
Error-Constrained COUNT Query* Evaluation

in Relational Databases

Wen- Chi HO U+, Gultekin 0z90yoglu-, and Erdogan Dogdu-

ABSTRAGT

An error-constrained COUNT query in rela-

tional algebra is of the form “Estimate COUNT(E),

where E is a relational algebra expression, such that

the error in the estimate is at most en. The general

approach is to evaluate an estimator for COUNT(E)

using a large enough sample from input relations

such that the error is less than the specified bound

with a certain confidence level.

We present an approach which utilizes double

sampling for error-constrained COUNT queries. We

compare thk approach with another approach, called

adaptive sampling, in terms of the sample sizes

needed to obtain the desired error bound with a

given confidence level.

We have implemented both approaches (i.e.,

adaptive sampling and double sampling) in a proto-

type, real-time DBMS called CASE-MDB. We

present some of the results of our performance

evaluation experiments.

1. Introduction

In thk paper, we discuss the problem of

estimating a COUNT(E) query having a guaranteed

error bound with a certain confidence level, where E

is an arbitrary relational algebra (RA) expression

with Select, Join and Intersection operations. Such

a~ estimate is useful in query optimization as well as

in real-time databases as it takes significantly less

time to obtain compared with evaluating COUNT(E)

completely. To guarantee the desired error bound

with the given confidence level, we use double sam-

pling (or two-phase sampling) where in the first stage

preliminary information is obtained from a small

pilot sample taken from the input relations. And

then, the sample size for the second stage is deter-

* This research is supported by the National Science
Foundation under Grants IRI-8S11057, IRI-9009897,
and IRI-9008632.

+ Department of Computer Science, Southern Illinois
University at Carbondale, Carbondale, IL 62901.

- Department of Computer Engineering and Science,
Case Western Reserve University, Cleveland, OH
44106.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, tha ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

01991 ACM 0-89791 -425 -2/9110005 /0278... $ 1.50

mined such that the estimator is guaranteed to pro-

duce an estimate with the desired error bound and

the given confidence level.

There is only one other approach in the litera-

ture discussing the error-constrained COUNT(E) esti-

mation problem. In [LiNa 89, 90, LNS 90], random

sample tuples are repetitively taken until the number

of output tuples meets a lower bound (i.e., the stop-

ping condition) for a given relative error and a

confidence level. The lower bound was first derived

in [lXNa 90] and later refined in [LNS 90] by assum-

ing a normal dktribution for the outcomes of the

samples. Thk refinement is based on the Central

Limit Theorem. We will call the associated algo-

rithm the LNS algorithm. Detailed comparisons

between LNS algorithm and our approach are

presented later.

In section 2, we briefly summarize the estima-

tor we use. Section 3 dkcusses two basic sampling

techniques, namely, simple random sampling and sys-

tematic sampling, which can be used as the underly-

ing sampling methods for double sampling. Section 4

describes and compares adaptive sampling and double

sampling. Sectilon 5 improves the double sampling for

the use of simple random sampling without (as

opposed to ‘with’) replacement. Section 6 describes

the experimental results that we have run on our

prototype DBMS, called CASE-MDB. Section 7 con-

cludes.

2. Estimators for COUNT Queries

In [HoOT 88, HOOZ 88], COUNT(E) is com-

puted as ~i(~) COUAW(E; ), where E is an arbitrary

RA expression and E, is an RA expression containing

only Select, Join, Intersection, Project and Difference

(if any+) operations. Different estimators are used

for diierent COUNT(Ei) expressions. However, in

thk paper, we will restrict ourselves to RA expres-

sions with only Select, Join and Intersection opera-

tions.

2.1. Point Space Model

A relation instance r with I r I tuples is

modeled as a finite one-cEmensional space with a set

of I r I points. A Select-Join-Intersection (SJI-)

expression E with n operand relations is modeled as

a finite n-dimensional space, called the point space of

E, such that

+ If difference operators do appear in Ei, they are
always preceded by projection operations.

278



Each relation corresponds to one dimension :

there are totally ~~~~ I ri I points in the point

space, where I ri I is the number of tuples in rela-

tion ri, assuming that the n different operand

relations are numbered from 1 to n. Each point

uniquely maps to a sequence of n-tuples

(~1, . . .. fn), where ti E ri, 1 ~ i ~ n.
(ii) A point in the point space assumes the value 1 if

the set of corresponding n-tuples (t ~, . . .. tn ) pro-

duces an output tuple when substituted into E;

otherwise the point has the value O.

2.2. SJI-Expressions

For a Select-Join-Intersection (SJI-) expression

E, computing COUNT(E) is equivalent to counting

the number of points with the value 1 in the point

space. In [HoOT 88, HOOZ 88],A a consistent and

unbiased estimator, denoted by Y, is proposedafor

estimating the number of 1‘s in the point space. Y is

defined as N . (y / m), where N is the total number

of points in the point space of E, m is the number of

sample points, and y is the number of sample points

with the value 1.

8. Sampling Techniques

In tlds section, we dkcuss two commonly used

sampling techniques, namely, simple random sam-

pling and systematic sampling [HaHM 53, Coch 77,

Sukh 84]. These two sampling techniques (and oth-

ers) have been implemented in two DBMSS, called

CASE-DB and CASE-MDB, as the underlying sam-

pling methods for an error-constrained query process-

ing technique, called double sampling.

