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Abstract

The view-object model provides a formal basis for repre-

senting and manipulating object-based views on relational

databases. In this paper, we present a scheme for handling

update operations on view objects. Because a typical view

object encompasses multiple relations, a view-object update

request must be translated into valid operations on the un-

derlying relational database. Building on an existing ap-

proach to update relational views, we introduce algorithms

to enumerate all valid translations of the various update op-

erations on view objects. The process of choosing a transla-

tor for view-object update occurs at view-object generation

time. Once chosen, the translator can handle any update

request on the view object.

1 Introduction

Many application domains require database techniques for

modeling and managing complex objects [6, 12, 16, 21, 24].

At the same time, a major incentive to exploit database man-

agement systems is the ability to support sharing of data

among applications. In practice, however, these two objec-

tives tend to conflict. Storing information in object format

inhibits sharing, since the objects are configured according

to one application view and hence cannot easily serve a va-

riety of purposes. On the other hand, the relational model

provides information sharing through, for example, the defi-

nition of views, but it lacks the expressive power to represent

complex entities.

We have developed the view-object model as a first step to-

ward reconciling the opposing objectives of object-oriented

access to shared information [4, 22]. By combining the

relational-database concept of view and the programming-

language concept of object, the view-object model supports
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simultaneously abstract complex units of information and

sharing of those units. Base information remains stored in a

fully normalized relational database; this neutral represen-

tation facilitates sharing. View objects are then defined as

uninstantiated, object-based views of arbitrary complexity

onto such a database. Each objectl is in effect a hierarchical

subset of the underlying database schema that specifies a

new class. Definition of multiple view objects with different

configurations offers a view mechanism at a higher level of

abstraction than that of relational views.

In our framework, a query on a view object is composed

dynamically with the object’s structure to obtain a relational

query that can be executed against the database. View-

object instances are assembled from the set of relational

tuples satisfying the request. When update operations are

performed on the instances, those updates have to be made

persistent, and hence must be moved from the object repre-

sentation into the base relations of the database. We need

to translate the updates specified on the view objects into

unique and semantically correct updates on the database—a

problem akin to that of updating through relational views

[10]. We present in this paper a formal method for han-

dling all update operations reliably and predictably on view

objects. Since each view object typically comprises many

underlying relations, this method builds on an existing so-

lution to the problem of updating through views involving

multiple relations [15], and entails choosing a unique update

translator at view-object definition time.

The paper is organized as follows. Section 2 details the

semantic data model at the core of our formalism. Section 3

describes the view-object model for specifying object-based

views in a relational framework. Section 4 presents an ap-

proach for updating through relational views, which we ex-

tend to handle updates through view objects in Section 5.

Section 6 shows sample dialogs used in choosing a translator

for a view object. We conclude in Section 7 with a discussion

of our results.

.
1For brevity, we sometime use object as a short synonym for

view object.
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2 The Structural Model

The structural model of a relational database is a formal

semantic data model constructed from relations that ex-

press entity classes and from relationships, or connections,

among those classes [23]. The structural model defines a

directed-graph representation of a database, where vertices

correspond to relations and edges to connections.

Definition 2.1 A connection is defined by the two rela-

tions RI and R2 being connected, and by the two subsets of

attributes XI of RI and X2 of R2 such that XI and X2 have

identical number of attributes and domains. RI and R2 are

then connected through the ordered pair (XI, X2).

For two connected relations RI and R2, two tuples tlE RI

and tzE R2 are connected if and only if the values of the

connecting attributes in t] and tzmatch.

The structural model defines three types of connections,

according to the semantics of the relationship between the

two relations. Most importantly for our purpose, the connec-

tion types carry precise integrity rules. Let K(R) and NK(R)

be the key and nonkey attributes of relation R respectively.

Definition 2.2 An ownership connection from RI to R2

is specified by the following criteria:

1.

2.

3.

