
Eliezer Levy

An Optimistic Commit

Distributed Transaction

Henry F. I<orth

Protocol for

Management*

Abraham Silberschat z

Department of Computer Sciences

University of Texas at Austin

Austin, TX 78712 USA

Abstract. A major disadvantage of the two-phase commit might be severe. At each site, and for each transaction

(2 PC) protocol is the potential unbounded delay that trans-

actions may have to endure if certain failures occur. By

using compensating transactions, we obtain a revised 2PC

protocol that overcomes these difficulties. In the revised

protocol, locks are released as soou as a site votes to com-

mit a transaction, thereby solving the indefinite blocking

problem of 2PC. If finally the transaction is to be aborted,

then its effects are undone semantically using a compen-

sating transaction. Therefore, Semantic, rather than stan-

dard, atomicity is guaranteed. Relaxing standard atomicity

interacts in a subtle way with correctness and concurrency

control issues. Accordingly, a correctness criterion is pro-

posed that is most appropriate when atomicity is given up

for semantic atomicity. The correctness criterion reduces to

serializability when no global transactions are aborted, and

excludes unacceptable executions when global transactions

do fail. We devise a family of practical protocols that en-

sure this correctness notion. These protocols restrict only

global transactions, and do not incur extra messages other

than the standard 2PC messages.

1 Introduction

The most common protocol for ensuring atomicity of

multi-site transactions in a distributed environment is

the two-phase commit (2 PC) protocol [Gra78]. Typ-

ically, the 2PC protocol is combined with the strict

two-phase locking protocol [B HG87], as the means for

ensuring the atomicity and the serializability of trans-

actions in a distributed database (e.g., [ML086]). The

implications of this combination on the length of time a

transaction may be holding locks on various data items

*This research was partially sponsored by NSF Grants IRI-

8805215 and IRI-9003341, and grants from Unisys Roseville Op-

erations and the IBM Corporation.

Permission to copy without fee sII or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

01991 ACM 0-89791 -425 -2/91 /0005 /0088 . ..$1 .50

(at least all exclusive) locks must be held until either

a commit or an abort message is received from the co-

ordinator of the 2PC protocol. Since the 2PC protocol

is a blocking protocol [Ske82], the length of time these

locks are held can be unbounded. Moreover, even if no

failures occur, since the protocol involves three rounds

of messages (request for vote, vote and decision) the

delay can be intolerable.

The impact of indefinite blocking and long-duration

delays is exacerbated in multidatabase systems — a

specific type of distributed database system where

several heterogeneous and autonomous database man-

agement systems (DBMSS) are integrated to enable

the processing of multi-site, or global, transactions

[hdb90]. Global transactions are processed by decom-

posing them into local subtransactions that are exe-

cuted at the different sites. The integrated DBMSS may

belong to distinct, and possibly competing business or-

ganizations (e. g., competing computerized reservation

agencies). Therefore, the preservation of local auton-

omy of the individual DBMSS is crucial. It is undesir-

able, for example, to use a protocol where a site belong-

ing to a competing organization can harmfully or mis-

takenly block the local resources; a phenomenon that

can occur under the 2PC protocol. Additionally, one of

the flavors of local autonomy is defined as the capabil-

ity of a site to abort any local (sub) transaction at any

time before the (sub) transaction terminates [BST90].

Employing the 2PC protocol, a site enters a prepared

state if it votes to commit a transaction Ti. Once in

this state, a site becomes a subordinate of the external

coordinator, and it can no longer unilaterally determine

the fate of the local subtransaction of Ti.

It is impossible to have a non-blocking commit pro-

tocol that is immune to both site and link failures

[BHG87]. In this paper, we introduce an alternative to

the standard 2PC protocol that alleviates the virtually

inevitable blocking and lengthy delays problems yet

preserves autonomy. The key concept behind this pro-

tocol is the use of compensating transactions [KLS90a].

88

The new protocol is applicable whenever the problem

of atomicity of a multi-site transaction surfaces. It

can benefit distributed database systems in general and

multidatabase systems in particular.

The protocol guarantees semantic atomicity [GM83]

rather than the standard all-or-nothing atomicity. A

salient contribution of this paper is the examination of

the consequences of the protocol and this relaxed atom-

icity notion in terms of serializability, and correctness

in general. The importance of our study of correct-

ness issues is underlined by the growing popularity of

advanced transaction models that are based on seman-

tic atomicity [GM83, GMS87, AGMS87, KR88, Reu89,

Vei89, GMGK+90], and by the lack of specific correct-

ness criteria in this domain.

The remainder of the paper is organized as follows.

Section 2 provides an operational overview of the ba-

sic protocol. Several techniques and assumptions that

we use are clarified in Section 3. In Section 4, we dis-

cuss the need for a new correctness criterion. Section 5

presents the correctness criterion and a sufficient con-

dition for ensuring it. In Section 6, based on this con-

dition, another component of the protocol is presented,

whose task is to ensure the correctness criterion.

2 The 02PC Protocol

In the standard 2PC protocol, a multi-site transaction

is associated with a coordinator that initiates the pro-

tocol by sending a VOTE-REQ message (also referred

to as PREPARE message) to all participating sites.