Simple random sampling (SRS) is a method of

selecting m elements (sample size) out of N (the

population size) such that each possible sample of m

elements has an equal chance of being selected. If an

element that is already selected is removed from the

population for all subsequent draws, tlds method is

also called simple random sampling without replace-

ment. On the other hand, if the element drawn is

placed back to the population for subsequent draws,

the method is called simple random sampling with

replacement. Simple random sampling has simple

mathematical properties, and serves as a prelude to

other sampling techniques.

Assuming that we have an ordering among the

population elements, systematic sampliig takes a

unit at random from the first k elements and every

k ‘h unit from there on. Systematic sampling (SS) is

often said to follow the every kth rule [Coch 77].

The procedure is simple; however, the performance

depends on the properties of the population [Yama

67]. The technique may greatly improve the esti-
mate, as compared to simple random sampliig, for

those populations in which elements are ordered,

wkdle it may deteriorate the estimate for those popu-

lations with periodic variations.

4. Error-Constrained Query Evaluation -

Three Approaches

In order to compare error-constrained

approaches, we assume that

(1) error constraints (or the precision requirements)

are always specified in relative errors with

confidence levels, e.g., a 10% error with a 95%

confidence level, and

(2) simple random sampling with replacement is the

underlying sampling method in thk section.

However, in Section 5, we will revise the methodol-

ogy to incorporate simple random sampling without

replacement. In section 6, we will also use systematic

sampling for comparison purposes.

4.1. Known Population Characteristics

Consider an ideal situation where the charac-

teristics of the population (i.e., the variance and the

mean) are known. Then, for a given error constraint,

the required sample size can be easily obtained as fol-

lows.

Let N be the population size and m be the

sample size. Let Yi be the value of an individual unit

in i~~ population, Y be the population total (i.e,

~i~l Yi), y be the population mean (i.e., Y_= Y /

N ), and ~ be the sample mean (i.e., j = (~~~l-yi) /

m). To obtain an estimate of the population total Y

(o; the population mean Y) preci~e ~o a given rela-

tive error bound e with a confidence level / (where I

equals 1—a), we have

(1
(Avrn)~:y f)i - Y

Pr IL) se
Y

.pr(p=q )?e
Y

=Pr(lj-Yl 2eY)=a (4.1)

where Pr denotes the probability, m is the required

sample size, and a is the risk of having a higher rela-

tive error than e. If a sample of size m is randomly

taken with replacement then the standard error Ui is

defined as

(4.2)

where, U2, the v~riance of the population, is defined

as ~~~lN(Yi – Y) / N. Let us assume that the sam-

ple size is large enough for the Central Limit

Theorem to apply (i.e., ~ is approximately normally

dktributed), we have

eY = ta.
Y

(4.3)

where f is the abscissa of the standard normal curve

that cuts off an area of a at the tails. Solving for m,

we have
2

tu()m=—

el’

(4.4)

279



Unfortunately, in an error-constrained environ-

ment, information such as variance and mean of the

population is usually not available. In the tables of

Section 4.4, we list the required sample sizes for vari-

ous error constrains computed from equation (4.4)

under the column entitled wReference sizes w. These

columns can be used as an indices to show how

efficient an error-constrained algorithm is. Note that

any error-constrained algorithm without the

knowledge of variance and mean can not have a

better performance (i.e., a smaller sample size) than

in the idea situation.

4.2. Sequential Sampling

Sequential sampling [Wald 45] has been used in

error-constrained environments in social sciences,

industry, etc., when there is no or little knowledge

about the population at hand. It is characterized by

its sequent ial sample gathering (i.e., taking the sam-

ples step by step) and its stopping condition. That

is, sample units are taken one at a time. By checking

the outcome of each sample unit, a decision (i.e., the

stopping criterion) as to whether an additional sam-

ple unit is to be taken is made. The stopping cri-

terion sets a lower bound on the required sample size

for a given error constraint. Deriving stopping con-

ditions is a major concern on the efficiency of a

sequential samplhg method, since, though an “over-

sized sample may produce an estimate satisfying the

required precision requirement, it may also result in

a waste of resources. On the other hand, too small a

sample may not be enough to produce an estimate

satisfying the required precision.

4.2.1. Adaptive Sampling and LNS algorithm

Lipton and Naughton propose A daptiue Sam-

pling [LiNa 89, 90, LNS 90] for error-constrained

queries by taking a sample unit one at a time. Stop-

ping concMions used to determine the required sam-

ple size are also presented. Clearly, adaptive sam-

pling is a variant of sequential sampling.

Lipton and Naughton [LiNa 89, LiNa 90] use

an urn model to lay down the theoretical framework

for estimating the size of a Select-Join(-Intersection)

query by sampling. The output tuples of the SJI-

expression is subdivided into disjoint sets, and each

disjoint set is represented by a ball in the urn model.

Each ball has the size of the dkjoint set as its value.

In an SJI-expression with n operand relations

r,, . . .. rn, a ball corresponds to a tuple t in a desig-

nat ed relation, say r ~, and the ball value corresponds

to the number of output tuples of an SJI-expression

produced by tuple t and relations rz, . . .. and rn.

The algorithm proposed in [LiNa 89, 90, LNS

90] (i.e., the LNS algorithm) repetitively draws and

evaluates sample tuples from a relation untill the

number of output tuples of the SJI-expression meets

certain stopping con~ltions for a given error con-

straint. There are two stopping conditions in [LNS

90], one for the cases in w~lch a ‘reasonable amount m

of balls have non-zero values, and the other for those

cases where few balls have non-zero values, e.g, an

extremely low selectivity for the SJI-expression.