The

Every tupie in R2 must be connected to an owning tuple

in RI

Deletion of an owning tuple in RI requires deletion of

a!! tup!es connected to that tuple in R2

Modification of XI in an owning tuple of RI requires

either propagation of the modification to attributes X2

of all owned tuples in R2 or deletion of those tuples

ownership connection embodies the concept of depen-

dency, where owned tuples are specifically related to a single

owner tuple. As a result, we must have XI = K(R1 ), and

X2 C K(R2 ). The cardinality of the ownership connection is

1: n. Its graphical symbol is ~.

Definition 2.3 A reference connection from RI to R2

is specified by the following criteria:

1.

2.

3.

Every tup[e in RI must either be connected to a refer-

enced tuple in R2 or have null values for XI

Deletion of a tuple in R2 requires either deletion of its

referencing tuples in RI or assignment of valid or null

values to attributes XI of ail the referencing tup!es in

R1

Modification of X2 in a referenced tuple of R2 requires

any one of propagation of the modification to attributes

Xl of all referencing tup!es in R1, assignment of null

values to attributes XI of all referencing tuples in RI,

or deletion of those tuples

The reference connection relates one entity (the referencing

relation) to another more abstract entity (the referenced re-

lation). As a result, we must have Xl C K(RI) or Xl C

NK(R1 ), and X2 = K(R2). The cardinality of the reference

connection is n: 1. Its graphical symbol is +.

Definition 2.4 A subset connection from R1 to R2 is

specified by the folio wing trite ria:

1.

2.

3.

Every tuple in R2 must be connected to one tuple in RI

Deletion of a tuple in RI requires deletion of the con-

nected tuple in R2 (if the latter exists)

Modification of XI in a tuple of RI requires either prop-

agation of the modification to attributes X2 of its con-

nected tuple in R2 or deletion of the R2 tuple

Specialization of a general entity can be implemented by

defining more specific entities connected to the main one

through subset relationships. As a result, we must have

Xl = K(R1 ), and X2 = K(R2). The cardinality of the subset

connection is 1: [0, 1]. Its graphical symbol is +.

Note that m: n relationships are not modeled directly in

the structural model but can be represented using combina-

tions of connections. Finally, if there is a connection C from

relation R, to relation RJ, there is an inverse connection C–]

from relation RJ to relation R,.

3 View Objects

Through the semantics provided by the structural model,

the view-object model enables us to combine the abstrac-

tion concepts of view and object and to support complex

units of information as well as sharing of this information.

From the concept of view, we borrow the idea of virtuality.

A view object is an uninstantiated window onto the under-

lying database; that is, only its definition is saved while base

data remains stored in the relational database. Views, how-

ever, are still in first normal form and thus inadequate for

many applications. From the concept of object, we hence

borrow the notion of hierarchical structures and of set and

record constructors. A view object is a hierarchical subset of

the underlying database’s structural model. During instan-

tiation operations, the object provides the necessary com-

position knowledge to support proper rearrangement of the

unstructured relational data into hierarchical instances that

have atomic-valued, tuple-valued, and set-valued attributes.

We give the full construction in [4] and present only the

salient results of our model here. Let ‘R be the domain of

all relations for a given relational database, let II denote the

domain of all projections n defined on l?, and let Set(II)

designate the domain of all finite sets of projections. In

addition, we specify a function d : II + ‘R such that d(r) is

the relation on which n is defined.
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COURSES ~ DEPARTMENT <--PEOPLE

CURRICULUM

GRADES ~ STUDENT FACULTY STAFF

and GRADES. The structural model for this schema, shown

in Figure 1, indicates that courses and people relate to a

department, that a person is either a student, a faculty, or

a staff, that a curriculum describes the required courses for

a given degree, and that grades are associated with courses

and students.

To define a complex entity that will represent detailed

course information, we first select COURSES as the pivot re-

lation of the new object w. An algorithm subsequently an-

alyzes the topology of the structural model and extracts a

subgraph G that isolates all the relations deemed to be rele-

Figure 1: Structural schema of a university database.

