
Glue-Nail: A Deductive Database System

Geoffrey Phipps Marcia A. Derr*

Kenneth A. Ross

Department of Computer Science, Stanford University, Stanford CA 94305 t

{phipps, mad, kar}@cs.stanford.edu

13th March, 1991

Abstract

Glue is a procedural language for deductive databases.

It is designed to complement the purely declarative

NAIL! language, firstly by performing system functions

impossible to write in NAIL!, and secondly by allowing

the procedural specification of algorithms for critical

code sections. The two languages together are sufficient

to write a complete application. Glue was designed to

be as close to NAIL! as possible, hence minimizing the

impedance mismatch problem. In this paper we con-

centrate on Glue. Pseudo-higher order programming is

used in both languages, in the style of HiLog [1]. In par-

ticular Glue-Nail can handle set valued attributes (non-

1NF schemas) in a clean and efficient manner. NAIL!

code is compiled into Glue code, simplifying the sys-

tem design. An experimental implementation has been

written, a more efficient version is under design.

1 Introduction

The Glue language grew out of our experiences of de-

signing and implementing the first NAIL! system [3],

and of using commercial database systems.

From a software engineering point of view, declara-

tive logic based languages offer many advantages over

traditional relational databases, primarily due to their

simplicity and high-level approach (for example, see

the introductions of [4] and [10]). Relational database

systems free the programmer from worrying about the

physical data representation and access methods. De-

ductive database systems do the same for views and

*Also AT&T Bell Laboratories, Murray Hill, NJ 07974
tThis ~Ork ~uPPOrted by AFOSR-88.0266, NSF-87-12791, and

a gift of Mitsubishi Electric.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
@1991 ACM o-89791 -425 -21911000510308 ...$I .50

recursion. One currently unsolved problem with declar-

ative languages is how to integrate them into a full sys-

tem without becoming tangled in the impedance mis-

match problem (described below). This is a problem

which has plagued traditional database systems. Glue-

Nail is designed to solve it.

There is no precise definition of “declarative”, al-

though most people would agree that in a declarative

language, the programmer states what is desired, not

how to do it. Hence declarative languages significantly

reduce the amount of code that a programmer must

write for a given application. In addition, the code that

the programmer must write is more strongly focused on

the actual application, rather than on the technical de-

tails of a particular solution algorithm. This focusing

effect should reduce the number of mismatches between

the application specification and the programmer’s im-

plementation.

Unfortunately there are certain operations which

implicitly have a notion of state, for example In-

put/Output (1/0) and EDBl updates. These opera-

tions have side effects which cannot be easily captured

in logic.2 Any real application language must be able to

perform 1/0 and EDB update operations; they cannot

be ignored. Computations involving side effects cannot

be written declaratively because the programmer must

be able to specify the order in which the side effects

occur. In other words the programmer must give the

intermediate steps in the computation. Procedural lan-

guages are well suited to describing such computations,

declarative languages are not.

We feel that the increase in programming efficiency

provided by a declarative language is very important,

and so we have preserved the declarative nature of

NAIL!. Hence we need another (procedural) language

1The Extensional Data Base (EDB) stores tuples; in a rela-

tional system it would just be called the “database”.
2 one ,~~olution,~ is to ~mrY state variables around in the 10g-

ical rules, but the programmer must ensure that the variables

are strung together in the correct order, which is equivalent to

specifying the order of computation.

308

to complement NAIL!. This language is Glue.

Embedding a query language in a procedural lan-

guage is common in databases, for example, embedding

SQL in C. Unfortunately we then usually run into the

impedance mismatch problem (for an example descrip-

tion, see [4]). This is the name for the collection of

problems that arise when we interface two dissimilar

languages. It has no formal academic definition, but it

is a serious problem in real programming systems. The

problems include differing type systems, set oriented

versus t uple oriented comput at ion, differing data life-

time, wildly differing syntax, and an inability to carry

optimizations across the interface. For example, SQL

uses the relation as the basic data type. C uses sin-

gle valued variables, so C is a tuple oriented language.

When SQL is merged with C the concept of a cursor has

to be introduced so that C can iterate (or recurse) over

all the elements in the SQL relation. SQL has efficient

set oriented algorithms for dealing with relations, but

C does not. An even more serious efficiency problem is

that a two language system has two separate optimizers.

Each individual SQL query is optimized independently,

without any reference to other nearby SQL queries.

To avoid these problems, Glue was designed to re-

semble NAIL! as closely as possible. Both languages

have tuples and relations aa their basic data objects,

“all-solution” computation, similar syntaxes, and iden-

tical type systems. For example, in Glue a subgoal can

be a NAIL! predicate, or an EDB relation or a Glue

procedure. The syntax and behavior is the same in all

three cases. In each case the subgoal returns a set of

tuples.