Without loss of generality, here we compare only the
,,

first stopping criterion y > k ~ b 3 (: + 1)with our
ee

results (i.e, assuming a reasonably large selectivity),

where y is the number of output tuples accumulated

so far, k ~ is a value associated with a given

cotidence level, b is the maximum size of the dk-

joint sets, and e is the desired limit of a relative

error. Unfortunately, the b value is usually unk-

nown, wKlch determines the efficiency of LNS algo-

rithm. In such cases, a guess value, which may be

much larger than the maximum size of the dkjoint

sets, has to be used.

When preliminary information about the popu-

lation is available, the performance of LNS algorithm

can be significantly improved. That is, instead of

using a guessA valu~ for b in the stopping co~dition,

one can use V / ~ for b [LiNS 90], where ~ is an

estimate of the the population variance and ~ is an

estimate of the population mean. To obtain such

information, one possible approach is to take a pilot

sample, just as what we do in the first stage of dou-

ble sampling (to be dkcussed in next section).

Hereafter, we will call theeLNS ~lgorithm which uses

preliminary information V / Y ) to determine the

stopping condition the Improved LNS (ILNS) algorithm.

Performance of both LNS and ILNS will be presented

in Section 4.4.

4.8. Double Sampling and Our Approach

In Double sampling, a sample is taken in two

steps [Cox 52, Coch 77]. Cox [Cox 52] has shown

that double sampling has a performance close to that

of the optimal sequential sampling method, if exists.

Another advantage is the reduced overhead, because

a required sample is taken in two steps, rather than

m steps as in a regular sequential sampling method

(including adaptive sampling), where m is the sample

size. In the first step of double sampling, a sample of

size, say, m ~, is taken to obtain a preliminary infor-

mation about the mean and variance of the popula-

tion. Based on this preliminary information, the

required sample size, say, m, that guarantees that

the estimate meets the precision requirement with a
certain confidence level is computed. In the second

step, additional (i. e., m — ml) sample units, are
taken, and the final estimate is produced. Note that

the first step sample is not only used to provide prel-

iminary information, but it also constitutes a part of

the final sample of size m.

An SJI-expression with n operand relations

rl~ . ..! r~ ! is modeled as an n-dimensional point space
in our point space model with points having values O

and 1. The urn model (which is one-dimensional) can

be considered as a simpliEcation of the n-tlmensional

280



point space model by merging n – 1 dimensions, say

r2~ ...7 rn. Here, by merging n – 1 dimensions we

mean that all the points which have the same value

for r ~ coordinate, regardless of their r2, . . .. and rn

coordinate values, are merged into a single point

(which then becomes a ball of the urn model). Each

point after the merge (i.e., a ball) has as its value the

sum of the values of the set of original points in the

original n-dimensional space.

There are some differences worth mentioning

between the point space model and the urn model.

(1) In the point space model, sample tuples can be

drawn from any or all of the relations while, in

the urn model, sample tuples can be drawn only

from a single relation.

(2) The values of points in the point space model can

be obtained simply by evaluating the SJI-

expression using sample tuples as input without

using index files on the join attributes. In the

LNS approach, the value of a ball has to be

obtained using index files. Index files are used to

provide fast access to the entire relations. There-

fore, from a sampling point of view, using index

files of rz, . . . and rn is equivalent to using

entire relations rz, “ “ . and rm as samples, as far

as the sample size (in terms of points) is con-

cerned. When index files are available, point

space model can also take this advantage (by

merging dimensions) just as LNS’S urn model.

In order to compare the efficiency of different

error-constrained algorithms on the same basis.

Hereafter, in the remainder of Section 4, we will

assume that the urn model (a special case of the

point space model) is the underlying model. That is,

sample tuples (i.e., the balls) are taken from a single

relation in both the double sampling and the adap-

tive sampling, and the ball values can be immediately

determined using index files. In Figure 4.1, we

present the error-constrained algorithm using double

sampling, revised to sample only from rl so that it

can be compared meaningfully with the LNS algo-

rithms.

4.3.1. Determining the Sample Size

For double sampling and ILNS algorithm, the

database designer has to determine how to compute

the first step sample size. It can be determined based

on precision requirements, experience or, simply,

using a fixed number. For simplicity, we assume that

the DBMS always chooses 100 tuples from r ~ as the

first step sample size for the comparisons in Section

4.4.

When the error is specified as the coefficient of

uariat ion @, defined as u ~ / Y, the formula for

computing the tot al sample size m [Cox 52] is

Algorithm Estimate- COUNT(E, e, 1)

Input : E: an SJI-expression with n operand

relations;

e : a given relative error;

1: a given confidence level.

output : an estimate of COUNT(E) satisfying the

given error constraint.

Var t : the abscissa of the normal curve that cuts

off an area of 1 – 1 at the tails;

xl : the first step sample size;
y : sample mean of the first step sample;

V2 : sample variance of the first step sample;

m : the overall sample size;

$’: population size;

Y : an estimate of COUNT(E);

Begin

Determine and draw

ml from relation r ~;

Evaluate y, (ball)

sample tuple in m,;
;.~

the first step sample of size

value, l~i~m,, for each

{Compute the overall sample size m}

if m > m ~ then Evaluate ad~ltional m – rn,

sample units as the second step

else m := m,;

% := N ~~~,rnyi / m;

Return (~ (1 – 2(3)2)); { adjust bias)
t

End.

Figure 4.1. COUNT Query Estimation Algorithm

Using Double Sampling

where m is the total sample size, m ~~: the sample

size at the first step, V2, defined as ~,=, ‘ (y; – 1)2 /

ml, is an estimate of the population variance W2 from

the first sample.