Definition 3.1 A view object w is a nonernpty element oj

Set(II) and is denoted w = {KI, 7rz, . . . . K,}, where the irs are

projections defined on ‘R. The complexity of w is the number

of projections included in the object.

Definition 3.2 For each object w, we further define a pivot

relation RI E 72 such that

e K(w) = IT(m)

bvk= l... i,k#j, d(~k)#Rl

The notion of pivot relation is central to the formalism. Each

object is “anchored” on one base relation, which will consti-

tute its core component. (For convenience, we shall assume

j = 1; that is, d(rl) = R1.)

We extend here the notion of a relational key to an object

key, such that the key of an object w is isomorphic to the key

of its pivot relation—hence the requirement that all the key

attributes be included in the projection rl. As its relational

counterpart, the object key permits unique identification of

any given instance of w. Evidently, since the pivot relation

uniquely defines each object instance, no projection other

than ~1 in the object can be defined on the pivot relation.

However, several objects can be anchored on the same pivot

relation, and multiple copies of a non-pivot relation can be

included in one object.

A view object is a set of projections on base relations,

where one of those is the pivot relation for the object. As

detailed in [4], we further refine this definition. In short,

we apply an information-metric model for specifying which

relations can be included in a particular object given that

object’s pivot relation, and we demonstrate that, using this

model, each object is arranged into a unique tree of projec-

tions rooted at the pivot relation.

An example will best serve to fix ideas. We model a uni-

versity department by eight relations: DEPARTMENT, PEO-

PLE, STUDENT, FACULTY, STAFF, CURRICUT-lJM, COURSES,

vant to the new object according to our information metric

(Figure 2a). G is then converted into a tree T (Figure 2b).

That translation demands that the circuits in G be broken.

For that purpose, we expand all the paths in G emanating

from the pivot relation until either we can go no further

without creating a cycle or we reach a relation that is no

longer relevant. The resulting T specifies all possible config-

urations for view objects anchored on COURSES; that is, once

the pivot relation has been determined, we have the choice

to either include in or exclude from w every other relation

in the tree.

Figure 2(c) shows the final hierarchical structure of our

course-information object, which has a complexity of 5. As

Figure 3 illustrates, an alternate perspective on the same

underlying data repository is easily specified in the form

of a new view object with a different configuration. The

view-object model hence supports sharing of the database-

resident information among diverse applications by provid-

ing multiple object configurations that map to the same un-

derlying data repository.

We have a complete set of structural concepts to represent

object-based views in a relational framework. To round out

the model, we designed a query model that (1) defines the

practical mapping between view objects and databases, (2)

specifies a query language that supports adhoc, declarative

queries on view objects, and (3) creates dynamically view-

object instances from the base data stored in relational for-

mat. Figure 4 shows such a view-object instance for w that

has been dynamically generated following an application’s

request.

A first prototype of our view-object model has been im-

plemented in the PENGUIN system [5].

Note that the query representation can also be used to for-

mulate update requests. However, as we shall now discuss,

the problem associated with handling update operations lies

not in specifying these requests, but rather in translating

them into semantically valid operations on the database.

4 Updating through Relational Views

The problem of updating through relational views has been

addressed by many researchers [3, 9, 11, 20]. Keller’s ap-

250



CURRICULUM ~ COURSES ~ DEPARTMENT ~ PEOPLE

GRADES ~ STU6ENT FACULTY

<

CURRICULUM

DEPARTMENT + PEOPLE

COURSES

FACULTY

GRADES ~ S~DENT ~ PEOPLE

(b)

COURSES
/

x

(Number, Title)

CURRICULUM
(RequiredForDegree)

DEPARTMENT (c)
(Name, Chair, School)

CR4Qm $ STUDENT

(Id#, Name, Major)

Figure 2: Definition of a view object.

