
Matrix Query Languages

Floris Geerts
University of Antwerp

floris.geerts@uantwerp.be

Thomas Muñoz
PUC Chile and IMFD Chile

tfmunoz@uc.cl

Cristian Riveros
PUC Chile and IMFD Chile
cristian.riveros@uc.cl

Jan Van den Bussche
Hasselt University

jan.vandenbussche@uhasselt.be

Domagoj Vrgoč
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ABSTRACT
Due to the importance of linear algebra and matrix op-
erations in data analytics, there has been a renewed in-
terest in developing query languages that combine both
standard relational operations and linear algebra opera-
tions. We survey aspects of the matrix query language
MATLANG and extensions thereof, and connect matrix
query languages to classical query languages and arith-
metic circuits.

1. INTRODUCTION
Quisani:1 You wanted to talk to me?
Authors: Indeed, Dan Olteanu asked us to write a data-
base theory principles column for SIGMOD Record and
we wonder whether you would like to help us?
Q: Sure, what is the topic?
A: Matrix query languages.
Q: I know matrices and query languages, but what do
these two have to do with each other?
A: So you are familiar with the relational algebra (with
aggregation), which provides the basis of SQL in the
form of a canonical set of operations for manipulating
relations. It is natural to wonder if there is something
similar for matrices.
Q: Then I suppose matrix multiplication would defi-
nitely be a part of what you’re looking for.
A: Certainly, but what else? That’s what we have inves-
tigated.
Q: I’m sure you want to tell me all about it, but, sorry
for asking, why do you want to do that? Can’t you
just view a matrix as a relation and then use relational
query languages to perform matrix operations? I once
wrote a SQL query for matrix multiplication as a home-
work. If I represent matrices A and B as ternary rela-
1The conversational style used in this paper originates from
Yuri Gurevich’s column on Logic in Computer Science in the
EATCS Bulletin. Yuri gracefully allows us to borrow his in-
quisitive and critical virtual student “Quisani” to guide the
conversation.

tions A(i,j,val) and B(j,k,val), then A·B can be com-
puted by:

SELECT A.i, B.k, SUM(A.val * B.val)
FROM A, B
WHERE A.j = B.j
GROUP BY A.i, B.k;

So, it is not too difficult to do linear algebra in SQL?
A: Fair point. The compilation of linear algebra com-
putations into SQL is indeed a possible approach and, in
fact, underlies many older and more recent approaches
to integrate matrix and relational operations in database
management systems [12, 13, 33, 37, 46].
Q: I admit, though, that this does not really answer your
original question. I don’t suppose any arbitrary SQL
query can be considered to be a matrix query.
A: In the end what is or what isn’t a matrix query is
probably a philosophical question. But full SQL is prob-
ably not the first what comes to the mind of a data scien-
tist when asked what they would consider their core set
of matrix operations.
Q: It may not even be a purely philosophical question.
Delineating a natural core of matrix queries could in-
form SQL processors and help improve their performan-
ce for data science applications.
A: Now you’re talking!
Q: But actually, do you have a concrete example of an
SQL query that would not immediately qualify as a nat-
ural matrix query?
A: Consider counting the four-cliques in a social net-
work. Representing the set of edges of the network as
a binary relation, we can express this in SQL by a four-
way join. You can, however, also represent the network
by its adjacency matrix. Nevertheless, counting four-
cliques would not be a typical task that you would try
to solve using the matrix library of your standard data
science toolbox.
Q: Hmm. I suppose though that this depends on the
operations that this toolbox makes available.
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A: Of course! But that is precisely what we want to
understand: what can we compute, given a certain set of
linear algebra operations?
Q: But wait. In textbooks on linear algebra algorithms
I have seen many algorithms that rely on iterating over
the indices of matrices. In a numerical package like R,
we can program with for-loops. Then couldn’t we count
4-cliques by simply iterating over all possible four dis-
tinct vertices and increment a counter only if such four
vertices are all pairwise connected? This last check can
be done using matrix multiplications of the adjacency
matrix AG of the network G. The for-loop program:

c=0
for pairwise distinct i,j,k,� do

c+=AG(i,j)·AG(i,k)·AG(i,�)·AG(j,k)·
AG(j,�)·AG(k,�)

return c/(4!)