We can rewrite equation (4.5) in terms of the

relative error e and the confidence level I using equa-

tion (4.3) as

m = (1)2(1 + 8(1)2+% +:) (4.6)

e~
t mlv ml

Note that m – m ~ is the additional sample units

to be taken at the second step, if m > m,. When

thk is not true, i.e., m ~ ml, it means that the sam-

ple size is already large enough to obtain the required

accuracy, and one can simply stop the process

281



without going on to the second step and return the

estimate from the first step sample result as the final

result. Also one can see from equation (4.5) that, the

larger the fist sample size m ~ is, the smaller the

total sample size m will be, assuming m > m ~.

The estimator Y becomes slightly biased; to

adjust the bias, Cox suggests to take Y(I – 2(e / t)z)

as the final estimate for the size of the query, which

is what the algorithm in Figure 4.1 returns. Please

note the similarity between equations (4.4) and (4.6).

That is, the first term in equation (4.6) is the sample

size needed when the population variance and the

mean are known (i.e., equation (4.4)), and the 2nd,

3rd and 4th terms of equation (4.6) are the adjust-

ment terms (i.e., the extra cost) for not knowing the

variance and mean in an error-constrained environ-

ment. That is, information about the population

may help reduce the sample si%e.

Cox [Cox 52] also provides another formula for

computing the sample size when the population has

only O and 1 values. Clearly, the point space model

meets thk condition. The formula in [Cox 52], after

some modifications as above, is written as

(j’ (1-P,)
3 t2

~. + +——————— (4.7)
PI P1(l-P1) e2plml

where p ~ is the proportion of the sample units having

the value 1 at the first step. This formula gives a

better performance (i.e., a smaller total sample size

m) than equation (4.6) when the population has only

O and 1 values, wKlch is the case in the point space

model. However, equation (4.6) is more general, and

can be applied to both the point space model and the

urn model. The estimator is also slightly Iiased. To

reduce the bias, Cox [Cox 52] suggests to take

N(p – (Z)zp / (1 – p)) as the final estimate, where
t

p is the proportion of the overall sample units with

the value 1. We will use thk formula for our experi-

ments in Section 6.

4.4. Comparison of the Three Approaches

In thk section, we compare the performance of

the double sampling algorithm described in Figure

4.1 (i.e., we only sample from r ~) with LNS and ILNS

algorithms. Since LNS and ILNS algorithms are
developed for only select, join and intersection opera-

tors, here we only consider these operators.

4.4.1. Select Operator

Let us now consider the select operation, i.e.,

the query to be estimated is COUNT (ur (r)), where

r is a relation with 10,000 tuples, and F is a selection

formula, Note that, for a single select operation, the

point space model and the urn model are exactly the

same, i.e., each point or ball has only the value O or

1. We have chosen the selectivities to be 20% (i.e.,

0.2) and 50% (i.e., 0.5) for the comparison that fol-

lows. In Table’ 4.1, we” list the sample sizes (i.e., the

number of input tuples) needed to obtain an estimate

withki an error of 10% (i.e., e = 0.1) with different

confidence levels of 0.8, 0.9, 0.95 and 0.99.

First, let us consider the figures under the

column “Reference sizes n. For a opulation with the
~

selectivity of 0.2 (i.e.. variance u = 0.2”0.8 = 0.16. ,,

), the required sample size is (w)’ “ U = 655

for a 80% confidence level (f = l“~~).
0.04

Now let us consider LNS algorithm, For the

select operation, b is equal to 1 in the stopping condi-
71

tion y > kl . b : (l+l). With the same error con-
ee

straint, on the average, 1430 sample tuples are

required for a population with selectivity 0.2. The

sample size is obtained as follows. For a 0.8

confidence level, k ~ = 2.6 from the table in [LiNa

90b]; for a 10% error, e = 0.1; thus, y has to be

larger than 2.6 . 10 “ 11 = 286. Since the selectivity

is 0.2, the expected sample size is 1/0.2 “ 286 = 1430.

The expected sample sizes are listed under the

column ‘LNS sizes n.

As for ILNS algorithm, as well as for double

sampling, we have assumed that preliminary infor-

mation is obtained from 100 sample tuples: OnA the

average, from the first 100 sample tuples, V / Y =

0.2 - 0.8 / 0.2 = 0.8 (< b =1 in LNS algorithm) for

selectivity 0.2; and thus for a 10% error and a 80%

confidence, the expected sample tuples in ILNS algo-

tithm would be 0.8 “ 1430 = 1144.

As for double sampling, with a sample size of

100 at the first step and selectivity 0.2, the average

sample selectivity at the first step is 0.2, With a

10% (e = 0.1) error and a 80% (~ = ~~~ confi~e:;e

level, the overall sample size m is (~)z (L).,.
2’

(1 + 8(W)2 + 0“16 + ‘) = ~5; + 33~26
1.28 1000.22 100

+13 = 727. Note that the first term in equation

(4.6) is exactly the same as the equation (4.4), which

is the required sample size for a situation where the

variance and the mean of the population are known,

The second, third terms can be considered as the

extra cost for not knowing the population variance

and mean. In the example, the extra cost is around

10% higher than the sample size from equation (4.6),

and is much smaller than those for the LNS and

ILNS algorithms.

4.4.2. Join Operation

Let us consider the join operation

Counter ItXr2) Assume that both r, and ra have

10,000 tuples, For simplicity, we also assume that

there is a single join attribute with a domain of

integers between 1 and 10,000.