Upon receipt of this message, a participating site votes

(by sending a VOTE message back to the coordina-

tor) either to commit the particular transaction or to

abort it. Based on these votes, the coordinator decides

whether to commit or abort the transaction. Only if all

the votes are to commit then the transaction is to be

committed. Following this, the coordinator transmits

its DECISION message to the participating sites.

As was mentioned earlier, global serializability is ob-

tained by combining the 2PC protocol with a 2PL disci-

pline. This combined protocol is referred to in [BHG87]

as distributed 2PL and it works as follows. It is assumed

that the coordinator of T; initiates the 2PC protocol

only after it has received acknowledgements for all of

Ti’s operations. Therefore, when the coordinator initi-

ates the 2PC protocol by sending the VOTE-REQ mes-

sages, Ti has surely obtained all the locks it will ever

need. Locks are released only after the VOTE-REQ

message has been received. Consequently, it is guaran-

teed that a transaction releases a lock at any site only

after it has finished acquiring locks at all sites. Since

a two-phased locking discipline is enforced, the dis-

tributed 2PL protocol guarantees serializability glob-

ally. For the well known reasons of avoiding cascading

aborts, and use of state-based recovery, the exclusive

(i.e., write) locks are released only after the decision

message is received locally. Thus, a strict version of

2PL is used. It is possible to release the shared (i.e.,

read) locks as soon as the VOTE-REQ message is re-

ceived.

Holding the locks until a DECISION message is re-

ceived, which is the cause of blocking, is necessary only

if the transaction at hand has to be aborted. Our re-

vised protocol is based on the optimistic assumption

that in most cases the protocol terminates successfully

(i.e., the transaction commits) and therefore the locks

can be released earlier. This can dramatically reduce

waiting due to data contention, thereby improving the

performance of the system. Such an assumption is valid

in most practical distributed environments. Further-

more, since the commit protocol is initiated only when

the transaction at hand has already obtained all its

locks and completed all its operations, its failure is very

unlikely. The validity of the optimistic assumption is

orthogonal to the protocol correctness. However, if the

assumption is unfounded, the overhead incurred by the

protocol is likely to outweight its benefits.

The optimistic 2PC (02PC) protocol is a slightly

modified version of the distributed 2PL protocol. The

same message exchange is carried out as in the standard

protocol. If a site votes to abort Ti, then as in the

standard protocol, an abort vote is sent back to the

coordinator, and the locks held by the transaction are

released as soon as the transaction is locally undone

(rolled-back). However, if a site votes to commit ~, all

Iocks held by Ti are released at once, without waiting

for the coordinator’s final commit or abort message. In

this case, we say that Ti is locally-committed at that

particular site. Observe that a global 2PL discipline is

preserved, even under the early lock release provision

of the 02PC protocol.

The uncoordinated local commitment resulting in

the early release of locks is the crux of the protocol.

On the one hand, the early release of locks solves the

problems of blocking and the local commitment keeps

the sites autonomous. On the other hand, the uncoor-

dinated commitment of updates may violate the stan-

dard all-or-nothing atomicity guarantee of a transac-

tion, if at least one of the sites votes to abort it. A

situation may arise where, at some sites T~ is locally

committed, whereas at some other sites T~ is aborted.

In this case, the effects of Ti must be undone at sites

where it is locally-committed. Undoing the effects of a

locally-committed Ti is problematic, if not impossible,

using standard recovery techniques.

The key to an adequate solution is the notion of com-

pensating transactions. Compensating transactions are

intended to handle situations where it is required to

undo a transaction whose updates have been read

by other transactions, without resorting to cascading

89

aborts. The concept of compensation is formally de-

fined in [KLS90a] and the essential details are reviewed

in Section 3.2.

We propose to use compensating transactions, in

conjunction with the 02PC protocol, as the means for

ensuring transaction atomicity despite of the uncoordi-

nated commitment of updates at different sites. After

voting to commit Ti, a site still carries on with the sec-

ond phase of the regular 2PC protocol (despite having

released the locks held by Ti). If the site receives a de-

cision message from the coordinator to abort Ti, then

it invokes the corresponding compensating transaction.

Since it is quite likely that the decision would be to

commit Ti, the gain by the early release of locks should

outweigh the overhead associated with those cases re-

quiring compensation for Ti.

Instead of the familiar all-or-nothing semantics, the

protocol ensures a similar, though weaker, atomicity

guarantee referred to as semantic atomicity. Seman-

tic atomicity states that when a multi-site transaction

is decomposed into a set of single-site subtransactions,

either all subtransactions are locally-committed (and

then the entire transaction is committed), or all locally-

committed subtransactions are compensated-for and

all other subtransactions are rolled-back in the stan-

dard manner.

We note that not all transactions are compensatable.

Transactions involving real actions [Gra81] (e.g., firing

a missile or dispensing cash) may not be compensat-

able. The adjustment for transactions involving non-

compensatable actions is simply to retain the locks and

delay real actions until a commit message is received

(as in distributed 2PL) in all sites performing these

actions. All other sites running subtransactions on be-

half the multi-site transaction can still benefit from the

early lock release.

3 Transaction Structure

In order to proceed we must first introduce some

assumptions and terminology concerning transaction

structure that are used in our exposition.