would do the trick, where the factor 1/(4!) is in place
because every 4-clique is counted 4!=24 times.
A: Yuri told me you’re sharp! Indeed, we can consider
matrix query languages with iterations and we actually
did so recently. But also here, we want to understand
what we can compute when iterations are allowed, and
what cannot be computed. So, whenever we add new
constructs to our matrix query language, we want to un-
derstand the impact on the expressive power.
Q: I see. You got me hooked. Perhaps you can begin
by telling how everything started?

2. MATLANG

2.1 The MATLANG Language
A: Sure. We started by inspecting common linear alge-
bra operations supported in mathematics packages like
Maple, Matlab, Mathematica, and so on. From their
documentation, we extracted five operations which we
believed are “atomic”: matrix transposition, matrix mul-
tiplication, the computation of a vector consisting en-
tirely out of the value 1, turning a vector into a diagonal
matrix by placing it on the diagonal, and applying n-ary
pointwise functions. Then, using matrix variables, as
place holders for concrete matrices, and by closing our
operations under composition, we obtained our initial
matrix query language MATLANG [15].
Q: Are the matrices over the real or over the complex
numbers?
A: We focus here on real numbers, but complex num-
bers can be used as well, please see our paper on that.
Actually, to gauge the expressive power of matrix lan-
guages, we often just consider adjacency matrices of
graphs as inputs, like we already did earlier. And in
fact, since square matrices correspond to edge-weighted

graphs, matrix query languages can be naturally viewed
as graph query languages as well.
Q: OK. So show me Hello World in MATLANG!
A: You could call constant functions that return the ascii
code of the subsequent letters :-). But instead, let us
count the number of cycles of length three in a graph.
Q: Doesn’t this correspond to computing the trace of
(AG)3, that is, summing up all the diagonal entries of
the adjacency matrix AG to the power of three?
A: Indeed. And we can compute this in MATLANG.
Let X be a matrix variable. Then the MATLANG ex-
pression e1(X):=X ·X ·X using matrix multiplication,
when evaluated on AG, will return (AG)3.

The computation of the trace, which is not a basic
operation in MATLANG, is now done by first construct-
ing the diagonal identity matrix I of the same dimen-
sion as AG, then using pointwise multiplication, fol-
lowed by summing up all the entries. More precisely,
e2(X):=diag( (X)) will return I when X is assigned
AG because (AG) returns the column vector 1 of the
dimension of AG consisting of all ones, by definition,
and diag(·) turns 1 into a diagonal matrix with 1 on its
diagonal, i.e., it evaluates to I.

We can now use pointwise multiplication f� :R2�R:

(x,y) ��x·y, and apply it on both e1(AG)=(AG)3 and
e2(AG)=I, resulting in a diagonal matrix containing at
position (i,i) the number of cycles of length three in
vertex i. When we consider the final expression

e(X):= t(X)·f�
�
X ·X ·X,diag( (X)

�
· (X),

where t(AG) returns the transpose 1t of 1. Then,
e(AG) will be the total number of cycles of length three.
This is because by multiplying by 1t in front, and by 1
at the end, we simply sum up all entries.
Q: Cool! MATLANG does not appear to be very user-
friendly, however.
A: Agreed, but it primarily serves as a formalisation to
study the expressive power of linear algebra operations.
We could have added, say the trace operation as a basic
construct, and then we simply needed to write e(X):=
tr(X ·X ·X) to count cycles of length three. The point
is that the trace operation is already definable using our
basic operations. As such, it does not add expressive
power. For the same reason, we did not include scalar
multiplication, or matrix addition as basic operations.
Q: Now let me try my first MATLANG program. I be-
lieve that e(X):=f1/6�(tr(X3)), where f1/6� :R�R:
x �� x