We expect that an application programmer will write

the declarative, query oriented sections of the applica-

tion in NAIL!, using Glue mostly for the interface and

for EDB modifying code. Sometimes it might be useful

to use Glue for a particularly speed-critical query, for

which an especially efficient special purpose algorithm

is known. Such a practice is analogous to writing speed

critical sections of a C program in assembler; there is

an increase in speed, but at the expense of clarity.

The remainder of the paper is organized as follows.

Section 2 discusses the basic data and predicate types.

Section 3 is a tutorial introduction to the basic Glue

assignment statement. Section 4 describes Glue proce-

dures. In Section 5 we describe Glue-Nail’s set system.

We also discuss higher-order programming in general.

Section 6 briefly describes Glue’s module system. Sec-

tion 8 briefly describes three other deductive database

systems (LDL, CORAL, and Aditi), and compares their

approaches with Glue-Nail. In Section 9 we describe the

current experiment al implementation. Section 10 dis-

cusses some known problems with Glue-Nail, and what

we are planning to do with Glue-Nail.

2 Predicates

There are four kinds of predicates in Glue-Nail:

EDB Relations: Ground tuples (facts) are stored in

relations in the Extensional Data Base (EDB). The

EDB is equivalent to the “database” of a tradi-

tional relational system.

Local Relations: Glue procedures can have local re-

lations; in a sense these are temporary EDB rela-

tions with restricted lexical scope.

NAIL! Rules: These define Intensional Database

(IDB) tuples, the appropriate parts of which are

computed on demand using the current value of

the EDB.

Glue Procedures: Glue procedures also belong to

the IDB, in that they define tuples which are only

computed on demand. Unlike NAIL! predicates,

Glue procedures can also use EDB updates and

input (1/0) in their computations.

Predicates do not have duplicates.3

In Prolog a subgoal P in rule R can unify with either

a fact or a predicate; there is no syntactic or behavioral

difference discernible within rule R. Either P is true im-

mediately or it can be derived, it makes no difference

to rule R. This usage equivalence of EDB and IDB

is also true of languages like NAIL!; it is one of their

great advantages over traditional embedded relational

systems. Glue-Nail also has this advantage; a subgoal in

Glue or NAIL! can reference an EDB relation, a NAIL!

predicate, or a Glue procedure, and the syntax and se-

mant ics are identical in all three cases. The meaning

is always: use the current value. For an EDB rela-

tion this value comes directly from the database. For

a NAIL! predicate it is derived from the current state

of the EDB. For a Glue procedure it is computed from

the current EDB, and perhaps from input.

An attribute of a tuple can be either an atom (a

number or a string), or a compound term. In Glue there

is no difference between atoms and strings. In Prolog-

style languages, the two data types are distinct, and

a programmer is forever converting atoms into strings

and vice versa. Strings are first class data types in Glue,

and the language hw+ built-in operators (concatenation,

length, and substring) to aid in their use. Strings are

central to databases, so they must be well supported.

Relations may contain only completely ground tu-

pies. Hence Glue only needs to use matching when

comparing subgoals against a relation, rather than use

3 Or rather, the system must remove them if the progranune.>s

code would behave differently in the presence of duplicates.

4 Ignoring nonterminating derivations.

309

full unification. This restriction is also very important

for the code optimizer, because it allows the system to

know at compile time when a variable in an assignment

statement becomes bound. Such knowledge is useful in

many optimizations. If binding time analysis could not

be performed at compile time, then it would have to be

done at run time.

3 Assignment Statements

3.1 Basic Elements

The basic element of Glue is the assignment statement.

Here is an example:

r(X, Y)+= s(X, W) & t(f(W, X), Y).

The effect of executing this statement is that the tuple

(X ,y) is to added to relation r if there is a tuple (X, W)

in relation s, and a tuple (f (W, X) ,Y) in relation t. All

such (X, Y) tuples are to added to relation r.

Glue assignment statements are not logical rules,

they are operational directives. They do not define tu-

ples, they comand their creation (or destruction or

modification).

In their basic form Glue assignment statements have

a single head term, and a conjunction 5 of subgoals in

the body. The body is executed and produces a relation

of tuples over the variables in the body. This relation

is then used to modify the head relation. The subgoals

and the head term may have compound terms as their

arguments. Although Glue assignment stat ements may

look a lot like Prolog rules, the control flow is com-

pletely different. The Prolog control strategy is ‘%uple

at a time” with backtracking. Glue’s strategy is “all SG

lutions” with no backtracking. In Prolog, the binding

for a variable is a single term. In Glue, the binding is

a set of terms.

For the purposes of side effects and aggregations, the

order of evaluation of Glue subgoals is fixed and is from

left to right. Each subgoal is completely solved be-

fore the next subgoal is processed. We will refer to

side effecting or aggregating subgoals as jized subgoals.