3.1 Transaction Management

We distinguish between local and global transactions. A

local transaction accesses data at a single site, whereas

a global transaction accesses data located at two or

more sites. A global transaction Ti that requires ac-

cess to data located at sites S1, S’2, sk is submitted

for execution as a collection of local subtransactions

Til, Ti2j ..., Tik, where ~j is executed at site Sj. We

make a distinction between a local subtransaction that

is executed on behalf of a global transaction, and an

independent local transaction, Local transactions (i. e.,

non-subtransactions) follow the strict 2PL protocol.

This abstraction of global transactions as a set of lo-

cal subtransactions is most appropriate for understand-

ing our protocol and its formal properties. However,

several comments concerning some practical issues are

in order.

The decomposition of a global transaction into lo-

cal subtransactions conforms to one of two models. In

the first model, all the requests of a global transaction

to a particular site constitute the local subtransaction

at that site. Each subtransaction can be viewed as

an arbitrary collection of reads and writes against the

local data. That is, no predefine semantics is associ-

ated with a subtransaction. This model is elaborated

in [CP87] and is the standard model in distributed

databases. Henceforth, this model is referred to as the

generic model. The generic model is also considered as

the general framework in the multidatabases context

[BS88, BST90].

An alternative model is one in which each global

transaction is decomposed into a possibly structured

collection of local subtransactions, each of which per-

forms a semantically coherent task. The subtransac-

tions are selected from a well-defined repertoire of op-

erations (i.e., subtransactions) forming an interface at

each site in the distributed system. This model is re-

ferred to as the restricted model, hereafter, and is suit-

able for a federated distributed database environments

[fdb87]. The distinction between the two models be-

comes relevant once compensating transactions are in-

troduced. Our work applies to both models; however,

fitting the ideas in each framework is bound to be dif-

ferent, and probably easier in the restricted model as

we explain later,

3.2 Compensating Transactions

The compensating transaction that is specific to the

forward transaction Ti is denoted by CTi. CTi undoes

T~’s effects semantically without causing the cascading

aborts of transactions that have read data updated by

Ti. The intention is to leave the effects of transac-

tions that read from Ti intact, yet preserve database

consistency. Therefore, compensation for Tj does not

guarantee the physical undoing of all the direct and

indirect effects of Ti. The state of the database af-

ter compensation took place may not be identical to

the state that would have been reached, had Ti never

taken place. Compensation does guarantee, however,

that a consistent state is established based on seman-

tic information. In [KLS90a] we formally characterize

the outcome of compensation based on the properties

of Ti and on properties of transactions that have read

from Ti. By the nature of compensation, CTi is always

serialized to come after the corresponding Ti (though

90

not necessarily immediately after).

It is guaranteed that once compensation is initiated,

it completes successfully. This stringent requirement is

referred to as persistence of compensation and is rec-

ognized in [GMS87, GM83, Vei89, GMGK+90, Reu89,

KLS90a]. The rationale behind the persistence of com-

pensation requirement is the need to preserve (seman-

tic) atomicity. Initiating a compensating transaction

parallels a decision to abort the transaction in the tra-

ditional setting — definitely a non-reversible decision.

Observe that persistence of compensation implies that

there is no need to use a commit protocol to ensure

the atomicity of a compensation transaction in a dis-

tributed environment.

In the context of the 02PC protocol, compensa-

tion is employed as follows. If Ti is a global trans-

action, CTi is also a global transaction that consists of

C~1JCTj29 ...9 CT~k of ~oca~ compensating subtransac-

tions, one for each site where Ti was executed. Each

compensating subtransaction is submitted for execu-

tion at a site just like any other local transaction, and

hence it is subject to the local concurrency control.

Consider a global transaction Ti that is locally-

committed at some sites, whereas other sites have voted

to abort it. At a site Sj where Ti is locally-committed,

CTij is a special compensation action, since Ti’s up-

dates have been exposed. At a site sk which voted to

abort Ti, the local subtransaction Tik is automatically

rolled-back using standard recovery techniques (e. g.,

undo from log). We model undoing a transaction us-

ing the standard roll-back recovery, as a special case of

a compensating transaction where there are no trans-

actions that have read from the undone transaction

[KLS90a]. Thus, a global CT is a blend of standard

roll-backs at sites having voted to abort Ti, and actual

compensating subtransactions at sites having voted to

commit Ti.

It should be recognized that in a system conforming

to the restricted model it is easier to apply compen-

sation techniques than in the generic model. In the

restricted model, since each subtransaction performs

a semantically coherent task, supplying a counter-task

can be done in advance and should not be that hard

(e.g., a DELETE as compensation for an INSERT sub-

transaction).

With respect to locking, compensating subtransac-

tions are treated as local transactions rather than as

subtransactions of global transactions. That is, they

also follow strict 2PL locally. The reasons for this

important decision are elaborated in the next section.

The key point to note is that at each site, the local

execution over local transactions, subtransactions, and

compensating subtransactions is guaranteed to be se-

rializable.