282



Selectivity = 0.2

confidence Reference LNS ILNS Our

level sizes sizes sizes sizes

0.8 655 1,430 1,114 727

0.9 1,082 2,090 1,672 1,179

0.95 1,537 2,750 2,200 1,661

0.99 2,652 6,100 4,880 2,843

Selectivity = 0.5

I
confidence Reference

level sizes

0.8 164

0.9 271

0.95 384

0.99 663 I
LNS ILNS Our

sizes sizes sizes

572 286 177

836 418 287

1,100 550 404

2,684 1,324 691

Error e=lO%

Table 4.1. Sample Sizes Required for the Desired

Error Bound For the Select Operation.

We have arbitrarily chosen to use normal dk-

tributions for the values of balls to compare the

efficiency of different algorithms, since normal distri-

butions have been claimed to be close to real life &k-

tributions. For the following comparisons, we

assume that each tuple in rl has a distiict join attri-

bute value between 1 and 10,000; and the join attri-

bute values of rz have a normal dktribution with

mean 5,000, and variances 2502 and 1,0002, respec-

tively. Each tuple t in rl corresponds to a ball in

the urn, and the ball has as its value the number of

tuples in rz that have the same join attribute value

as t; thus values of balls have a normal distribution.

The total number of output tuples of rllxrz is

10,000. That is, the population mean (i.e., the aver-

age value of the balls) Y is 1. Based on 100 indepen-

dently generated normal dktributions for the join

attribute values with variances 2502 and 1,0002, the

variance of the ball values are, on the average, 11.276

and 2.818, respectively; and the average b values are

27.84 and 11.76, respectively. Please note the

Mference between the variance of the join attributes

values (i.e., 2502 and 1,0002) and the variance of the

ball values (i.e., 11.276 and 2.818). Corresponding to

the above two distributions with ball value variances

11.276 and 2.818, there are about 1270 and 3700 balls

(out of 10,000), respectively, having non-zero values,

i.e., we do not deal with the cases where very few

balls have non-zero values. Also, the former popula-

tion has a sharp peak than the latter one.

Consider the normally dktributed ball values
with variance 11.276. For a given relative error of

10% (e = 0.1) and a confidence level 0.8 (t = 1.28),

the expected sample sizes are obtained, for example,

as follows. The ‘Reference sizes 9 is

(;)2 “ (~ ) = 1847 from equation (4.4).

We assume that, in LNS algorithm, the lowest

upper bound for the ball values, i.e., b, is known in
11

the stopping concMion y > k, b ~ — ~ (— + 1).

Note that thk information is usually un~now; and is

not needed in the double sampling algorithm. When b

is unknown, the sample size will be larger than the

figures listed in Table 4.2 depending on how much

larger the guessed b values are. With the same error

constraint and the assumption that the b value is

known, the y value has to be larger than

2.6.27.84.10.11 = 7962. Since Y = 1, the

expected sample size is 1 ‘ 7962 = 7962.

As for ILNS algorithm, the average $(~) / ?

are 11.276 / 1 (compared to b = 27.84 in LNS) and

2.818 / 1 (compared to b = 11.76 in LNS) for the

two normal dktributions, respectively. Therefore,

the expected sample sizes for a 10% error and a 80%

confidence level for the same population is 7962 .

(11.276 / 27.84) = 3225.

As for double sampling, the expected sample
1.28

size, for the same error constraint, is ( —)2 “

11.276
0.1

. (1+8(W)2 + u + + ) = 2183,

12 1.28 100.12 100
w~lch is much smaller than 7962 and 3225 required

for the LNS and ILNS algorithms.

Variance = 11.276

Confidence Reference LNS ILNS

levels sizes sizes sizes

0.8 1,847 7,962 3,325

0.9 3,051 11,637 4,713

0.95 4,332 15,372 6,226

0.99 7,477 37,361 1,5132

Variance = 2.818

Confidence Reference LNS

levels sizes sizes

w
ILNS

sizes

806

1,178

1,550

3,769

Our

sizes

2,183

3,546

4,997

8,559

Our

sizes

507

822

1,157

1,981

Error e=lO%

Table 4.2. Sample Sizes Required for the Desired

Error Bound for the Join Operation.

4.4.3. Intersection Operation

Though the intersection operation is not dis-

cussed in [UINa 90 b], it can be easily modeled by the
urn model or the point space model [HoOT 88, HoO z

88]. To model r ~(l rz in the urn model, each ball

corresponds to a tuple t in a designated relation, say

rl. A ball has a value 1 if the corresponding tuple t

is also in rz; otherwise, the ball has a value O.

283



Clearly, as far as the urn model is concerned, inter-

section is exactly the same as selection. Thus, Table

4.1 can be used as a source of comparison for inter-

section operations producing 2,OOO and 5,000 output

tuples.

5. Improvement Using Simple Random

Sampling Without Replacement

In the dkcussions of Section 4, all the samples

are taken with replacement (i.e., simple random sam-

pling with replacement). From the tables, in many

cases, the sample sizes can be very high, i.e., close to

or even more than the population size. When the

population size is not very large compared to the

sample size, a better choice is to use simple random

sampling without replacement. Simple random sam-

pling without replacement may reduce the sample

variance U: by a factor of N— m / N— 1 (wVlch is
.

called the finite population correction), and thus, may

reduce the required sample size. When N is large,

N–1 = N. Let us consider the equation (4.2). If

simple random sampling without replacement is used,

equation (4.2) should be written as

(5.1)

TO simplify the equation, let S2 be ~~~,N(y; – ~)’ /

N– 1. And then, the equation (4.4) will be

~ = p)’ /( 1 + ;(:)’) (5.2)

ey e

We now consider an example to see how sim-

ple random sampling without replacement can affect

the efficiency. For a 10% error and a 99% confidence

level, the required ‘Reference sizen for simple ran-

dom sampling without replacement is 7,477 /
7,477

(l+— ) = 4278, which is much smaller than
10,000

7,477 from Table 4.2. Similarly, one can use the sim-

ple random sampling without replacement as the

underlying sampling method for double sampling, and

rewrite the equation (4.6) by first replaci?~~the U2 by

(N-m) s’ /N, where s’ is defined as ~i=l ‘(gi-~)’