A fixed subgoal is either an EDB updating subgoal, a

group.by, an aggregator (see Section 3.3), or a call to

a Glue procedure which is known to be fixed. A Glue

procedure is fixed if it contains a fixed subgoal. The

predefine 1/0 procedures are all fixed. A Glue system

is free to reorder the non-fixed subgoals, although pro-

cedures must still have their input arguments bound,

and subgoals cannot be moved past an aggregator.

There are four assignment operators in Glue:

: = Clearing assignment. The head relation is over-

written by the result of the body.

+= Insertion assignment. The tuples from the body

are added to the head relation.

-= Deletion assignment. The tuples from the body are

removed from the head relation.

+= [z] Modify assignment, meant to be used as “up-

date by key.” Analogous to UPDA~E in SQL. The

key is the variables in the vector Z.

For example, suppose the unary relation row con-

tains the integers 1 to N, and that the ternary relation

matrix contains (row, column, value) triples. Then the

code:

matrix(X, X, 1.0) := row(X).

matrix (X, Y, 0.0)+= row(X) & row(Y) & X != Y.

would create an identity matrix of size N in relation

matrix.

3.2 The Supplementary Relation Model

To explain the semantics of assignment statements it

is useful to employ the supplementary relation model.

The supplementary relations of an assignment state-

ment hold the bindings for the variables. If there are

n subgoals in an assignment statement, then there are

n + 1 supplementary relations, named SUpo to Supn.

The ith supplementary relation Supi has as its at-

tributes all the variables occurring in the first i sub-

goals. Note that the zeroth supplementary relation,

Sup., is a relation of arit y zero. It cent ains a single

tuple, the null tuple c. The body of an assignment

statement of the form:

b~(Fl) & & bn(B:).

can be rewritten using supplementary relations as:

supoo := true.

$W?l(:l) := bl(li):

Supz(sz) := supl(sl)& bz(li).

. . .
Supn(sn) := supn_l(sn_l)& bn(B+n).

The attri~utes of Supi are the union+ of the vari-

ables in S’i_ 1 with the variables in 13i, i.e. S’i n

vars(~; _ ~) U vars(l?i). Note that no variables are ever

dropped from one supplementary relation to the next.

However, variables that are not used further on in the

assignment statement can be projected out, unless there

are aggregators later in the assignment statement. For

example, the supplementary relations of the code:

h(X, W):= a(X, A,B) & b(A, C) & c(B, C, W).

5The body may contain control operators other than conjunc-

tion, but we will not discuss them in this paper. are:

310

sup-l(X,A,B):= a(X,A,B).

sup-.2(X,A,B,C):= sup_i(X,A,13) & b(A,C).

sup_3(x,A,B,c,w):= sup_2(x,A,B,G) & c(B,C,W).

These supplementary relations need not actually ex-

istin the implementation ,butthey are very useful when

thinking about the meaning of an assignment state-

ment. They emphasize the fact that the set (relation)

ofbound variables has tuples of bindings as its value.

Execution of an assignment statement is from left to

right, each supplementary relation being (conceptually)

completed before the next is begun. Each subgoal is

completely solved before executing the next subgoal.

Execution of an assignment statement stops whenever

a supplementary relation is empty.

3.3 Aggregation

It often happens that we want to find the ‘(aggregate”

value of a set of tuples, for example the minimum value

of a particular attribute. In the version of Glue de-

scribed so far, the value of a tuple in a supplementary

relation is independent of all the other tuples. This is

not true for statements cent aining aggregate operators.

Here the values of tuples typically do depend on each

other.

The aggregate operators (aggregators) available in

Glue are: uiin, max, mean, sum, product, arbitrary,

std.dev (standard deviation), and count. These op-

erators take a single bound term as an argument, and

return a single value. The operator arbitrary returns

a single arbitrary value from the binding set of the argu-

ment term, the other operators have their usual mean-

ings, A simple example:

max_temp(MaxT) : =

temperature T) & MaxT = max(T) .

The max operator computes the maximum T over all the

bindings it has for T at that point in the statement. For

example, if the value oft emperature were { (10), (35)

}, then max would operate over Supl = { (10), (35) },

MaxT would be bound to 35, and sup2 (T, AIaxT) would

be { (10,35), (35,35) }.

To explain the semantics of the aggregate operators it

is easiest to refer to the supplementary relation model.

If the jth subgoal is an aggregate operator, then it op-

erates over the tuples in the (j– l)th supplementary

relation. If the argument term is T, the aggregator

looks at the T value for each tuple in the supplemen-

tary relation, rather than at each tuple in the relation

formed by projecting the supplementary relation onto

the variables of T (i.e. ~ vars(T)supj – I). choosing the

second method would delete meaningful duplicates. For

example, suppose we were computing the average t em-

perature of a set of readings taken at various locations.

If two temperature readings were identical, then that

temperature reading would only appear only once if we

projected the supplementary relation onto the temper-

ature column. The temperature reading appears twice

(as it should) if we look at each tuple in the supplemen-

tary relation.