6 , counts the number of 3-cliques in a graph since
every 3-clique corresponds to six cycles of length three
(with different orientation and start vertex). Do you have
a similar expression for 4-cliques? I do not see immedi-
ately how to do this.
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2.2 Limitations of MATLANG
A: Although 3-cliques can be checked in MATLANG,
as you showed, the 4-clique query is not expressible.
Q: Can you prove it?
A: For that it is instructive to think in terms of first-
order logic extended with aggregates and external func-
tions, which can serve as a formalisation of SQL [30].
To express 4-clique in that logic, we need four variables.
In contrast, one can show that any MATLANG expres-
sion can be translated into this logic using three vari-
ables only.

We can now further reduce this to a logical expres-
sion, also using three variables, that only uses the edge
relation, but in which infinitary disjunctions and con-
junctions are allowed (see e.g., Chapter 8.6 of Libkin’s
book [36], or our MATLANG paper [15]). In other words,
in this formula, all aggregates, function applications and
basically all arithmetic operations are eliminated.
Q: So, the next step is to show that checking 4-cliques
cannot be done in the three-variable fragment of infini-
tary first-order logic?
A: This is classic finite model theory. We can lever-
age the Cai-Fürer-Immerman construction [17] to ob-
tain two graphs G and H , that agree on all sentences
in that logic, yet G contains a special kind of 4-cliques,
whereas H does not. The precise construction is given
by Martin Otto (Example 2.7, Lemma 2.8 in [38]). This
shows that a sentence for 4-cliques cannot exist.
Q: Right. So you are able to get some insights on ma-
trix query languages based on results from classical log-
ics. Do you also have an example of a real linear algebra
operation which you cannot do in MATLANG?
A: Yes, a nice one is computing the inverse of a matrix.
If you could do that, you could actually compute the
transitive closure of a binary relation. But you can’t do
that in MATLANG.
Q: That makes sense, since MATLANG is subsumed by
SQL and transitive closure is not expressible by a single
select statement in non-recursive SQL [36]. But how do
you reduce transitive closure to matrix inversion?
A: We use the following property: If the largest eigen-
value of a matrix A is strictly smaller than 1, then (I�
A)�1=

�
n�0A

n holds [26]. So when A is an adja-
cency matrix AG, (I�AG)�1 contains non-zero values
only in entries that belong to the transitive closure of G.
Q: But this only applies to matrices satisfying the ei-
genvalue condition?
A: Yes, but for a matrix A we can obtain in MATLANG

its scaled version 1
�A�1+1A where �A�1 is the sum of

the absolute values of all its entries. Each eigenvalue of
this matrix is strictly smaller than one [26].
Q: So since MATLANG can not specify the unbounded

sum, the expression for transitive closure first computes
this scaled version, subtracts it from the identity matrix,
which you showed earlier how to compute in MATLANG,
followed by your assumed expression for matrix inver-
sion? You could conclude by applying some function
that maps non-zero entries to 1 in order to get the true
adjacency matrix of the transitive closure of G?
A: You’re becoming a MATLANG expert!