/ (m – 1), and then solving for m. As for equation
(4.7), whkh is the formula for a population with

values only O and 1 (e.g., the point space model), one

can replace the term (1 —p J (more accurately, the

term PI (l–PI)) by ((N–m) / N) (l–PI), where N is
the population size (i.e., the number of points in the

point space) and m is the overall sample size. To

simplify the equation for the sample size rn, let the

first, second and third terms of equation (4.7) be

z 1, X2 and ZS~ respectively. BY solving the following
quadratic equation, m can be obtained.

(N+z,)m2 - (N’ + 2Nz, + Nz,)m

+ (Z1 + Z2 + Z3)N2=0

where N is the population size, i.e., the number of

points in the point space. Equation (5.3) gives a

tighter bound on the sample size than equation (4.6),

and is implemented in CASE-DB, the prototype

DBMS.

6. Experimental Results

Double sampling and adaptive sampling are

incorporated into two database management systems,

called CASE-DB [HoOT 89] and CASE-MDB [Liu

89], for error-constrained COUNT query estimation

purposes. CASE-MDB is a main memory version of

CASE-DB wKlch is a disk-resident, real-time (or

time-constrained) prototype database management

system. Double sampling implemented in CASE-DB

and CASE-MDB uses simple random sampling

without replacement (SRS) and systematic sampling

(SS) (as well as other sampling techniques such as

cluster sampling) to draw sample tuples. Due to

space limitations, in this paper, we present the exper-

imental results for double sampling on single select,

join and intersection operations in CASE-MDB.

Estimators for projection operations and experimen-

tal results for arbitrary relational algebra expressions

can be found in [Dogd 90].

6.1. Design of Experiments

Instead of using the number of tuples as a

measure of the sample size, we choose to use the samp-

ling fraction ~ as the measure, wKlch is defined to be

the ratio of the number of tuples to the total number

of tuples in a relation. Furthermore, for the double

sampling approach, equal sampling fractions are

drawn from all the input relations, not just from r,.

Recall from Sections 2 and 4.3 that, in the point

space model, sample tuples are drawn from (some or)

all of the operand relations and no index files on join

attributes are needed.

Experiments are performed on relations with

10,000 tuples each, and each data value in the tables

of this section is obtained from 200 experiments.

The experiments have been designed to sbowj for a

given confidence level (here always 95%) and

different relative error limits (e.g., 2%, 5%, 10%,

etc.), the actual errors, confidence level and the

required sample sizes for different sampling tech-

niques. In the tables, the column f% gives the aver-
age sampling fraction from each input relation. The

column e% gives the average of actual errors

observed during 200 runs, wldch is to be compared

with the specified error limit. And the column 1%

gives the ratio of the number of runs in which the

relative errors are found to be less than or equal to

the specified error limit e, which is to be compared

with the specified confidence level 1 (in this section,

always 95%).

6.2. Creation of Input Relations

(5.3)

284



Each input relation has two attributes, both

with integer values. The first attribute contains

unique random numbers to dMerentiate one tuple

from another. The second attribute is the one of

interest in the query, i.e., the attribute involved in

the selection formula or the join attribute. To

observe the effect of the distributions of attribute

values, we have experimented with relations in which

second attributes have either a uniform or a normal

chstribution. To observe the behavior of the double

sampling using Wferent sampling techniques, we have

also run experiments with relations in wKlch tuples

are ordered with respect to the second attribute.

Hereafter, we use ordered and unordered relations to

dMerentiate relations with ordered and unordered

tuples, respectively.

6.3. Experiments on a Single Selection
and Join Operations

6.3.1. Selection Operation

‘I’he experiments are performed on a selection

operator with selectivities 0.2 and 0.5. The sampling

fraction used in the first step is always 2% of the

total relation (i.e., j = 2% or 200 tuples here). As

far as the COUNT estimator is concerned, either a

tuple satisfies the selection formula or it does not; the

actual attribute values are not important. Therefore,

we do not discuss the distributions of attribute values

for the selection operation since they will not affect

the performance [HoOT 88]. For simple random

sampling (SRS), the storage ordering of tuples in a

relation has no effect on the performance because

every tuple has an equal chance to be selected into a

sample, and every combination of m tuples has an

equal chance to be selected as a sample. Thus, by

definition, any sample of size m randomly taken is a

simple random sample, regardless of the storage ord-

ering. However, the storage ordering has a

significant influence on systematic sampling. In sys-

tematic sampling, not every combination of m tuples

can be drawn. When a sample is a good representa-

tive of the whole population, the systematic sampling

gives a precise estimate; otherwise, it gives a bad

estimate. Thk phenomenon is observable in tables

6.1 and 6.2.

The f% columns give the average of sampling

fractions for different relative errors (e.g., 2%, 5%).

For simple random sampling without replacement,

these values are quite close to the expected values

computed from equation (5.3). For example, for a

10% relative error and a given 95% confidence level,

the experimental average size is 14% for selectivity

0.2 from Table 6.1, and the computed value is also

14%. Also, the confidence levels (i.e., 1% columns)
are quite close to the specified confidence level 95%.

This means that double sampling on top of simple

random sampling without replacement behaves

exactly as the formula (5.3) specifies.