Note that the variable resulting from the aggregation

is in the jth supplementary relation. Here we are free to

equate it to other bound variables (perform a “join”), so

as to select particularly interesting t uples. For example,

suppose we want to find the coldest city.6 We want the

names of the city, not the actual minimum temperature.

The following code would provide the desired answer.

coldest_cit y(Name) : =

daily .temp(Name, T) &

Mi.nT = rein(T) & T = MinT.

The third subgoal joins the T and MinT columns, hence

the only tuples left in the supplementary relation after

this subgoal are those with minimal temperatures. For

example:

Supl

Name T

San Francisco 12

Ivfadang 36

Copenhagen -2

Supp

Name T MinT

San Francisco 12 -2

Nfadang 36 -2

Copenhagen -2 -2

sup3

Name T MinT

Copenhagen -2 -2

In actual fact the third subgoal is not really neces-

sary. We could perform the restriction immediately by

combining the second and third subgoals, as in:

coldest_ cities (Name) : =

daily _temp(Name, T) & T = rein(T) .

3.3.1 Group-by

By default, aggregation operators use the entire sup-

plementary set in their computations. There are often

occasions when we want to partition the supplemen-

tary relation’s tuples into a number of groups, and cal-

culate aggregates over each group. For example, the

supplement ary relation might cent ain course-student-

grade triples, and we might want to calculate the aver-

age grade in each course. In Glue we write this as:

6 or cities, in the case of a tie.

311

course_average(C, Average):=

course_student_grade(C, S,G) &

group_by(C) & Average = mean(G).

Theeffect of the second subgoal group.by (C)is topar-

titionthe supplementary set into groups, allthetuples

in a group having the same C value. The groups are

maximal, in that no two groups can have the same C

value. All subsequent aggregate operators then operate

over each ofthese groups independently.

Group.by statements csscade; that is,if agroup-by

subgoal has split the supplementary relations into n

different groups, then the next group-by subgoal will

operate on each of these n groups separately, perhaps

splitting them into smaller groups.

4 Glue Procedures

We will explain the structure of Glue procedures using

the following example.

procedure tc-e (X:Y)

rels connected(X, Y);

connect ed(X, Y):= in(X) k e(X, Y)

repeat

connected(X, Y)+= connected(X, Z) & e(Z, Y).

until unchanged(connected_, _));

return(X:Y):= connected(X,Y).

end

The name ofthis procedure is tc_e. The procedure’s

arity is (1:1), meaning that it produces binary tuples,

given one bound input argument. Whenever tc_e is

used as a subgoal, the first argument must be bound.

Informally, this procedure calculates the nodes Y reach-

able from X via edge relation e. More correctly, given

a set of unary tuples (sole attribute X), the procedure

tc-e extends these tuples to be a set of binary tuples

(X,Y) such that Y is reachable from X via edge relation

e. All Glue procedures declare a subset of their formal

arguments to be bound when the procedure is called.

This binding restriction is the only restriction on the

use of a Glue procedure as a subgoal, otherwise they

are identical in their use to NAIL! predicates or EDB

relations.

The procedure has one local relation, connected, of

arity two. Procedures may be called recursively. Each

invocation of a procedure has its own copies of its lo-

cal relations. Declarations of local relations “hide” the

declarations of other predicates with which they unify.

There is a repeat-until loop, the termination condi-

tion being unch?mged(connect ed(-, -)). The built-
in predicate unchanged(P) is true if predicate P

has not changed since the last time that particular

unchanged statement was executed.7 The predicate

unchanged (P) is always false the first time it is ex-

ecuted.

All procedures have two special relations, in and

return. The relation in holds the input tuples to the

procedure. The relation in has an arity equal to the

bound arity of the procedure, i.e. the arity to the left of

the colon in the procedure definition (in this case it has

an arity of one). The relation return is used to hold the

output tuples for the procedure. Assigning to this re-

lation also has the effect of exiting the procedure. The

return relation has the same arity as the procedure.

An assignment statement that assigns to the return

relation has an implicit in subgoal as its first subgoal.

The arguments of the in subgoal are the same as the

arguments to the left of the colon in the return head,

for example:

return (X:Y) := in(X) % connected (X, Y) .

The implicit in relation has a natural meaning, it re-

stricts the return relation to be only those tuples which

extend the input relation.

When a Glue procedure is used as a subgoal it is

called once on all of the bindings for its input argu-

ments, rather than being called many times, once for

each binding for its input arguments.

5 Sets and Meta-programming

5.1 Sets

Set valued attributes are useful; they give a language

more practical expressiveness, and can lead to more

space efficient relations. Accordingly we wanted Glue

and NAIL! to have sets. In both LDL and CORAL

sets and relations are different things, whereas in log-

ical terms they are both just sets of tuples. An LDL

or CORAL rule with a set-generating operator needs

to be read differently from a standard LDL or CORAL

rule. Rules often produce a set of sets when what one

really wants is the union of the sets. These sets of sets

then have to be explicitly flattened. The only type of

set equality available is set unification, which can be

expensive.