This figure illustrates the creation of a view object w anchored on COURSES. (a) A subgraph G, extracted from the schema

of Figure 1, specifies all the relations that can contribute useful information in the context of the pivot relation, as measured

by our metric. (b) A tree is then generated from the subgraph; note that, because of the presence of a circuit in G, there are

now two copies of PEOPLE corresponding to the two paths from COURSES to PEOPLE. (c) The tree is pruned to define the final

configuration of w that includes DEPARTMENT, CURRICULUM, GRADES, and STUDENT in addition to COURSES. The attributes

selected for each node of the tree are shown in parentheses.
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COURSES: CURRICULUM: c None>
< CS356, Computational Geometry>

DEPARTMENT: < CS, Wiederhold, Engineering >

E
GRADES: <A- > STUDENT <3573480, P. Smith, Math>

GRADES: < B > STUDENT <4031628, F. Kelly, CS >

GRADES: <B+ > STUDENT <3221753, J. Klein, CS >

Figure 4: Instantiation of a view object.

An application’s request to retrieve graduate courses with less than 5 students having enrolled produces one instance of w.

Such an instance is created by binding appropriately the set of relational tuples satisfying the query to the view object’s

structure.

COURSES

(Number, Title)

4/’”
FACULTY

(Name, Position,

OfficeHours, Secretary)

\ STUDENT

(Id#, Name, Email, Phone)

Figure 3: A different view of the database.

By defining a new view object w‘, we can provide end

users and applications with a different perspective on

the data. w’ is still anchored on COURSES but includes

additional information only on FACULTY and STUDENT.

Note also that the edge from COURSES to STUDENT is

no longer a structural connection but rather a path

Of tWO COUUectiOIIS (COURSES —GRADES — STU-

DENT) ShCe GRADES k IIOt part Of w’.

preach to updating relational databases through views starts

with a relational view definition. This relational view differs

from a view object in that each tuple is in first normal form

whereas a view-object instance is a fully unnormalized en-

tity.

Conceptually, we specify an enumeration of all possible

valid translations into sequences of database updates of each

view update on the view. This enumeration is based on five

validity criteria that must all be satisfied [13]. These criteria

are syntactically based and they characterize the nature of

the ambiguity in view-update translation. This ambiguity

chiefly results from the existence of selections and projec-

tions in the view. We do not actually instantiate this enu-

meration, we merely use it to define the space of alternatives.

We use semantics of the application to choose among the

alternative translations of view updates. In the case of rela-

tional views, these semantics are obtained by a dialog during

view definition time by asking a series of questions to the

view definer, typically the database administrator [14, 15].

These questions are based on the view definition and on

earlier questions asked in the dialog. The answers to these

questions specify a view-update translator that is used to

translate view updates into database updates. The effort of

answering the series of questions once during view-definition

time is amortized over all the times that updates against the

view are subsequently requested.
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5 Updating through View Objects

The classes of views that are supported by Kcllc]’s ,i lgtJ-

rithms have commonalities with view ol)jccts. Ih,>i(l{ I ht.

fully unnormalized nature of view objects, how<vtr, {)1 h,,

important differences exist between KCIICI’s views a II(I v i{w

objects;2 these differences introduce additional ct]illl)l{,xity

and demand that significant extensions be nia{i(~ to his all-

preach.

We can divide an operation of view-ohjcct IL~xl,i t c i n(o

four logical steps, as follows: (I) Local vali(iat,iou a,gaiust

the view-object definition; (2) propagation wit hiu t hc view

object, (3) translation into a set of database [l~)(lilt c ol)~rii-

tions, and (4) global validation against the struct uriil Inodcl.

Step 1 checks that the update request does not violate

structural restrictions and user authorizations. 3 Stc!p2 en-

forces functional and key dependencies throughout the rela-

tions and the associated tuples that are included in the vicw-

object instance. Step 3 performs the actual t ransformat ion

of the request into database update operations according to

the translator chosen for the view object. Finally, step 4 uses

the structural model to maintain the global consistency of

the data following these database updates. Steps 1, 2, and

3 hence correspond to the process of view-object decompo-

sition; step 4 corresponds to the process of global integrity

maintenance.

