well when dependencies are given by a set of key-dependencies
rather than by a set of key dependencies In other words,
independence-reducibility based on key-dependencies not only
have the same desirable propertics wrt query answering and
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constraint enforcement as i [CH], but also gamns more
efficiency of these functions by takmg a set of key-
dependencies as parameters As a result, our modification 1s
more practially useful

4 CHARACTERIZATION

We now return to the discussion of the central design
problem of this paper In this section, we assume our mput to be
a set F of (nontrivial) fd's We shall characterize the existence
of a database scheme that 1s embedding, mdependent, and n
BCNF wrt F We show that this characterization remamns the
same for the existence of embedding ctm BCNF schemes and
for the existence of embedding mdependence-reducible
schemes The design algonthm is left to the next section

For a given set F of fd’s, we define
scheme(F)={XW | X—>WeF}

That 1s, scheme(F) contains, for each {d i F, a relation scheme
consisting of all the attributes appeaning in that fd Now let

scheme(F)=(R;, Rp}

and define
F={X->WI!|X—WeF and R=XW]}, for 1<1<m

It 1s not hard to see that F=FjuU UF, and F, 1s a set of key-
dependencies m R, (but not necessanly a set of key dependen-
cies 1n R)), 1ism Thus F 15 a set of key-dependencies m
scheme(F) Note that scheme(F) 1s not necessarily 1n 3NF since
F 1s not required to be mmimal [U]

Example 4.1. Consider the fd’s
F={BE—-D,D—B,C—B,B—>C}

Then scheme(F)={R,(BED),R,(BD),R;(BC)}, and
F;={BE—D} F,=(D-»B},F3=({C—»B,B—C} Clearly, F1s
a set of key-dependencies i scheme(F), since F=F;UF,UF;,
and each F, 1s a set of key-dependencies m R, []

The following 1s the main theorem we shall prove in this
section

Theorem 4.1: Let F be a set of (nontrivial) fd’s The fol-
lowing statements are equivalent
(a) (Characterization) scheme(F) 1s ndependence-reducible

wrtF

(b) There exists a database scheme that 1s embedding,
mdependent, and m BCNF wrt F

(¢) There exists a database scheme that 15 embedding, ctm,
and m BCNF wrt F

(d) There exists a database scheme that 1s embedding and
independence-reducible wrt F

(¢) There exists a database scheme such that F 1s a set of
key-dependencies m the scheme and the scheme 1s
mdependent wrt F



Before proceeding to the proof of Theorum 4 1, It us
consider more examples

Example 4.2. Consider the fd’s
F={A—-B,B—C,C—AA-DD—EFD—-EG],

as given 1n Example 3 2 Clearly, scheme(F)=R, where R 1s the
database scheme in that example Therefore scheme(F) 1s
mdependence-reducible wrt F, and the database scheme
mduced by is maximum key-equivalent partiion, 1e,
D={D,(ABCD),D(DEFG)}, 1s embedding and independent
wrt F Also, 1t 1s easy to see that D 1s n BCNF wrt F Since
mdependence implies constant-time-maintamability  and
mdependence-reducibility, as to be seen below, D 1s also ctm
and independence-reducible wrt F (]

Example 4.3. Consider fd’s
F={B—A,A->C,C—B,D-B,D—-C]}

We have
scheme(F)=(R,1(AB),R,(AC),R3(BC),R4(BD),Rs(CD)].

By Lemma 3 2, scheme(F) 1s not independence-reducible wrt F
The maximum key-equivalent partinon of scheme(F) 1s
{{R1,R2.R3},{R4.R5}}] and the induced scheme
{D,(ABC),D,(BCD)} 1s not independent wrt F, because
C—-B 1s embedded m both Dy and D, [GY] Therefore,
Theorem 41 imphes that F can not be embedded i any
mdependent (ctm) BCNF scheme nor m any independence-
reducible scheme

Now we consider the cover
F={B—A,A-C,C-B,D-B)

of F That 1s, the relationship on CD 1s now not required to be
tabulated 1n the database In this case, design becomes possi-
ble

scheme(F)={R,(AB),Rx(AC),R4(BC).R4(BD)}

15 ndependence-reducible wrt F° The maximum key-
equvalent partition of scheme(F*) 1s { {Ry,Ry.R1},{R4}} and
the induced scheme D={D;(ABC),Dy(BD)} sausfies the
umqueness condiion wrt {B—AC,A-BC,C—AB, DB},
a cover of F” in form of [S2]) Thus scheme D is embedding,
mdependent (and also ctm and mndependence-reducible), and in
BCNE wrtF [}