Glue-Nail borrows the second order syntax scheme of

HiLog [1]. In this scheme a set valued attribute contains

the name of a predicate (i.e. the name of a set), rather

than the value (members) of a set. Sets are therefore

just normal predicates. In addition, compound terms

can have arbitrary terms as their functors, rather than

being limited to atoms as in normal logic based lan-

guages. Hence subgoals may have variables for their

7 The ~emmtics of unchanged are under review, and may be

changed slightly.

312

predicate names. In particular we can store the name

of a predicate in a tuple, then extract it using a variable

and use that variable as a subgoal name. For example:

dept_employees (toy, E-set) &

E_set (Emp_name) & .’. .

The second attribute of dept -employees relation is a

set valued attribute, it holds the name of the predicate

which holds the employees in the toy department.

Although the syntax is second order, the semantics

is first order. Predicate variables can only range over

predicate names, not over all predicate extensions (val-

ues). This distinction is important, because the set

of predicate names is always finite, whereas the set

of possible predicates is infinite. The scoping rules of

Glue’s modules and procedures give the compiler a list

of the predicates which a subgoal variable could possi-

bly match, so much of the predicate selection analysis

can be done at compile time,

Here is an example set definition in Glue:

class_inf o(ID, Ins, Room,

tas(ID) , students) :=

class _instructor(ID, Ins) &

class_ room(ID, Room).

tas(ID) (Grad-student) : =

class_ subject(ID, Subject) &

failed_exam(Grad_student, Subject).

students :=

attends(S, ID).

The predicate class.info contains information about

a class: its identifying code, instructor, set of TA’s

(Teaching Assistants), andset of students. Thepred-

icate tas(ID) defines the TA’s for a course, notably

those graduate students who failed the graduate qual-

ifying exam in the course’s subject area. Observe

that the name of this predicate is a compound term.

The predicate students contains the names of

the students who are taking the course Ii). Thepredi-

catesclass.instructor, class-room, class=ubject,

failed_exam, and attends are defined elsewhere. Here

is anexample EDB:

class_instructor(CS99, smith).

class_room(CS99, mjh460a).

class_subject(CS99, databases).

failed_exam(jones, databases).

attends(wilson, CS99).

attends(green, CS99).

It implies the following IDBtuples:

class_info(CS99, smith, mjh460a,

tas(cs99), students(cs99)).

tas(cs99)(jones).

students(cs99)(wilson).

students(cs99)(green).

A typical use of the class_info predicate might be:

class-info(C,I,R,T,S) k T(TA) & S(Student)

There is no automatic need for set unification in

Glue-Nail; iftwo set valued attributes containthesame

predicate name, then the two sets are identical. Hence

much of the time a simple string-string matching suf-

fices to determine equality. Of course, there will be

times when the programmer needs totest whether two

differently named sets have the same members. Here is

asmall procedure which compares two sets S and T.

proc set_eq(S, T:)

rels different(S,T);

different(S,T):= in(S,T) & S(X) & !T(X).

different(S,T)+= in(S,T) & T(X) & !S(X).

return(S,T:):= !different(S,T).

end

5.2 Meta-programming

The HiLog system also allows the writing ofparameter-

ized predicates; for example the following NAIL! code

defines the transitive closure of an arbitrary edge rela-

tion E:

tc(E,X,X).

tc(E,X,Z):- tc(E,X,Y) & E(Y,Z).

Our examplein Section4 could have taken e asafor-

mal argument, thus allowing us to write one universal

transitive closure predicate.

6 Modules

Both logic programming and deductive database lan-

guageshave had problems “programingi nthelarge~

partly due to their lack oflarge scale code organization

structures. Hence, in common with several other lan-

guages, Glue-Nail has a module system. Modules are

purely a compile time concept, they do not have any

run time semantics. Besides offering the usual advan-

tagesof separate compilation, modularity etc; modules

give the Glue compiler valuable information concern-

ing which predicates are visible at any point in a pro-

gram. This information can be used to perform much

of the predicate dereferencing at compile time, work

which would otherwise have to be done at run time.

This is especially true for subgoals which use predicate

variables.

Modules have:

+ a name,

313

● a list of imported EDB predicates,

. a list of imported IDB predicates,

● a list of exported IDB predicates, and

● IDB predicate code, both for Glue procedures and

NAIL! rules.

Notice that a module can contain both Glue proce-

dures and NAIL rules, thus allowing the programmer

to group predicates by function, rather than by type.

7 A Larger Example

Space precludes us from including a large example, but

Figure 1 gives some interface code lifted from a micro-

CAD system, other examples may be found in [5]. We

show a complete module, although this code was origi-

nally (and more sensibly) part of a larger module.

The procedure select allows the user to use the

mouse to select a graphical element. The procedure first

finds all elements within some tolerance of the user’s

mouse point. It then presents the elements to the user

one at a time, in increasing order of increasing dist ante

from the mouse point. The procedure returns the key

of the selected element, if any.