We define the following update operations. A complete

insertion adds to the database a fully specified view-object

instance. A complete deletion removes from the database a

fully specified view-object instance. A replacement combines

a complete deletion and a complete insertion; it needs a view-

object instance and its fully specified replacing instance. A

complete update is a complete insertion, a complete deletion,

or a replacement. A complete update requires that the entire

view-object instance be mapped back to the latter’s under-

lying relations. The description of partial update operations

for manipulating only a component of the view object (that

is, a node in the object’s tree of relations) can be found in

[4].

Definition 5.1 The dependency island ‘DU of u view oL-

ject w is the maximal srsbtree of the tree of projections such

that (1) the root of the subtree is the pivot relation, and (2)

all directed paths starting at the pivot relation must contatn

exclusively ownership and subset connections.

Definition 5.2 A referencing peninsula is a relation

R3 E d(w) that is directly connected to any relation Rk OJ

the dependency island by a reference connection; that is, R]

+Rk.

2 See [4] for a discussion of the differences.
3 Because that Step is straightforward, we shall assume tllal

the local validation has been performed successful y prior to t 1)r

processing of the update request.

The rationale behind the dependency island is that all the

I(lii[iotls in Dti belong to the same entity--the entity that

is ccutcrcd on the pivot relation. As a result, any update

ol)crafiou on the view object should have consistent reper-

cussions throughout the components of that object’s depen-

(lcIIcy islimd. Referencing peninsulas, on the other hand,

]Illlst l)c identified because of the constraints of referential

illtcgrity. For our view object w shown in Figure 2(c), the

dcpcndcncy island is the subtree rooted at the pivot rela-

tion ccruwms and including GRADES. The only referencing

pcnirlsu]a corresponds to relation CURRICULUM.

5.1 Translation of complete-deletion re-

quests

Keller’s deletion algorithm deletes the matching database

tuple from the root relation in the query graph. This solution

does not satisfy the semantic constraints of view objects,

however, and needs to be extended.

Let us look at an example. Translating a deletion request

on an instance of w into a deletion of the matching tuple

in its pivot relation COURSES, although appropriate, is not

nearly enough. Clearly, the deletion in COURSES must be

propagated to all the other elements of the dependency is-

land (here, only GRADES). Furthermore, the tuples in the

referencing peninsulas (here, only CURRICULUM) have to be

modified to reflect the deletion of the tuples they were refer-

encing. Accordingly, the algorithm for view-object complete

deletion is as follows.

Algorithm VO-CD: The input is a request for deleting

a view-object instance. The output is the set of database

operations that implement that request.

o

0

0

0

Isolate the dependency island

For each projection in the island, delete all matching

tuples from the underlying relation

Identify the referencing peninsulas

For each peninsula, perform a replacement on the for-

eign key of each matching tuple 4

1H a case where replacements are not allowed on any of the

referencing peninsulas, the transaction cannot be completed

and }Iiis to be rolled back.

This algorithm has precise effects on the database; the

process of global integrity maintenance can therefore be sim-

pli ficd to require only two operations. First, for relations

in t}le dcpcudcncy island that have outgoing ownership or

slllxct conucct ions, the deletions must be propagated (re-

pcat,cfl I,Y, i f necessary) to those owned and subset relations.

Sccou(l, in irfldition to the referencing peninsulas already

Ii ii]l(l Iwl, foreign.key replacements must be performed on any



relation referencing one of the relations involved in a dele-

tion. Note that no further propagation is needed outside of

the referencing peninsulas and the referencing relations.

5.2 Translation of complete-insertion re-

quests

Keller’s algorithm has three distinct cases for each projection

involved in the view. The transaction is rejected only if an

identical tuple already exists in the pivot relation. Here

again, we have to take into account the entire dependency

island, not just the pivot relation.