2.3 MATLANG + Other Operations
Q: I am getting the hang of it! How about adding matrix
inversion as an operation to MATLANG? In fact, it has
been bugging me all along that the “atomic” operations
you included, did not incorporate important operations
related to eigenvalues and eigenvectors, matrix decom-
positions like (P)LU, SVD, and so on.
A: Sure, we would like to gain a better understanding
of MATLANG extended with other, more complex, lin-
ear algebra operations. Unfortunately, we can’t even
say much yet what could be done if matrix inversion is
added to MATLANG, apart from being able to compute
transitive closure. Furthermore, for operations involv-
ing eigenvalues or eigenvectors, it is even challenging
to define these operations in a good way.
Q: Why is that? Eigenvalues and eigenvectors are being
used in practice all the time!
A: First, in which order should we return the eigenval-
ues? Even when starting from a real matrix, complex
eigenvalues may occur. No ordering on complex num-
bers exists. Second, there is no unique choice for eigen-
vectors corresponding to an eigenvalue. Indeed, any set
of vectors spanning the eigenspace could be returned. It
is again unclear how to define all this in an elegant way.
Q: You could allow non-determinism by returning any
set of eigenvectors that span the eigenspace.
A: That is how we defined an eigen operation and added
it to MATLANG. We then focused on expressions that
return a deterministic result, despite that they may use
the non-deterministic eigen operation. So basically, we
consider linear algebra computations that are indepen-
dent of the choices of eigenvectors or orderings on ei-
genvalues. We can show, for example, that matrix inver-
sion can be obtained in such a deterministic way, when
MATLANG is extended with the eigen operation [15].
Q: I see, so adding eigen subsumes adding inversion. Is
adding eigen strictly more powerful than adding inver-
sion?
A: In a trivial sense, yes, because eigenvalues can be
complex imaginary numbers, even when the input ma-
trix has only zeros and ones. In contrast, the inverse of
a real matrix still has real entries.
Q: It would be much more interesting to show that cer-
tain decision problems about graphs (adjacency matri-
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ces) can be solved using eigen but not using inversion.
A: That would be great. This is actually an outstanding
research problem that is left open.
Q: I’ll let you know if I have an idea! But can we get
back for a moment to the connection with first-order
logic with aggregates? I now know the restriction to
three variables needed for MATLANG, but what about
the converse? Does any expression in the three variable
fragment of first-order logic with aggregates correspond
to an expression in MATLANG?
A: We can show some kind of converse, but we would
like to first introduce iterations in MATLANG. This
way, a more general connection between MATLANG,
extended with iterations, and relational query languages
can be made.
Q: OK, let’s do iterations first then.

3. �MATLANG

3.1 MATLANG + Sum Iterations
A: Let us first describe a very simple form of itera-
tion which suffices to express the 4-clique query. The
first thing we do is introduce vector variables v1,v2,...
which will be instantiated with the canonical basis vec-
tors b1,...,bn in Rn�1, of an appropriate dimension n,
and then later we allow for summation over these vector
variables.
Q: You mean with bj a column vector with all zero en-
tries except for its jth entry that holds the value 1?
A: Right. Now consider a MATLANG expression vt

1 ·
X ·v2 that uses our familiar matrix variable X and two
“new” vector variables v1 and v2. When v1 and v2 are
instantiated with basis vectors, say bi and bj , respec-
tively, then can you say what this expression computes
when a matrix A is assigned to X?
Q: That would be simply the entry A(i,j)�R of A?
A: Indeed, now consider again the for-loop program for
computing the number of 4-cliques you gave earlier. With
the understanding that a basis vector bj identifies the
jth vertex in a graph, we can easily find four vertices
that are all pairwise adjacent. Namely, the expression
e1(X,v1,v2,v3,v4) defined by

vt
1 ·X ·v2 ·vt

1 ·X ·v3 ·vt
1 ·X ·v4

·vt
2 ·X ·v3 ·vt

2 ·X ·v4 ·vt
3 ·X ·v4

serves this purpose. Indeed, when v1, v2, v3 and v4 are
assigned bi, bj , bk and b�, respectively, and X is as-
signed an adjacency matrix AG of an undirected graph,
then this expression returns 1 only when there are edges
between all pairs of vertices in {i,j,k,�}. The for-loop
program also contained a conditional statement to en-
sure that the four vertices are different. This can be cap-

tured by the expression

e2(v1,v2,v3,v4):=
�

a,b�{1,2,3,4}
a �=b

(1�vt
a ·vb)

which evaluates to 1 only when all four vector variables
are assigned different basis vectors.
Q: By taking the expression e(X,v1,v2,v3,v4):=e1(X,
v1,v2,v3,v4)·e2(v1,v2,v3,v4) you then get an indicator
function for those 4-tuples of vertices that form a 4-
clique?
A: Exactly, we now eliminate the vector variables by
summing over all basis vectors. Syntactically, we do
this by an expression of the form:

�v1.�v2.�v3.�v4.e(X,v1,v2,v3,v4)

with the semantics that the summation instantiates each
vector variable with all basis vectors, one by one, and
by iteratively adding the result of evaluating e on AG

and the current basis vectors bi,bj ,bk and b�. In other
words, we sum e(AG,bi,bj ,bk,b�) for all possible ba-
sis vectors. We then scale by the factor 1/24, as before.
Q: Nice! Clearly, since we are only adding, the order in
which we loop through the basis vectors does not matter.
A: Right. We call the extension of MATLANG with
such summations �MATLANG [25]. Thus, in this lan-
guage, expressions of the form �v.e, where e is an ex-
pression in �MATLANG that may use the vector vari-
able v, are allowed. We will be mostly interested in ex-
pressions in �MATLANG in which all vector variables
are under the scope of a summation. By the way, do you
also see how the counting of k-cliques, for any k, can be
done in �MATLANG?
Q: Sure, you just need enough, k I guess, vector vari-
ables and form a similar expression as for the 4-cliques.
This also shows that �MATLANG is strictly more pow-
erful than MATLANG, if I understood things correctly.
A: Indeed. And in �MATLANG we can actually prune
some of the operations in MATLANG, such as the ones-
vector operation, or the operation which puts a vector on
the diagonal of an appropriately sized matrix. These are
expressible using summation.

3.2 Expressive Power of �MATLANG
Q: What about matrix inversion? Can you do this in
�MATLANG?
A: Matrix inversion is still out of reach. The reason
is because we can translate any �MATLANG expres-
sion into first-order logic with aggregates, now without
the finite variable restriction. The same argument as for
MATLANG then shows that matrix inversion would en-
able �MATLANG to compute transitive closure. This is
not possible since, as mentioned before, transitive clo-
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sure is beyond first-order logic with aggregates.
Q: I am now going to press you for an answer to my
previous question: Can you do every first-order logic
with aggregate query in �MATLANG? You promised an
answer to this question once you introduced iterations.
A: Sure. Because �MATLANG is a procedural lan-
guage, it allows for a more elegant comparison with the
relational algebra with aggregates. Otherwise, similarly
as how you relate first-order logic to the relational al-
gebra, safety conditions on logical expressions need to
be in place [1], and this becomes quite messy when ag-
gregates are present. And actually, it is even more ele-
gant to compare to the relational algebra over semiring-
annotated relations [28, 35].
Q: What’s the idea?
A: Instead of explicitly adding aggregations to the rela-
tional algebra, one can redefine the standard relational
operations on relations that are annotated with semiring
values, such that aggregations take place implicitly.
Q: Can you recall what a semiring is?
A: Typical examples of (commutative) semirings are the
reals (R,+,�,0,1), the natural numbers (N,+,�,0,1),
and the boolean semiring ({0,1},�,�,0,1). More gen-
erally, a semiring is just an algebraic structure S=(S,�,
�,0,1) where S is a non-empty set, � and � are binary
operations over S, and 0,1�S. We assume that � and �
are commutative and associative, � distributes over �,
and 0 and 1 are the identities of � and � respectively,
and 0�s=s�0=0.
Q: Ah yes, this rings a bell. Are you going to consider
matrices over such semirings?
A: Indeed, you can easily verify that the semantics of
expressions in �MATLANG naturally lifts when matri-
ces contain semiring values instead of real values. Let
us show how semiring-annotated relations represent se-
miring-valued matrices. Consider a 2�2 matrix A with
elements from a semiring S:

A:=

�
s11 s12

s21 s22

�

One can then represent this matrix as an S-annotated
relation, enc(A), shown below, containing the indices
of rows and columns as standard relational tuples, and
in which tuple (i,j) is annotated with the corresponding
S-value as described by the matrix A:

enc(A):=

row col S
1 1 �� s11

1 2 �� s12

2 1 �� s21

2 2 �� s22

One can now redefine the familiar relational operations
on such annotated tables. Intuitively, a join corresponds

to applying � on the annotations of the joining tuples,
a projection corresponds to applying � on the projected
tuples. For example, if we denote by M(row,col) a stan-
dard binary relation schema to encode matrices, then the
relational algebra expression

�row,col(�col/col
�(M)���row/col

�(M))

evaluates on the S-relation enc(A) given earlier to:

row col S
1 1 �� s11�s11�s12�s21

1 2 �� s11�s12�s12�s22

2 1 �� s21�s11�s22�s21

2 2 �� s21�s12�s22�s22

In other words, it represents the matrix product A·A.
Q: So you implicitly manipulate numbers, or better se-
miring values, by means of operations on the tuples,
which in your case are indices in matrices or vectors?
A: Precisely, and this eliminates the need to syntacti-
cally introduce aggregates in the language. This semi-
ring-annotated relational algebra formalisation is quite
popular and was proposed by Green et al. in [28]. Now,
as it turns out, �MATLANG over semiring-valued ma-
trices, is equivalent to the positive relational algebra over
semiring-annotated relations, that encode matrices. Here,
positive means that the difference operation is not al-
lowed. Of course, the relational algebra expressions
are assumed to return a matrix. The correspondence
involves a simple translation from �MATLANG to the
positive relational algebra over semiring-annotated rela-
tions, and back [25].
Q: Wait. So, you are basically saying that there was
already a matrix query language in the disguise of the
positive relational algebra on annotated relations?
A: Yes, indeed. It shows again that it is hard to beat the
relational algebra.

We can also tie �MATLANG to Functional Aggre-
gate Queries (FAQs) [2, 3]. Indeed, �MATLANG ex-
pressions correspond to restricted FAQs, using a single
semiring and only allowing matrices as input. FAQs
more generally work over multiple semirings, do allow
for tensor inputs, and are known to capture many com-
putational problems in databases, machine learning and
AI. Moreover, a summation in �MATLANG corresponds
to the elimination of a variable in FAQs, and hence, vari-
able elimination techniques of FAQs [3] can be used to
efficiently evaluate �MATLANG expressions.
Q: What about MATLANG? That is, when no summa-
tion iteration is allowed?
A: Actually, the connection to the positive relational al-
gebra over semiring-annotated relations was made first
for MATLANG [16]. Now, it is not that difficult to see
that MATLANG is included in �MATLANG in which
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only three vector variables v1,v2,v3 can be used. Con-
versely, and this is less immediate, one can define a
“three-variable” restriction of the positive relational al-
gebra [16] and show that this precisely corresponds to
MATLANG or �MATLANG with only three vector vari-
ables. We believe that this correspondence generalises
to the use of k vector variables in �MATLANG and a
k-variable fragment of the positive relational algebra.

3.3 Beyond Matrices
Q: And what about the full relational algebra over gen-
eral, not necessarily binary, annotated relations?
A: The focus of our query languages was to work on
matrices. As such we are limited to matrix inputs and
outputs. So, to deal with inputs that may be of arbi-
trary arity, one can consider so-called associative tables.
For example, enc(A) would be an associative table of
schema R(row,col,val), with keys underlined, contain-
ing elements (i,j,s) with i,j�{1,2} and s�S. More
generally, relations of the form R(dim1,dim2,...,dimk,
val1,...,val�) can be considered.
Q: This would allow for storing tensors, I mean multi-
dimensional arrays, but also standard relations?
A: Precisely. Now, a query language, LARA [31], was
proposed for such tables in order to query matrix, ten-
sor and relational data in unison. This language is much
alike the relational algebra on semiring-annotated rela-
tions but with the support for user-defined functions. It
is known that LARA is equivalent to (a safe fragment
of) first-order logic augmented with aggregates and re-
lations encoding the user-defined functions [10]. So also
here, first-order logic with aggregates is hard to beat.