Tha NAIL! rule graphics earth is user to find the

elements within the given tolerance of the mouse point.

8 Comparison to Some Other

Systems

There are several more systems than we mention here,

space prevents us from mentioning them all.

It could be said that Aditi has started with the re-

lational engine (the back end), CORAL with the query

language (the front end), with Glue holding the middle

ground. NAIL! has already covered the front end.

8.1 LDL

LDL ([2], [4]) does not have a separate procedural lan-

guage, it can itself perform 1/0 and EDB updates. As

in Glue, update and 1/0 subgoals are fixed in a rule

and cannot be moved. Rules containing updates are

not allowed to fail. There is a forever meta-predicate.

This predicate iteratively executes some rule body if

that rule body is forever true (i.e. will never fail). The

forever predicate is specifically designed to be used in

rules with updates, so that the update will never fail.

Sets in LDL use extensional semantics, so that a set-

valued attribute has the elements of a set as its value.

Aggregation operators only operate over sets. The set

module example;

export select (: Key) ;

from windows import event (: Type, Data) ;

from graphics import

highlight (Key:) , dehighlight (Key:) ;

edb element (Key, Origin, Pi , P2, DS) ,

tolerance(T) ;

proc select(:Key)

rels

possible(Key, D), try(Key) , confirmed(Key) ;

possible(Key, D) :=

event(mouse, p(X, Y)) &

graphic_ search(p(X,Y) , Key, D) .

repeat

try(Key):=

possible(Key, B-’) &

D= rein(D) &

It= arbitrary (Key) &

--possible(It, D).

confirmed(K) : =

try(K) &

highlight (K) &

write(‘This one?’) &

event (keyboard, KeyBuf f er) &

dehighlight (K) &

KeyBuffer = ‘y’.

until {confirmed(K) I empty (possible(K)) };

return (Et, Ed: Key):= confirmed(Key).

end

graphic_ search(p(X, Y), Key, Dist):-

element(Key, _, p(xmin, Ymin), _,_) &

tolerance(T) &

(X-Xmin)*(X-Xmin) + (Y-Ymin)*(Y-Ymin) < T.

end

Figure 1: Cad Example

314

grouping operator can only be understood if the usual

tuple-based reading of a rule is abandoned. By “tuple-

based,” we mean that a tuple is true for a rule irre-

spective of all the other tuples which may or may not

be true for that rule. With the set-grouping operator,

one must implicitly gather up all the solutions of a rule,

then form them into sets.

Sets (and therefore aggregations) must be stratified.

LDL does not have any meta-programming features.

LDL has a module system. LDL modules have effects

at run time as well as at compile time.

LDL uses stratified negation, although it could prob-

ably be extended to modular stratification.

LDL is compiled into C, and it has a foreign language

interface to C. The LDL implementation has progressed

much further than the implementations of either Glue-

Nail or CORAL.

Our experience of writing LDL programs is that the

procedural parts of the program (updates, and sets to

a lesser extent) tend to dominate the programmer’s

thinking, hence negating the theoretically declarative

nature of the language.

8.2 CORAL

The query language of CORAL [8] is very similar to

that of LDL, however it uses the same two language

approach as Glue-Nail. CORAL has chosen to use the

existing object-oriented language C++ as the procedu-

ral language. The idea here is that the flexible type

system of C++ will allow the easy creation of relation

and tuple types in C++, reducing the impedance mis-

match problem to a tolerable level. Although we have

conducted no formal experiments, we suspect that C++
will present more of an impedance problem than Glue.

C++ is built on C, and so has inherited the strong

philosophies of C; philosophies which are radically dif-

ferent to those present in a logic-based query language.

Using two completely separate languages also makes op-

timization very difficult. Glue-Nail aims to avoid these

problems.

CORAL has a powerful and complicated module sys-

tem. CORAL modules have run time semantics, Glue

modules are purely compile time. Module import lists

can be bound at run time, allowing a form of meta

programming. In Glue-Nail we use the higher-order

system of HiLog, there is no separate system for meta-

programming.

CORAL allows variables in the EDB, partly to al-

low the use of the Magic Templates query compilation

algorithm [7]. Hence a database lookup in CORAL re-

quires unification, not just matching. Searching the

database for a tuple match is the fundamental opera-

tion of any deductive database system. It remains to be

seen whether the extra power provided by magic tem-

plates justifies the increased cost of a database lookup.

CORAL has the same set and aggregation scheme as

LDL.

Like LDL, CORAL uses stratified negation.

CORAL has evaluable 1/0 predicates. They are

given a logical semantics, but the semantics relies on

state variables to ensure that the predicates are exe-

cuted in the correct sequence. These extra variables

carry no useful information, they merely exist to force

a certain procedural reading.