Inserting a view-object instance involves adding the tuples

of each of the object’s projections to the underlying base re-

lations. Wehavenot included inthealgorithm the fact that

each view-object tuple inserted in the database needs to be

extended with some values for the attributes that have been

projected out. How this operation is handled is dependent

on the application.

Algorithm VO-CI: The input specifies a new view-object

instance to be added to the database. The output is the set

of database operations that implements the request.

o Isolate the dependency island

o For each tuple in each projection of the view object,

there are three possible cases:

CASE 1: An identical tuple exists in the database. If

the current relation belongs to the dependency island,

reject the update; otherwise, do nothing.

CASE 2: The new tuple does not match the key of any

tuple in the underlying database relation, Perform an

insertion.

CASE 3: The new tuple matches the key of an existing

tuple, but some values for nonkey attributes differ. If

the current relation belongs to the dependency island,

reject the update; otherwise, perform a replacement of

the existing tuple with the new view-object tuple. ~

Following the insertion of a new view-object instance, we

need to run a number of checks to preserve the global consis-

tency of the database. For all the relations where tuples have

been inserted by algorithm VO-CI, outside relations along

inverse ownership, inverse subset, and reference connections

must be verified for proper dependencies. If no tuple satis-

fying the suitable dependency is found in any of those re-

lations, one such tuple must be inserted, and the process

must be applied recursively to that new insertion. Finally,

for all the relations where tuples have been replaced, if some

referencing attributes are involved in the replacement, the

referenced relations must be checked for referential integrity.

5.3 Translation of replacement requests

As with replacements in relational views, replacements on

view-object instances are more difficult to handle than are

complete insertions and deletions. The main source of dif-

ficulty is the handling of replacements on keys. In such a

case, all three steps of propagation within the view object,

translation into database operations, and validation against

the structural model have to be executed sequentially.

Before discussing the issue of propagating changes within

the view object and translating the replacement request, we

give the rationale for our approach to handling modifications

of keys.

Handling of replacements on keys. The following rules

apply:

●

o

●

Any replacement operation on any element of the de-

pendency island should be translated literally as a data-

base replacement operation.

If permitted, a replacement on the key of a relation ref-

erenced by any relation of the dependency island should

lead to an insertion operation, rather than to a replace-

ment operation,

Replacements on keys of referencing peninsulas are not

desirable, because they are inherently ambiguous. They

are hence prohibited. For all other types of relations

included in the view object, changes to the key are also

precluded.

Propagation within the view object. From the pre-

vious discussion, we see that the replacement of a key in a

view-object instance will translate into a database replace-

ment only if the underlying relation belongs to the depen-

dency island. Thus, we do not need to be concerned about

propagating modification of a key outside the dependency

island.

Let RI be the pivot relation of w, and DW its dependency

island. We have

● Al = K(R1)

c AJ = K(R7) — K(R, ), where R,, Rj E D~, such

R, is the parent of Rf in the dependency island.

that

On an ownership or subset path in the dependency island,

K(R, ) is the set of key attributes “inherited” from the parent

relation R, to the child relation R ,, and Aj is the comple-

ment of attributes that are necessary to make up a unique

key for R3.

By definition of a view object, in the dependency island,

the complement AJ is the only part of R,’s key that is ac-

cessiblelat the level of Rj, As a result, we cannot modify in

RJ the key of any ancestor of RJ—a desirable property. On

the other hand, a change to A3 has to be propagated down

to Rj’s children in the dependency island.

254



Algorithm for translation of replacement requests.

We assume here that all the ncccssary local propagation op-

erations have already been performed.

Algorithm VO-R: Perform a depth-first search on the

view-object’s tree of relations. We are initially in State R at

the pivot relation.

STATE R (replacing): Compare the old and new view-object

tuples in this projection.

CASE R-1: The projections match exactly. Get the next

view-object tuple in this projection, staying in state R.

If there are no more triples, move to the next relation

down, then go to state I if we are outside the depen-

dency island, and go to state R otherwise.