E
Given SRS

Error unordered/ordered

f% e% 1%

2% 80 1 97

5% 39 2 95

10% 14 4 96

20% 4 8 97

Adaptive Sampling

unordered/ordered I

f% e% 1% j

100 0

J

100

100 0 100

28 3 100

85 98—

Given I Systematic Sampling

Error unordered ordered

f% e% 1% f% e% 1%

2%

5%

10%
20%

50 2 0

38 4 83

14 4 91

4 8 98

50 2 0

38 49 6

14 10 51

48 100

I I

Selectivity == 0.2

Table 6.1. Select Operation with Selectivity of 0.2.

Given

Error

2%

5%

10%

20%

Given

Error

2%

5%

10%

20%

SRS

unordered/ordered

f% e% 1%

49 1 96

14 2 94

4 4 97

2 5 100

Table 6.2.

Adaptive Sampling

unordered/ordered

f% e% l%_

100 0 100

42 1 100

11 2 100

3 5 100

Systematic Sampling

unordered ordered 1

f% e% 1% f% e% 1%

48 1 94

13 2 98

4 4 97

26 100

49 1 100

13 3 80

41 100

20 100

Selectivity = 0.5;

Select Operation with Selectivity of 0.5.

For systematic sampling (SS), only a limited

number of possible samples can be drawn. For exam-

ple, if the sampling fraction is 10%, there arc only 10

possible samples cafi be dra~~. A typic~l sample may

consist of the k ,k+lo , k -t 20 , , tuples,

where k has only 10 possible valnes, 1~ks 10.

Therefore, the precision of an estimate is determined

by a limited number of underlying samples. We have

chosen to use a cut on the sampling fraction at 50%

when the sampling fraction is larger than 50% for
systematic sampling. When the relation is unor-

dered, tuples are (more or less) randomly distributed.

Therefore, in general, the results for systematic sam-

pling should be similar to simple random sampling.

Of course, whether this similarity occurs or not

285



depends on how the underlying samples are con-

structed. Thk explains why in the case of systematic

sampling there are cases with 1% values much lower

than 95% and others with 1% values quite close to

those observed in simple random sampling.

When the tuples are ordered, it is possible that

at a certain sampling fraction, the underlying sam-

ples have exactly (or almost) the same selectivity as

that of the entiie relation while for some other sam-

pling fractions, the underlying samples are not good

representatives of the population. This explains why

in tables 6.1 and &2 there are cases where the esti-

mates are very precise while in others the estimates

are very bad.

We now compare f% columns for double sam-

pling (using simple random sampling) and adaptive

sampling. Clearly, sample sizes for double sampling is

much smaller than adaptive sampling, for the same

given error constraint. Note that adaptive sampling

has a higher confidence level, w~lch is Elgher than

the required 95% and considered unnecessary. Thk

is due to unnecessarily large samples obtained from

adaptive sampling.

6.3.2. Join Operation

Experiments are performed on a join operation

producing 72,750 output tuples, i.e., selectivity

= 72,750/10,0002 = 0.00073 with operand relations

having 10,000 tuples each. We assume that the first

step sampling fraction is 5% from each relation, and

there are no index files available. With 500 tuples

drawn from each operand relation, one can construct

500 independent sample points, or 5002 correlated

sample points in the point space [HoOT 88, HOOZ

88], in which each point corresponds to one pair of

tuples from dMerent operand relations. Clearly, with

the same effort, the latter tremendously cuts down

the cost of sampling, and thus is adopted in CASE-

DB and CASE-MDB. Note that even though the

sample tuples are drawn randomly, the sample points

are no longer independent. The experimental results

in [HoO z 88] have shown that the introduced correla-

tion does not have a severe effect on the performance

of the estimator. Also note that a 5% sample frac-

tion from each relation corresponds to a s~mple of

0.25% (i.e., 0.052) of the point space.

Consider the point space of a join operation
r ,(X Irz. The number of points with value 1 on the

same row (or the same column) represents the

number of tuples produced by a tuple in, say, r ~ and

the entire relation r2 in the join operation. If the

join attribute values are not uniformly dktributed,

each row/column will have different number of points

with value 1. Since sample points are no longer

independent] y drawn, the dktribut ions of join attri-

bute values, and thus the distributions of points with

value 1, will have an effect on the precision of esti-

mates. This explains why a better performance is

obtained from relations with join attribute values

uniformly distributed than from normally distri-

buted, since the points with value I is more evenly

dktributed over the point space when the join attri-

bute values have a uniform dktribution.

Since the sample points are correlated, larger

variance in estimation may be obtained compared to

a sample with independent points of the same size.

However, the effects are not severe in our empirical

evaluations.

As for systematic sampling, when the relations

are not ordered, the results are close to those with

simple random sampling, as explained in the selection

operation. When the relations are ordered, there are

some estimates that are very high and some that are

very low. Systematic sampling applied to ordered

tuples in join operations tends to give a large vari-

ance in estimates. As we explained earlier, thk

phenomena is due to having limited number of under-

lying samples for systematic sampling.

Given

Error

2%

5%
10’%
20’%

SRS Ss

unordered/Ordered unordered ordered

f% e% 1% f% e% 1% f% e 70 1%

39 1 99 39 1 100 39 16 12

19 1 99 19 1 98 19 5 53

10 3 100 10 2 100 10 3 99

5 6 100 56 100 56 100

Selectivity = 0.00073

Table 6.3. Join Operation with Join Attribute

Having Uniform Distribution.