8.3 Aditi

The Aditi project has concentrated on building an in-

dustrial strength back end for a deductive database lan-

guage. Aditi-Prolog is the query language; it is pure

Prolog with extensions for type and mode declarations,

quantification and aggregate operations. At present

Aditi-Prolog can be used interactively, although there

are plans to embed Aditi-Prolog queries in Nu-Prolog

or C.

Glue-Nail and Aditi have so far concentrated on dif-

ferent issues in deductive databases, so comparisons

cannot yet be made.

9 Current Implementation

An experimental implementation has been written.

Only the parser is written in C; the real meat of the

compiler is written in Prolog. The compiler produces

Prolog code for a small virtual machine, also written in

Prolog. The virtual machine uses the Prolog database

to store all relations. The parser is 3600 lines of C, the

rest of the compiler is 4500 lines of Sicstus Prolog. The

system compiles about two statements per Mips-second

in compiled Sicstus Prolog on an IBM PC/RT.

The compiler is not a naive implementation; the aim

has been to do as much as possible at compile time. For

example, using the scope rules, in Glue it is possible at

compile time to determine which predicate classes (i.e.

EDB, IDB, Glue procedure, or reference) a statically

unbound name, such as X, could refer to at run time.

A naive system would wait until X becomes bound at

run time, and then check it against the four possible

cases. The current compiler will have already elimi-

nated those choices which were seen to be impossible

at compile time. Procedure calls are expensive, so it is

very important to identify at compile time those sub-

goals which cannot possibly be procedure calls.

We have used a pipelined (nested join) execution

strategy for the implementation, this being forced on us

8 Not discussed in this paper.

.515

by Prolog’s tuple at a time strategy. The experimental

implementation has revealed a number of bottlenecks

in a pipeline design. The main problem found was that

certain language features force pipeline termination and

the materialization of a supplementary relation. Break-

ing the pipeline and materializing the supplementary

relation incurs some computational overhead, reduces

the join order flexibility, may use extra space, and costs

an extra load and store for each tuple. We can elimi-

nate duplicates at this point, which is also expensive,

but so far has proven to be cost effective. For various

reasons (perhaps related to the particular application

programs that we have run), the Glue assignment state-

ments that we have examined have produced a large

number of duplicates, so removing duplicates early has

always been advantageous. However, in the worst case

pipeline breakage is a loss. Breaks are required when-

ever a Glue procedure is called. We have to project

the supplementary relation onto the input arguments,

and call the Glue procedure once on all the input ar-

guments. Breaks can also be required if we have an

update operation in the body,g or an aggregator.

Two undergraduate students are writing medium

sized test applications in Glue. Their experiences have

helped in the development of the optimizer algorithms,

in identifying problematic areas of the language design,

and in debugging the compiler. More undergraduates

will be writing senior projects in Glue-Nail.

10 Known Problems and Future

Work

Glue is intended to be a complete application language,

but in order to do so it probably needs a foreign lan-

guage interface capability. Many applications use win-

dowing systems, typically with a C interface. It is not

reasonable to ask the programmer to write an entire

windowing system in Glue, so we must provide some

way of interfacing to languages such as C. It would also

be difficult to write a windowing scheme in Glue, be-

cause Glue has such a simple type (and hence 1/0)

system. A window system might require talking to a

device in terms of bitmaps or bytes, and Glue has no

easy way of doing this.

We have written some non-trivial programs in Glue,

but we plan to write several more so as to evaluate

the system. In the process of designing Glue we wrote

several small and one medium sized (400 lines) micro-

CAD program. It would be useful to take a subset of

an existing CAD program (or some other application),

rewrite it in Glue-Nail and then compare the two im-

plementations.

9A language feature which is not discussed in this paper

It became clear when implementing the first ver-

sion of NAIL! that it is a mistake to build a deduc-

tive database system on top of an existing relational

database system. In a traditional relation database

there are few relations, they live for a long time, and

they usually have large numbers of tuples. These

things are not true for deductive databases, where a

query or program execution might produce hundreds

of small, very short lived temporary relations. Such

relations do not need the level of protection that a rela-

tional database provides, and in fact the system wastes

much of its time performing such tasks. All the usual

impedance mismatch problems occur, in particular the

front end and the back end cannot intergrate their opti-

mization strategies. Hence we need our own back end.

Work is in progress on designing an efficient rela-

tional back end for Glue. The kinds of applications we

envision for Glue are single-user on small-t~medium

sized databases. Thus, the back end will ignore concur-

rency issues and will manage relations in main mem-

ory as much as possible, storing EDB relations on disk

between runs. The back end will be tailored to prop-

erties of deductive databases programs. For example,

it will implement a “uniondiff operator ([9]) in order

to support compiled recursive NAIL! queries. Because

Glue programs create and update many relations at

run-time, queries involving those relations are difficult

to optimize at compile-time. However, optimizing ev-

ery statement each time it is executed is would be too

expensive. Furthermore, for some queries, performing

optimization may be more expensive than executing the

query. Therefore, the back end will employ adaptive

optimization techniques that select appropriate stor-

age structures and access methods at run-time based

on changing properties of the database and patterns of

access. For example, an index could be created for a re-

lation after the cumulative cost of selection by scanning

the relation reaches the cost of creating the index.