CASE R-2: The projections differ but the keys match. Per-

form a replacement in this projection. Get the next

view-object tuple in this projection, staying in State R.

If there are no more tuples, move to the next relation

down, then go to state I if we are outside the depen-

dency island, and go to state R otherwise.

CASE R-3: The projections differ and the keys differ. This

case can happen for only those projections that are part

of the dependency island. Perform a replacement in

this projection. Get the next view-object tuple in this

projection, staying in State R. If there are no more

tuples, move to the next relation down, then go to state

I if we are outside the dependency island, and go to

State R otherwise.

STATE I (inserting): Compare the old and new view-object

tuples in this projection. There are four cases:

CASE I-I: The keys match. Go to state R, staying with

this tuple.

CASE I-2: The keys differ; the new tuple does not exist in

the database relation. Insert the new tuple in the data-

base. Get the next view-object tuple in this projection,

staying in state I. If there are no more tuples, move to

the next relation down, and go to state I.

CASE I-3: The keys differ; the new tuple exists in the data-

base. Get the next view-object tuple in this projection,

staying in state 1. If there arc no more tuples, move to

the next relation down, and go to state I.

CASE 1-4: The keys differ; the ncw triple is in the database

but some attributes have con flitting values. Perform

a replacement in this projection. Get the next view-

object tuple in this projection, staying in state I. If

there are no more tu plcs, move to the next relation

down, and go to state 1. +

Note that the treatment of case R-3 may vary. The

old view-object tuple is always deleted, but there are two

alternatives for the new view-object tuple—insertion and

replacement—depending on whether a tuple with the same

key already exists in the database. If we have a deletion

followed by an insertion, we perform a replacement instead,

as it is a simpler operation.

Validation against the structural model. A replace-

ment request may affect many components of the view ob-

ject, and, therefore, its translation can affect many relations

in the database. We have shown, however, that replacement

of a key in a view-object instance translates into replace-

ment of a key in the database for only those relations that

are part of the dependency island. For referencing peninsu-

las, we must replace the foreign key of all tuples that were

refering to any of the modified tuples in the dependency

island. Similarly, if a relation outside of the object is at-

tached to the dependency island by an ownership or subset

connection, the replacement has to be propagated to it. In

all other cases, propagation of the change outside of the is-

land will produce only checking and insertion operations to

satisfy the constraints of the structural model.

6 Choosing a Translator for View-

Object Updates

We obtain the semantics for handling the translation of view-

object updates during the view-object definition process. At

that time, the database administrator (DBA) can address is-

sues of global integrity maintenance over the entire database.

In contrast, end users are typically restricted to specialized

view objects and thus would not have the necessary knowl-

edge about global database constraints to properly translate

update operations on their objects.

The classes of translators from which we can choose are

based on the translation algorithms. The DBA enters in

a dialog with the object-definition facility; the sequence of

answers to the system’s questions defines the desired trans-

lator for the object at hand. Once the DBA has chosen

the translator, users can specify updates through the view

object, which are then translated into database update op-

erations. The algorithms that drive the dialogs for choosing

a translator follow closely the actual translation algorithms

of Section 5 and can be found in [4].

We now show an actual dialog to choose a translator for

the view object w given in Figure 2(c) that will safely trans-

late all update operations on W.4

IS replacement of tuples in arr object inetance

allowed? <YES>

4For brevity, we only present the portion of the dialog dealing

with replacement. The DBA’s inputs are displayed in bold-faced

type. The system’s questions appear in typewriter style.
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The key of a tuple of relation COURSES could be

modified during replacements.

Do you allow this? <YES>

Can rae replace the key of the corresponding

database tuple? <YES>

The aystern might need to delete the old database

tuple, and replace it with an existing tuple with

matching key. Do you allow this? <NO>

Can the relation CURRICULUM be modified during

insertions (or replacements)? <YES>

Can a new tuple be inserted? <YES>

Can an existing tuple be modi.fi.ed? <YES>

Can the relation DEPARTMENT be modified during

insertions (or replacements)? <YES>

Can a new tuple be inserted? <YES>

Can an existing tuple be modified? <YES>

The key of a tuple of relation GRADES could be

modified during replacements.