4 Correctness Issues

The local uncoordinated commitment and the use of

compensating transactions in the 02PC protocol pose

some interesting questions regarding concurrency con-

trol and correctness issues. In contrast to the tradi-

tional serializability theory which deals only with com-

mitted projections of histories [B HG87], the theoretic

and modeling tools (e.g., serialization graphs) used

here, must account for failed transactions and their

corresponding compensating transactions. One might

be tempted to impose serializability over all trans-

actions, including compensated-for and compensating

transactions, as the correctness criterion. Compensat-

ing transactions, however, possess several special prop-

erties that render this extended serializability notion

both unattainable and inappropriate:

●

●

●

Persistence of compensation means that a com-

pensating transaction has a simplified atomicity

notion — it can only commit. Consequently, there

is no need to use a commit protocol for compen-

sating transactions in a distributed environment.

Avoiding the use of 2PC to terminate global com-

pensating transactions is critical, since there is no

chance to couple locking decisions with the commit

protocol messages, as it is done in the distributed

2PL and 02PC protocols.

A second problem regarding the scheduling of com-

pensating transactions stems from the fact that in

a site sk that votes to abort a transaction Ti, the

standard roll-back of Tik is considered as a com-

pensating subtransaction; that is, as CTik. Such

roll-backs are automatic and uncoordinated with

the initiation and termination of other compensat-

ing subtransactions of the same transaction. This

is especially true in a multidatabase environment,

where the preservation of local autonomy dictates

that no constraint can be placed on the automatic

local roll-back. Therefore, serializability of histo-

ries with compensating transaction may be again

jeopardized since the global scheduling of compen-

sating transactions is not regulated and coordi-

nated. For example, rolling-back a subtransaction

Tij as part of CTi and releasing locks once the roll-

back is complete, violates the 2PL rule for CTi as

a whole.

We observe that at least in the restricted model

the executions of the compensating subtransac-

tions are semantically independent. That is, there

should be no value dependencies [DI189] among the

different subtransactions. A compensating trans-

action in the restricted model can be viewed as

a set of semantically unrelated subtransactions.

This argument and the previous points give the

91

impression that the execution of a compensating

subtransactions is somewhat independent from the

execution of its sibling compensating subtransac-

tions. This observation is underlined once it is

realized that compensation, as a recovery activ-

ity, is an afier the fact activity. That is, the for-

ward transaction has executed, and compensation

is carried out based on its effects. In support of

our observation, we cite [Vei89, map89] where a

large-scale, commercial application that is predi-

cated on this independence of compensating sub-

transactions, is described.

The reasons given above suggest that compensating

subtransactions should release their locks once they

complete their local processing, regardless of the ex-

ecution of their sibling compensating subtransactions.

As a result, serializability maybe lost. That is, a global

serialization graph may contain cycles with compensat-

ing transactions. The independence of the subtransac-

tions of a compensating transaction implies that it need

not see a globally consistent state as a global transac-

tion. Therefore, cycles whose only global transactions

are compensating transactions do not introduce incon-

sistencies in the database, and should be thus allowed.

Another important consideration in designing an al-

ternative correctness criterion is the following require-

ment. A transaction either reads a database state af-

fected by Ti (and not by CTi), or it reads a state re-

flecting the compensatory actions of CTi. However, a

transaction should never read both uncompensated-for

updates of Ti as well as data items already updated by

CT~. This important constraint is referred to as atom-

z’city of compensation in [KLS90a] and is elaborated in

[Lev90].

Our intention is to propose a revised correctness cri-

terion that takes into account the special properties of

compensating transactions and guarantees atomicity of

compensation. In the next section, we formally present

our correctness criterion.

Before we proceed, we note that the of loss of serial-

izability would not be worrisome if sagas [G MS87], or

their generalization — multi-transactions [GMGK+90,

KR88, Reu89] are used. Then the 02PC scheme can

be employed as it was presented so far, without any

further adjustments. The rest of the paper, however,

addresses the problems of loss of serializability and cor-

rectness.

5 Theoretical Results

Our correctness criterion is stated in terms of serializa-

tion graphs (SGS) that are a slightly extended version

of the standard SGS [B HG87]. For brevity, we omit the

underlying concept of complete histories that is identi-

cal to the definition given in [BHG87].

Let T be a set of global transactions {Tl, T2, Tn},

and let CT be the set of the corresponding compensat-

ing transactions {CT1, CT2, CTn}. Also, let L be

a set of local transactions {Ll, L2, Lm}. The local

serialization graph for a complete local history H over

‘T, CT and .C is a directed graph SG(H)=(V, E). The

set of nodes V consists of transactions in T U CT and

the committed transactions in Z. The set of edges E

consists of all Ai -+ Bj, Ai, Bj e 7U L7’u L, such that

one of Ai’s operations precedes and conflicts with one

of Bj’s operations in H.

A global SG is an SG that corresponds to a history

at more than one site. The SG of site a is denoted

SGa. Given a set of local SGS, each represented as

SG. = (Va, E.), the corresponding global SG is defined

as SGfM./ = (U V., U E.).

Intuitively, a history H is correct if the global SG(H)

is acyclic, except for cycles that consist of at least one

compensating transaction and (potentially) local trans-

actions.

The main result of this section is the derivation of a

sufficient condition for obtaining the correctness crite-

rion and atomicity of compensation. The strategy in

obtaining the main result is summarized as follows:

We identify the types of cycles that are not allowed

in global SGS, namely regular cycles, and state the

correctness criterion formally (Lemma 1).

We show that if a regular cycle exists in the global

SG then certain conditions, called the cycle condi-

tions, are implied (Lemma 2).