We are currently building the NAIL! to Glue com-

piler. We may need to tune Glue so as to evaluate

NAIL! queries as efficiently as possible.

11 Conclusions

Much work has been done on declarative query lan-

guages for deductive database systems — on the forms

of such languages, and the algorithms to implement

them. Current systems are addressing the problem of

turning them into full application languages. The Glue-

Nail system has taken the approach of providing two

tightly knit languages, one declarative and one proce-

dural. We feel that this approach is sound.

There are also many questions involved involved in

the design of an efficient relational back end. Some

316

headway has been made in reducing the cost of higher-

order programming by compile time analysis, but much

more work remains to be done.

We claim that Glue has effectively dealt with the

impedance mismatch problem. Here follows a list of

the main problems and Glue-Nail’s solutions to them.

Separate optimization: NAIL! code is compiled into

Glue procedures; the Glue optimizer runs over all

the code.

Tuple oriented versus Set oriented: Both NAIL!

and Glue are relation oriented, so the interface

does not require buffering, back-tracking, or iter-

ating schemes. The programmer does not have to

constantly flip mental models.

Types: Identical systems, 1° both languages allow

function symbols and use HiLog terms.

Syntax: Similar but not identical. The two types of

code can occur in the same module, allowing code

to be grouped according to function, rather than

language,

Data Lifetimes: Explicit. Permanent data is stored

in the EDB, Glue procedures and NAIL! rules both

compute their values from the current state of the

EDB.

A full description of Glue is available in [6].

12 Acknowledgements

The majority of the design of Glue is due to Geoffrey

Phipps. Ken Ross provided the basic design of the as-

signment statement with respect to relations, and its

coupling with the repeat loop. The implementation of

the parser and compiler was done by Geoffrey Phipps.

Marcia Derr is designing and implementing the rela-

tional back end. Compilation strategies for NAIL ! are

being investigated by Ashish Gupta, Geoffrey Phipps

and Ken Ross. David Chen and Kathleen Fisher have

written application programs in Glue. Besides the three

authors, the following people also contributed to discus-

sions concerning Glue’s design: Halcan Jakobsson, In-

derpal Mumick, Yehoshua Sagiv, and Jeffrey Unman.

References

[1] Weidong Chen, Michael Kifer, and David S. JVar-

ren. HiLog: A First-Order Semantics for Higher-

Order Logic Programming Constructs. In Proceed-

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

ings gnd Ini lVorkshop on Database Programming

Languages, 1989.

Danette Chirnenti and Ruben Gamboa. The

SALAD Cookbook: A User/Programmer’s Guide.

Technical Report ACT-ST-346-89, Microelectron-

ics and Computer Technology Corporation, 1989.

Katherine Morris, Jeffrey Unman, and Allen van

Gelder. Design Overview of the NAIL! System. In

Proceedings 3rd Int Conference on Logtc Program-

ming, pages 554–568, New York, 1986. Springer-

Verlag.

Shamim Naqvi and Shalom Tsur. A Logical Lan-

guage for Data and Knowledge Bases. Computer

Science Press, New York, 1989.

Geoffrey Phipps. Glue - A Deductive Database

Programming Language. In Jan Chomicki, editor,

Proceedings of the NA CLP’90 Workshop on De-

ductive Databases. Kansas State University Tech-

nical Report TR-CS-90-14, 1990.

Geoffrey Phipps. The Glue Manual, Version 1.0.

Technical Report STAN-CS-91-1353, Department

of Computer Science, Stanford University, 1990.

Raghu Ramakrishnan. Magic Templates: A Spell-

binding Approach to Logic Programs. In Proceed-

ings Fiflh International Conference on Logic Pro-

gramming, 1988.

Raghu Ramakrishnan, Per Bothner, Divesh Srivas-

tava, and S. Sudarshan. CORAL - A Database

Programming Language. In Jan Chomicki, editor,

Proceedings of the NA CLP’90 Workshop on De-

ductive Databases. Kansas State University Tech-

nical Report TR-CS-90-14, 1990.

Jayen Vaghani, Kotagiri

Ramamohanarao, David B. Kemp, Zolt an Somo-

gyi, and Peter J. Stuckey. The Aditi Deductive

Database System. In Jan Chomicki, editor, Pro-

ceedings of the NACLP’90 }Vorkshop on Deductive

Databases. Kansas State University Technical Re-

port TR-CS-90-14, 1990.

Carlo Zaniolo. Deductive Databases - Theory

Meets Practice. In Proceedings 2nd International

Conference on Extending Database Technology,

1990.

10TO be honest it could be said that neither language rea~y IL~S

a type system.

317