Do you allow this? <YES>

Can we replace the key of the corresponding

database tuple? <YES>

The system might need to delete the old database

tuple, and replace it with an existing tuple

with match-ing key. Do you allow this? <NO>

Can the relation STUDENT be modified during

insertions (or replacements)? <YES>

Can a new tuple be inserted? <YES>

Can an existing tuple be modified? <YES>

Most answers for the replacement-related questions are

affhmative; this translator will hence permit a wide range

of procedures that the system might need to perform during

replacement operations on w,

For example, assuming that a department named “En-

gineering Economic Systems” does not exist in the data-

base, the request to replace w’s instance (COURSE: CS345

(CURRICULUM: . ..) (DEPARTMENT: Computer Science) (GRA-

DES: . ..) (STUDENT: . ..)) with (COURSE: EES345 (CURRICU-

LUM: . ..) (DEPARTMENT: Engineering Economic Systems)

(GRADES: ...) (STUDENT:...)) will lead, among other things,

to the insertionof atuple( Engineering Economic Systems )

in the DEPARTMENT relation.

On the other hand, ifwedo not wish to grant such privi-

Iege (of adding new departments to the university database)

to the applications that use w, the DBA can specify a dif-

ferent, more restrictive translator. More specifically, she can

answer <NO> to the question

Can the relation DEPARTMENT be modified during

insertions (or replacements)?

As a result of defining this new translator,5 the same re-

5Note that, in this case, the two subsequent questions in the

dialog dealing with DEPARTMENT are irrelevant and thus will not

be asked to the DBA.

placement request will be rejected, since the application is

not allowed to insert tuples in DEPARTMENT.

7 Discussion

In this paper, we address the question of updating relational

databases through object-based views of arbitrary configura-

tion, and redescribe aformal method and its implementa-

tion forhandling all threetypesof update operations reliably

and predictably on a large class of view objects.

Because ofthe similarities between the view-object model

and Keller’s work on updating through relational views, we

have built on his approach to handle update operations on

view objects. More specifically, we have shown that the pro-

cess of view-object update can be divided into four logical

steps—local validation, propagation within the view object,

translation into database updates, and global validation. We

have presented our translation algorithms for complete up-

date operations. We have described the process of choosing a

translator for view-object update at object-generation time,

and we have shown a dialog to select one translator. Such

early conflict resolution obviates the need for tiresome and

repetitive dialogs at execution time. As a result, the consis-

tency of the underlying database is preserved in the face of

update operations on view objects; these operations will be

translated correctly and transparently into relational update

operations.

There are a number of avenues, more or less closely re-

lated to the view-object model, for representing complex

objects. IFO uses a graph-based framework to model struc-

tured objects as well as is-a and functional relationships [2].

Our step of global validation against the structural model is

clearly related to IFO’S study of update propagation stem-

ming from the use of semantic relationships. In both models,

for example, deletion ofan entity propagates downwards ina

specialization hierarchy. Although more expressive than the

structural model, IFO, however, makes no distinction be-

tweenthe reference connection (modeled as a function) and

the ownership connection. The structural model makes this

distinction in order to propagate updates (e.g., deletions are

propagated across an ownership connection) or prohibit an

update (e.g., an entity may not be deleted if it is referenced).

Itis indeed the reference and ownership connections that we

make most use of in determining how to translate object up-

dates into underlying database updates. In addition, IFO

does not support multiple virtual object configurations; as

a result, its update operations do not require translation.

Similarly, the nested-normal-form model imposes a single

configuration on its nested entities [1, 8, 17, 18], so update

constraints are simpler. Finally, two other implementations

of the view-object concept have appeared in the literature

[7, 19]; yet, neither handles the update problem satisfacto-

rily.
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