We introduce properties of SGS, called stratifica-

tion properties whose negation is implied by the

cycle conditions (Lemma 3).

We conclude in Theorem 1 that by ensuring

the stratification properties, regular cycles are

avoided.

Theorem 2 identifies the type of compensating

transactions for which atomicity of compensation

is guaranteed by preventing regular cycles,

To present our results, we must first establish some

notation. We use capital letters at the beginning of the

alphabet (e. g., A, B, C) to denote either compensating

or regular global transactions. Also, for a particular

history H, the notation A _ B is used to denote that

there is a directed path (of arbitrary length) between

the two transaction nodes in SG(H).

We define local and global paths to be paths (entirely)

within a local SG and global SG, respectively. When

specifying a local path, the local SG it belongs to, is

also specified.

92

(a) (b) (c)

T1 T1

‘! f ‘<22; ?1 ?’? T’

T2 CT1 T3 : T3 : CT1

‘+’9 v : CF1 ,V, v
CT1 T2 CT1 ~ T2 CT1 T2

S(I1 S(I2 S(21 SG2
SGl : SG2: SG3

cm

L T2
.~:) +7)

Figure 1: Regular Cycles

When considering global paths it is useful to segment

such paths into local paths, and represent each such

local path by its end points. For example, consider the

paths A --+ B in SGI, and B + C --+ D in SGZ. The

global path A + D is represented by the local paths

A+ Bin SGland B+ Din SG2.

Thus, a representation for a given global path lists

the local paths constituting the global path in order.

This representation is not necessarily unique. A mini-

mal representation for a given global path is the path

representation with the minimal number of local seg-

ments (paths). Again, this representation is not neces-

sarily unique. Accordingly, when we say that a global

path includes A, we mean that A appears on one of the

minimal representations of this path.

Example 1. Consider the following local paths:

CTI --+ Tz in SGI

CTI + T2 --+ CT3 in SG2

CT3 + CTI in SG3

Consider the global path CTI --+ CT3. It has two rep-

resentations:

1. CTl --+ T2 in SG1; T2 + CT3 in SG2

2. CTI --+ CT3 in SG2

The latter being the minimal representation, The

global path CT1 + CT3 does not inclucle T2. o
A regular cycle is a global cyclic path in a global SG

that includes at least one regular global transaction.

Observe that there are no regular cycles in Example

1. Figure 1 demonstrates several regular cycles, by

presenting the corresponding segments of the local SGS.

Lemma 1. Any regular cycle includes at least one

compensating transaction. ❑

Our correctness criterion states that a htstory H is

correct i~ and only iJ SG(H) contatns no regular cy-

cles and no local cycles. Since we assume that local

histories are serializable, and hence there are no local

(d)

T3~T3: T1

V:vv

T2 T1 : CT1

t:!v
CT3 : CT3 T2

:V:
Crrl

SG1 SG2” SG3

/c ‘

~>
T3

T2

cycles, we focus on preventing regular cycles to ensure

correctness.

Lemma 2. If ihere exists a regular cycle in a

global SG, then the following cycle conditions hold:

Cl. There exist distinct global transactions Ti and TJ

such that CTi + Tj at some SGU, and at some

other SGb where Tj appears, either TJ -+ CTi, or

there is no local path between Ti and Tj in SGb.

C2. There exist distinct global iransacttons T, and T]

such that Tj + CTi at some SGa, without having

Ti on that ~ath, and at some other SGb where Tj

appears, either CTi + Tj, or there is no local path

between Ti and Tj in SGb. ❑

For the purpose of avoiding regular cycles we need

to identify the pairs of transactions that can cause the

formation of such cycles. Intuitivelyj regular cycies may

be formed when T2 follows another T1 in the SG before

the latter transaction is globally committed or fully

compensated-for. (Consider Figure 1(a) for example).

Such pairs of transactions are identified as follows:

We say that Ti is actzue with respect to Tj if, and only

if, there exist an SGa where both transactions appear

and TJ + Ti is not in SGG, but there is a path (in

either direction) in SGa between CTi and Tj.

Next, we introduce two properties of global SGS that

are used to ‘stratify’ the global SG, thereby preventing

regular cycles. Each property is present,ecl as a formal

assertion. We first introduce four predicates that cle-

pend on the transaction identifiers i and j:

Al. At any f7Ga where T3 appears, Ti --+ CT, -+ TJ.

A2. At any SGa where Tj appears, TJ --- CTi without

having Ti on that path.

A3. At any SGa where both TJ and T, appear, if there

is a path between Tj and either Tt or CTi, then

the path Ti --+ CTi _ TJ is in SG..

93

‘ote:combort
Decision: Abort

Figure 2: Transitions in the marking of a site with

respect to a transaction

A4. At any SGa where both Tj and T~ appear, if there

is a path between Tj and CT~ in SG~, it must be

the path Tj -+ CTi without having Ti on that

path.

Using these predicates we introduce two stratification

properties:

S1. (VTi, Tj : T; is active wrt Tj : Al V A4)

S2. (’d’Ti, Tj : Ti is active wrt Tj : A2 V A3)

Lemma 3. Cl + -S1, and C’2 + -&2. •1

Theorem 1. If either one of the stratification

properties S1 or S2 hold then there are no regular cycles

in the global SG. ❑

Since we assume local serializability, Theorem 1 gives

a sufficient condition for ensuring correctness.