We now prove Theorem 4 1 by first mentioning a few
results

Lemma 4.1 (Theorem 322 in [WG]) Let F be a set of
fd’s embedded in R If R 1s independent wrt F, then R 1s ctm
wrt F

By a result in [HC] and Lemma 3 1, we have

Lemma 4.2: If R 1s embedding, ctm, and in BCNF wrt
F, then R 1s independence-reducible wrt F
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The following lemma shows that mdependence-
reducibihity implhies BCNF

Lemma 4.3 Assume that R 1s ndependence-reducible
wrt a set of key-dependencies F Then

(a) any mdependence-reduced scheme of R (wrt F) 1s m
BCNF wrt F, and

() RismBCNFwrtF
Proof Immedate from [CH] (J

The next lemma tells that, given a set of fd’s F,
mdependence-reducibility of scheme(F) 1s necessary for our
design goals

Lemma 4.4. Let F be a set of fd’s Assume that there
exists some database scheme T that 1s embedding, ndependent,
and in BCNF wrt F Then

(a) 1f every relation scheme of T embeds at least one fd in F,
T 1s induced by a key-equivalent partition of scheme(F) wrt F,

(b) scheme(F) 1s independence-reducible wrt F

We are now ready for the

Proof of Theorem 41 We prove the implication cycle
(a) ==> (b) ==> (c) ==> (d) ==> () ==> (a)

(a) ==> (b) This follows from Lemma 4 3(a) and
defimtions

(b) ==> (c) This follows from Lemma 4 1
(¢) ==> (d) Thus follows from Lemma 4 2

(d) ==> (¢) Any mdependence-reduced scheme of the
scheme mentioned in (d) 1s a scheme required by (e)

(e) ==> (a) Let R be the scheme mentioned m (e) Then
R 1s nvially independence-reducible wrt F and therefore 1s mn
BCNF wrt F by Lemma 4 3(b) Then (a) follows from Lemma
44) O

5. DESIGN ALGORITHMS

In this section we assume our mput to be a set U of atin-
butes and a set F of fd’s over U We present a polynomal time
algonthm that tests the condition of Theorem 4 1(a) and, if the
test succeeds, produces a database scheme over U that 1s
embedding F, independent, and in BCNF wrt F By Theorem
41, Lemmas 41 and 42, the same algonthm also designs
embedding ctm BCNF schemes and embedding independence-
reducible schemes In all design cases, the produced database
scheme, 1f there 1s one, contains the fewest possible number of
relaion schemes The 1dea of our algorithm 1s the following
Given a set F of fd's, we tests whether scheme(F) 1s
independence-reducible wrt F If not, by Theorem 41, the
design goal 1s impossible to fulfil, otherwise, the database
scheme nduced by the maximum key-equivalent partition of
scheme(F) wrt F 1s returned If some atmbutes n U are not
mentioned 1n F, a minor modification to thus scheme will give a
database scheme over U that satisfies the same properties



We now present our design algorithm

Algorithm 2

Input A set U of attributes and a set F of fd’s over U

Output  accept or reject, if accept 1s output, a database
scheme 1s also output

Method

(1) Run Algonthm 1 on nput scheme(F) and F,
(2) if reject 1s output from step (1) then output reject
else do begin

3) let D be the database scheme induced by the max-
imum key-equivalent partition returned from the ex-
ecution of Algorithm 1 in step (1),

@) let X be the set of attributes of U that are not men-
tioned n F,
) if X=0 then output accept and D

else output accept and DU{X],

end

Theorem 5.1 let U be a set of attributes and let F be a
set of fd’s over U (1) Algonthm 2 outputs accept if and only 1f
Theorem 4 1(a) holds (2) If Algorithm 2 outputs accept, 1t out-
puts a database scheme over U that1s

(a) embedding, independent, and in BCNF wrt F,
(b) embedding, ctm, and n BCNF wrt F,
(¢) embedding, indepedence-reducible, in BCNF wrt F

Moreover, the returned database scheme contains the fewest
possible number of relation schemes in each case of (a), (b),
and (c)

Proof sketch Part (1) follows from Theorem 4 1 and
exammation of Algorithm 2 In the following proofs we assume
that Algonithm 2 outputs accept and a database scheme R Let
F, D, and X be specified as in Algorithm 2 Observe that D 1s
the scheme mduced by the maximum key-equivalent partition
of scheme(F) wrt F and thus D sausfies (a), (b), and (c)
Clearly, the database scheme R returned mn step (5) also
satisfies (a), (b), and (c)