Given SRS Ss
Error I unordered/ordered I unordered ordered

f% eYo I% f% e% 1% f% e 70 1%

2%

5%

10%
20%

38.7 1 92 38.7 1 99 38.8 29 0

18.5 2 92 18.5 2 %7 18.5 8 5

10.3 4 97 10.3 3 98 10.3 7 91

5.0 8 95 60 6 100 5.0 3 100

Selectivity = 0.00073

Table 6.4. Join Operation with Join Attribute
Having Normal Distribution.

6.3.3. Intersection Operation

Intersection operation can be considered as a
special case of the join operation in which all the

attributes (or the key attributes) are ‘joinm attri-

butes, with probably a low selectivity. In order to

guarantee that we have some points with the value 1,

we take a higher first step sampling fraction (10%)

than in the join operation. Each row or column has

at most one point with value 1, Here! we do not

have to discuss different distributions of njoin m attri-

bute values, since each ‘join! attribute value is

unique in a relation. Systematic sampling has a poor

performance especially when tuples are ordered.

286



Given SRS Ss

Error unordered/ordered unordered ordered

f% e Yo 1% f% e% 1’% I f% e% 1%

2% 100 0 100 50 2 40 39 118 0

6% 76 1 99 60 2 100 19 159 0

10’% 50 3 98 48 4 100 11 108 0

20% 30 6 99 30 7 85 10 188 0

First Stage Sampling Fraction = 10%

Table 6.5. Intersection Operation with 2,OOO Output

Tuples. -

Given

I
SRS

I
Ss

Error unordered/ordered unordered ordered

f% e% 1% f% e% 1% f% e% 1%

2% 91 0 100 50 2 48 39 118 0

6% 57 1 100 50 2 100 18 145 0

10’% 35 3 100 35 16 38 10 183 0

20% 20 5 100 20 9 94 10 183 0

First Stage Sampling Fraction = 10%

Table 6.6. Intersection Operation with 5,OOO Output
tuples.

7. Conclusions

We have presented a double sampling-based

COUNT(E) query estimation approach that guaran-

tees a desired error bound with a 8pecified confidence

level. The estimates is unbiased and consistent, and

performs very well with simple random sampling

without replacement as the underlying sampling plan.

We have also presented the experimental results we

performed on our prototype DBMS called CASE-DB.

We have also implemented and compared

another error- constrained COUNT(E) estimation

approach, the (I)LNS algorithms based on adaptive
sampling. Given an error constraint and a confidence

level, the LNS approaches determine whether or not

an additional sample unit is to be taken by observing

the number of sample output tuples. We have shown

that these approaches perform, at least under the

assumptions we have te8ted, worse than the double

sampling we propose. Also, there are some problems

that remain to be solved with the adaptive sampling

approach, e.g., the bias of the estimator for the size

of the Select-Join(-Intersection) query, w~lch is

denoted by n .slm in [LiNa 89, LiNa 90, LNS 90].

Note that the estimator n s/m is basically the same

as the one, denoted by Y, in [HoOT 88, HoOT 89].

The estimator is unliased when the sample size is

prefixed; however, it may become biased in an error-
constrained environment [COX 52, Coch 77]. The

magnitude of the bias in the estimator, which

depends on how the sample units are taken (e.g.,

checking the number of output tuples and then decid-

ing whether an ad&ltional sample unit is to be taken

- this is actually how the bias is introduced), needs to

be worked out. More importantly, if the magnitude

of the bias is unknown, the confidence levels will also

be inaccurate.

8. References

[Coch 77]

[Cox 52]

[Dogd 90]

[HOOT 88]

[HOOT 89]

[HoOZ 88]

[LiNa 89]

[LiNa 90]

[LNS 90]

[Li” 89]

[Sukh 84]

[Wald 45]

[Yama 67]

w. Cochran, !! Sampling Techniques!’, Third

Ed. John Wiley & Sons, 1977,

D.R. Cox, ‘Estimation by double sampling!!,

Biometrika, 39.

E. Dogdu, ‘Experimental results on Double

samplingfl, Unpublished Manuscript,

CWRU, 1990,

W-C. Hou, G. Ozsoyoglu and B. Taneja,

‘Statistical Estimator for Relational Algebra

Expressions”, ACM PODS, Austin, TX,

1988.

W-C. Hou, G. Ozsoyoglu and B. Taneja,

“Processing Aggregate Relational Queries

with Hard Time Constraints”, ACM SIG-

MOD, Portland, OR, 1989,

W-C. Hou and G. Ozsoyoglu, “Statistical

Estimator for Aggregate Relational Algebra

Expressions”, to appear in ACM TODS, sub-

mitted 1988.

R. Lipton and J. Naughton, “Estimating The

Size of Generalized Transitive Closures”, the

15th VLDB Conference, Amsterdam, The

Netherlands, 1989.

R. Lipton and J. Naughton, “Query Size Esti-

mation by Adaptive Sampling”, ACM

PODS, 1990.

R. Lipton, J. Naughton and D. Schneider,

!Ipractical Selectivity Estimation through

Adaptive Sampling ,‘! ACM SIGMOD, 1990,

Liu, Y-M ., ‘A Main Memory Real-Time Data-

base Management System--Implementation

and Experiments 11, MS Thesis, CWRU, July

1989.

p, Sukhatme, etc.,, “Sampling Theory of Sur-

veys Applicationfl, Third Ed., New Delhi,

India and Iowa State Univ. Press, Ames,

Iowa, 1984.

A. Wald, !Iseq”ential Tests of Statistical

Hypotheses ‘, Ann. Math. Stat. Vol 16, 1945.

T. Yamane, ‘Elementary Sampling Theory !’,

Prentice-Hall, Inc , 1967.

287