Theorem 2. If a history H is correct, and if

CTi writes at least all data items written by Ti, then

there is no case where a transaction Tj reads from both

Ti and CTi in H (i. e., atomicity of compensation is

preserved). ❑

In [Lev90], we elaborate on other variants of atom-

icity of compensation and ways to ensure them.

6 Ensuring Correctness

In this section, we present two protocols that ensure

our correctness criterion when the 02PC protocol is

employed. As such, the protocols actually complement

the 02PC protocol. The protocols prevent regular cy-

cles in the global SG by implementing the stratification

properties. We strive for protocols whose execution re-

quires no messages other than the standard 2PC mes-

sages.

6.1 Marking Sites

The basic building block for implementing protocols

that are based on the stratification properties is a sim-

ple marking of sites. With respect to a specific global

transaction Ti, a site is either unmarked, or marked.

Then, a site is marked locally-committed with respect

to Ti, or marked undone with respect to Ti. Initially,

a site is unmarked with respect to a transaction Ti.

A site is made locally-committed with respect to Ti

once it votes to commit Ti in response to a VOTE-

REQ message. On the other hand, if the site votes to

abort Ti, the site is made undone with respect to Tt.

A site ceases to be locally-committed with respect to

Ti and becomes unmarked with respect to that trans-

action whenever the site receives the decision message

from the 2P. coordinator to commit Ti. If the decision

is to abort Ti, then the site becomes undone with re-

spect to Ti. At some point, a site ceases being undone

with respect to an aborted transaction and becomes un-

marked with respect to that transaction. We postpone

the discussion concerning this transition to Section 6.2.

It is important to note that all these transitions in the

marking are triggered either by local events, or by mes-

sages that are already part of the 2P. protocol. Figure

2 summarizes the transitions in the markings.

Using this marking scheme, we devise protocols

that ensure that the stratification properties are sat-

isfied. Intuitively, the protocol should prevent situa-

tions where a global transaction accesses a site that is

locally-committed with respect to another transaction,

as well as a site that is undone with respect to that

other transaction, since such a situation can result in a

regular cycle. Protocols P 1 and P2 correspond to the

stratification properties S1 and S2, respectively. Each

of the two protocols can be summarized by a rule that

restricts the sites a global transaction Tj may access:

PI. Let Tj execute at a site that is marked with re-

spect to a Ti. Then for each such Ti, either one of

the following conditions hold:

● all sites in which Tj executes are undone with

respect to T~.

. all sites in which Tj executes are either

locally-committed or unmarked with respect

to T;.

P2. Let Tj execute at a site that is marked with re-

spect to a Ti, Then for each such Tz, either one of

the following conditions hold:

● all sites in which TJ executes are locally-

committed with respect to Ti.

s all sites in which Tj executes are either un-

done or unmarked with respect to Ti.

94

In the context of a multidatabase environment, it

is very important to notice that PI and P2 do not im-

pose anyrestrictions on local transactions. Only global

transactions are subject tothe restrictionsposed in the

protocols. Therefore, the autonomy of local database

systems is not affected by these protocols.

6.2 Protocol PI

In this section, we outline a possible implementation

of protocol PI, and argue about the correctness of the

protocol. Since P2 is in some sense dual to P1 we do

not discuss P2 here,

The main challenge in devising an implementation

for PI is the timing of the transition from undone to

unmarked with respect to Ti. Making this transition

too early can cause the formation of regular cycles. Re-

call that PI allows a transaction Tj to access data at

sites that are locally-committed with respect to Ti as

well as access data at sites that are unmarked with re-

spect to Ti. Therefore, Tj may access a site that is

locally-committed with respect to Ti and a site that

was undone with respect to Ti and was prematurely

unmarked. As far as correctness goes, the precondition

for this problematic transition is formulated as follows.

A site Sk that is undone with respect to Ti can be

unmarked with respect to Ti, if:

UDUMO (undone to unmarked). All Tj that

have accessed sites that are locally-committed

with respect to Ti cannot possibly access Sk.

It seems that extra messages are needed for the de-

tection of this condition. However, the fact that global

transactions obey the 2PL rule can be used to implicitly

deduce UDUMO. Namely, we observe that the condi-

tion in UDUMO is implied by the following:

UD UM1. For each site in which Ti executes,

there is a transaction that has also executed

at that site, while that site was undone with

respect to Ti.

Once a site Sk makes a transition in its markings as

specified by UDUM1, there can be no Tj that accesses

a site that was locally-committed with respect to Ti

and is about to access Sk. This argument is formalized

in the following lemma.

Lemma 4. UD UM1 tmphes UD UMO. ❑

For the implementation of P 1, the marking of sites

locally-committed with respect to transactions is actu-

ally redundant, since the protocol allows transactions

to access both sites that are locally-committed and un-

marked with respect to another transaction. IIence, we

can simplify matters and avoid the locally-committed

marking altogether. JVe introduce data structures for

maintaining the markings.