We now claim that R contains no more relation schemes
than any database scheme over U that 1s (¢) Then the mimmal-
ity of R follows 1n all cases because by Lemma 4 1, being (a)
mmplies being (b), which, by Lemma 4 2, implies being (¢) The
key argument for this claim is the followmng and 1t can be
proved as a generalizaton of Lemma 4 4(a) For any database
scheme T that 1s (c) and contains the fewest possible number of
relation schemes, any mdependence-reduced scheme of T 1s a
scheme mnduced by a key-equivalent partition of scheme(F) wrt
F QO

The time complexity of Algorithm 2 1s analysed as fol-
lows The time of step (1) consists of the time of function KEP
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and the tme on determimng independence Since
ischeme(F)I<IFl,  KEP(scheme(F),F) 1s bounded by
O(IFI2IIFIl) Also by an algonthm m [IIK] or by testng the
uniqueness condition, ndependence can be determined n time
O(IFI2IIFll) Therefore, Algorthm 2 1s bounded by
O(IFI2UIFII+1U1)

As 1llustrated in Example 4 3, the design results will
depend on the choice of covers of functional dependencies 1n
general The following theorem shows, however, that applymng
union and decomposition rules of fd’s to the given fd’s does not
affect the design results The advantage of knowing this 1s that
we can run Algonthm 2 faster by first obtaming a cover of F
with smaller size and shorter description using the umon rule of
fd’s

Theorem 5.2: Let F be a set of fd’s over U and let F* be
any set obtamed from F by applymng union and decomposition
rules to F Then the output from Algorithm 2 with U and F as
mput 15 the same as the output from Algonithm 2 with U and F*
as mput

We can always make the produced database scheme
(R,F) lossless by mncluding the jd *R to the constraints What 1s
really important 1s that thus mclusion of the jd preserves the set
of consistent states and the designed properties Thus 1s stated n
a theorem below

Theorem 5.3: Let R be the database scheme returned by
Algonthm 2 when U and F are mput Then (1)
CONS(R,FU{*R})=CONS(R,F), (2) R 1s a database

scheme over U that 1s
(a) embedding F, independent, and in BCNF wrt FU{*R]},
(b) embedding F, ctm, and in BCNF wrt FU{*R}

6. DESIGN SEPARABLE BCNF SCHEMES.

Now we extend the above methods to design embedding
separable BCNF database schemes The following lemma can
be proved by the notion of extensibility of database schemes
M]

Lemma 6.1: Let F be a set of key-dependencies m R if
a database scheme mnduced by a key-equivalent partition of R
wrt F 1s separable wrt F, then the scheme induced by the max-
mmum key-equivalent partiion of R wrt F 1s separable wrt F

In hight of Lemma 61, we can show the following
results for designing separable BCNF schemes

Theorem 6 1* Let F be a set of fd’s There exists a data-
base scheme that 1s embdding, separable, and in BCNF wrt F if
and only 1f the following conditioins hold

(a) scheme(F) 1s independence-reducible wrt F, and

(b) the database scheme induced by the maximum key-

equivalent partiion of scheme(F) wrt F 1s separable wrt
F

A polynomial time test of separabihty was suggested in
[CM] when fd’s are embedded Thus a polynomial time algo-
nthm for designin embedding separable BCNF schemes can be



obtained by mserting a line between steps (3) and (4) m Algo-
nithm 2 that tests whether the scheme D m step (3) 1s separable
and output reject 1f not Moreover, since separability implies
mdependence, Theorem 5 1 should imply that the scheme R so
produced contains the fewest number of relation schemes
among database schemes that are embeeding, separable, mn
BCNF wrt F By a result n [CM], R 1s also separable wrt
FU{*R} Therefore, without affecung the scparabiity and
BCNF, we can simply add the yd *R to the produced database
scheme (R,F) to enforce losslessness

7. CONCLUSION

We have considered design problems of several very
desirable properties of relational databases These designs were
aimed at both reducing data redundancy/update anomalies and
achieving efficient data manipulations In particular, we have
charactenized the condition under which a given set of func-
tional dependencies can be embedded in an independent BCNF
database scheme, and have presented a polynomal time algo-
nthm that tested this condition and produced a sausfying data-
base scheme whenever possible We have shown that the exact
same algonthm also worked for designing two generalizations
of independent BCNF schemes, that 1s, ctm BCNF schemes and
mdependence-reducible schemes This essentally suggested
that within the context of BCNF scheme design independent
schemes are all we need to study, even we are allowed to con-
sider more general database schemes like ctm schemes and
mdependence-reducible schemes, provided that no constraints
(other than functional dependencies) are imposed Finally, we
have also considered designing a restriction of independent
BCNF schemes, namely, separable BCNF schemes
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