For each site, Sk, the protocol maintains a set, callecl

sitemarks. k, of transaction IDs:

T, c sitemarks. k ~ Sk is undone wrt T,

These marktng sets are updatecl to reflect the transi-

tions described above, and are read by global tramac-

tions in order to ascertain whether execution at a par-

ticular site complies with the relevant protocol. The

fact that a site is unmarkecl with respect to a transac-

tion is deduced implicitly from the lack of any marliing

in the corresponding marking set. In orcler to preserve

the semantics of the sets as defined above, concurrent

accesses to the sets must be controlled. One option is to

designate special entities for storing these sets in the

underlying local databases. As part of the database,

the sets are accessed by transactions subject to the 2PL

rule. Other alternatives are explored in [KLS90b].

Each time a subtransaction is invoked at a new site a

check is performed to determine whether the marliings

of the new site comply with the markings of the sites

the global transaction has already had subtransactions

in. For each global transaction, Tj, the protocol main-

tains a set, called transmarks.j, of transaction IDs:

Ti e transmarks.j =

Ti E sitemarks.k and Tjh was already invoked

The set transmarks.j accumulates the markings of

sites where Tj already has subtransactions. This set

is used for the check which is performed by the func-

tion compatible(transmarks, sitema~ks). This func-

tion returns true if the two sets are compatible with

each other according to the protocol rules and false

otherwise. Since only one type of marks is usecl, the

compatibility checli is simply:

compatible(transmarks, sitemarks)

return (Vx : x G transmarks : x E sitemarks)

The pseudo-code segment R1 below models the conl-

patibility check and the corresponding actions. R,l

should be executed as the first action of Tjk at sk:

R1. if compatible(transmu rks.j, sitesitemarks.k) then

{trunsmarks.j +-- tvansmclrks.k U sitemarks.k

start the actions of Tjk }

eke reject Tjk

In case the request to spawn the subtransactions is

rejected it can be retried later, unless the incompatibil-

ity is such that only aborting the corresponding global

transaction can resolve the situation (e. g., Tj is exe-

cuted at a site that is unmarlied with respect to Ti,

and attempts to spawn a subtransaction at a site that

is undone with respect to Ti).

Next we describe how the transitions in the nlarl<-

ings are inll)lelnelltecl. Implementing UDUhfl may be

95

cheaper in terms of messages. However, it requires aug-

menting the data structures. Keeping track of the set of

execution sites for each transaction is necessary. Also,

it must be possible to determine at what site a marking

Ti ~ transrnarks.j was added to the transmarks.j

set, For brevity, we do not present here the necessary

augmented data structures. We note, however, that

managing these structures does not incur any extra

messages. The following pseudo-code segments sum-

marize the implementation of P 1:

R2. The last operation of CTik:

sitemarks.k + sitemarks.k U {T~}

R3. Whenever UDUM1 is detected:

sitemarks.k +- sitemarks.k – {T;}

R3 is executed as part of the transaction that enabled

the transition; that is, the transaction whose access to

Sk made UDUM 1 detectable at that site.

Lemma 5. If Tj accesses (reads or writes) a data

item at site sk while the sate is undone with respect T~,

then CTi --+ Tj in SGh. ❑

Lemma 6. Let T, be an aborted transaction that

has executed at site sk. suppose that Ti --+ Ti is not in

SGk. If Tj accesses a data item at Sk while h sate M

unmarked with respect Ti, then either Tj --+ CT~ at all

sites where both Tj and Ti appear, or CT~ + Tj at all

sites where both Tj and Ti appear. •1

Given the above two lemmata, we can establish that

protocol P 1 ensures that the stratification property S 1

is indeed met.

Several comments concerning the protocols and their

implementation are in order.

● Considering the proposed implementation for P 1,

we note that the marking sets induce extra con-

flicts among otherwise non-conflicting pairs of

transactions only if one of the transactions aborts.

Thus, again, under the optimistic assumption, per-

formance is not offset by this overhead .

0 Deadlocks may arise due to contention to the lo-

cal marking sets. For example, a transactions

that read-locks sitemarks. k in order to perform

the compatibility check, may be blocked while at-

tempting to access a regular data item z that is

locked by CTik. The compensating transaction,

on the other hand, may be blocked too, holding a

lock on x and attempting to access sitemarks.k.

One simple way to avoid this deadlock problem

is to perform all the accesses to the marking sets

as the last access of subtransactions. The only

problem with this simple remedy is the compati-

bility check (Rl). Checking for compatibility late

results in wasted efforts in case the check fails.

An acceptable compromise would be to perform

the check first and then unlock site marks. k. In

case the check succeeds and the subtransaction is

completed, the check is validated again as the last

action of the subtransaction.

In addition to protocols P1 and P2 there are a va-

riety of other protocols resulting from other strat-

ification properties. For instance, a very simple

protocol is one that requires that for each trans-

action Tj, all sites in which Tj executes are un-

done with respect to the same transactions, and

are locally-committed with respect to no transac-

tion. There is a trade-off between the protocol’s

simplicity and the degree of concurrency it allows.

Further details on the other protocols can be found

in [KLS90b].

Conclusion

The use of the 2PC protocol to ensure the atomicity

of transactions in a distributed environment creates

severe, yet inevitable difficulties. The 02PC proto-

col presented in this paper avoids these difficulties by

trading standard atomicity for semantic atomicity. As

a result of the relaxed atomicity notion, serializability

may be lost. We propose a correctness criterion that

reduces to serializability if no global transactions are

aborted, and deviates from serializability only to the

extent dictated and allowed by the special characteris-

tics of compensating transactions.

The 02PC was augmented by P 1 to preserve this

criterion. A distinctive feature of the 02 PC/Pi com-

bination is that it makes no changes to the message

transfer pattern or the structure of the standard 2PC

protocol. Thus, the 02PC scheme is compatible with

the standardization efforts of the 2PC protocol, cur-

rently underway.

References

[AGMS87] R. Alonso, H. Garcia-Molina, and

K. Salem. Concurrency control and re-

covery for global procedures in feder-

ated database systems. Data Engineer-

ing, 10(3):5–11, September 1987.

[BHG87] P. A. Bernstein, V. Hadzilacos, and

N. Goodman. Concurrency Control and

Recovery in Database Systems. Addison-

Wesley, Reading, MA, 1987.

[BS88] Y. Breitbart and A. Silberschatz. Mul-

tidatabase update issues. In Proceed-

96

[BST90]

[CP87]

[DE89]

[fdb87]

{GM83]

[GMGK+90]

[GMS87]

[Gra78]

[Gra81]

inqs of A CM- SIG MOD 1988 Int em a-

iionul Conference on Management of

Data, Chicago, pages 135-141, 1988.

>’. Breitbart, A. Silberschatz, and G. R.

Thompson. Reliable transaction manage-

ment in a multidatabase system. In Pro-

ceedings of A CM- SIGMOD 1990 Inter-

national Conference on Management oj

Ddaj Atlantic City, New Jersey, pages

215-224, 1990.

S. Ceri and G. Pelagatti. Dtsiributed

Database Systems, Principles and Sys-

tems. McGraw-Hill, New York, 1987.

W. Du and A. K. Elmagarmid. Quasi

serializability: a correctness criterion

for global concurrency control in Inter-

Base. In Procee[lings of the Fifteenth

International Conference on Very Large

Databases, Amsterdam, pages 347-355,

1989.

Special issue on federated databases sys-

tems. Data Engineering, 10(3), Septem-

ber 1987.

H. Garcia-hIoIina. Using semantic lmowl-

edge for transaction processing in a dis-

tributed database. ACM Transactions

on Database Systems, 8(2):186–213, June

1983.

II. Garcia-M olina, D. Gawlick, J. Klein,

K. Kleissner, and K. Salem. Coordinat-

ing multi-transaction activities. TecImi-

cal Report UMIACS-TR-90-24, Univer-

sity of Maryland Institute for Advanced

Computer Studies, February 1990.

H. Garcia-Molina and K. Salem. Sagas.

In Proceedings of A CM-SIGMOD 1987

International Conference on Manage-

ment of Data, San Francisco, pages 249–

259, 1987.

J. N. Gray. Notes on database operat-

ing systems. In Lecture Notes in Com-

puter Science, Operating Systenls: An

Advanced Course, }rolume 60, pages 393-

481. Springer-Verlag, Berlin, 1978.

.1. N. Gray. The transaction concept:

Virtues and limitations, In Proceedings

of the Seventh International Conference

on Very Large Databases, Cannes, pages

144-154, 1981.

[lKIMO]

[KLS90a]

[KLS90b]

[KR8S]

[Lev90]

[map89]

[MLOS6]

[Reu89]

[SkeS2]

[Vei89]

special isslle on het-

erogeneous clatabases. ACM Comput~n~

Surveys, 22(3), September 1990.

H. F. Kortl], E. Levy, and A. Silber-

schatz. A formal approach to recovery by

compensating transactions. In Proceed-

ings of the ,$ ’izleenth International Con-

ference on Very Large Daiabases, Bris-

bane, pages 95-106, August 1990.

H. F. Korth, E. Levy, and A. Silber-

schatz. An optimistic two-phase com-

mit protocol. Technical Report TR-90-

31, The University of Texas at Austin,

Computer Sciences Department, 1990.

J. Klein and A, Reuter. Migrating trans-

actions. In Future Trends in Distributed

Computer Systems in the ‘90s, Hong

A’ong, 19S8.

E. Levy. A theory of relaxed atomic-

ity. Submitted for publication, November

1990.

Multidatabase services on 1S0/0S1 net-

works for transactional accounting. Techn-

ical Report hlAP761B, SWIFT, INRIA,

GMD/FOI<US, University of Dortmund,

19S9. Final Report, Edited by S.lV.I.F.T.

Society for Worldwide Interbank Finan-

cial Telecommunications S.C. 81 avenue

Ernest Solvay, B-131O La Hulpe, Bel-

gium.

C. Mohan, B. Linclsay, and R. Ober-

marck. Transaction management in

the R* distributed database management

system. ACM Transactions on Database

Systems, 11(4):378-396, December 1986.

A. Reuter. ConTracts: A means for

extending control beyond translation

boundaries. Presentation at 3rd Work-

shop on High Performance Transaction

Systems, Pacific Grove, CA, September

1989.

D. Skeen. Non-blocking commit proto-

cols. In Proceedings of A CM-SIGMOD

1982 .lnternational Conference on Man-

agement of Data, Orlando, pages 133–

147, 1982.

J. Veijalainen. Transaction ConceMs in

Autonomous Database Environments. R.

Oldenbourg Verlag, Munich, 1989.

97