The LARA language can further be equipped with built-
in predicates on key attributes, allowing it to encode the
convolution operation, among other things, which is be-
yond the capabilities of �MATLANG [10].

In another recent proposal, a tensor query language,
dubbed tensor relational algebra, was considered [45]
to deal with multi-dimensional arrays. Its expressive
power is not known, but since it includes operations
that allow the restructuring of tensors, connections to
the nested relational algebra on semiring-annotated re-
lations seem likely.

Finally, the FAQs mentioned earlier gracefully deal
with tensor inputs and outputs and are again closely re-
lated to the positive relational algebra over semiring-
annotated relations of arbitrary arity.
Q: I am actually a little bit disappointed. I mean, what
did we learn from all this in terms of linear algebra?
Or what to do with these insights? It seems that we only
need standard query languages, albeit lifted to semiring-
annotated relations?
A: A takeaway message may be that semiring-annota-

ted enabled DBMS’s and relational algebra queries over
them, already gives you some linear algebra capabili-
ties. That is, everything expressible in �MATLANG or
by FAQs. And, for doing more complex operations such
as matrix inversion, convolution, or eigenvalue-related
operations, extensions are needed. A possible approach
would again be to investigate the impact of adding spe-
cific operations to �MATLANG.

Another approach, would be to go beyond the addi-
tive updates underlying the iteration in �MATLANG. In
fact, the need for iteration and limited forms of recursion
is also advocated in practical systems [32].

Furthermore, to go beyond aggregate logics, one may
argue that a better yardstick for comparison are arith-
metic circuits. Indeed, the latter are known to be able to
compute most linear algebra operations. So, we can ask
whether MATLANG can be extended such that it cap-
tures an important class of arithmetic circuits. We actu-
ally know how to do that by generalising what kind of
computations are allowed when iterating over the vector
variables mentioned earlier.
Q: That sounds interesting. I must say that I do not
know much about arithmetic circuits. Do you want to
talk about this next?
A: We first want to talk a bit more about MATLANG

and �MATLANG in relation to their distinguishing po-
wer. That is, so far we consider expressiveness in an
instance-independent way. That is, we wanted to know
whether we can find a fixed expression that computes the
number of 4-cliques on any given graph, or an expres-
sion that computes the matrix inverse for any matrix.

We can, however, also look at instance-dependent ex-
pressiveness. In this setting, we can use a varying num-
ber of expressions for differentiating matrices.
Q: Not sure where this is heading to, but please go ahead.

4. DISTINGUISHING MATRICES

4.1 Distinguishing Matrices by Queries
A: Let’s make this more concrete. We want to under-
stand when, say, two matrices A and B are indistin-
guishable by functions expressible in a matrix query lan-
guage L. An expressible function corresponds to a “sen-
tence” in L that, when evaluated on matrices, always re-
turns a scalar. We then say that A and B are L-equivalent
for a matrix query language L when e(A)=e(B) for all
sentences e in L. We will denote this by A�LB.
Q: Why only consider sentences, i.e., scalar functions?
A: Allowing all expressions would result in a too strong
notion of equivalence. Indeed, just take e(X):=X . Then,
e(A)=e(B) requires A=B which prevents us from gain-
ing interesting insights.
Q: What extra information can then be gained about
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matrix query languages when considering the sentence-
based notion of equivalence?
A: To illustrate this, let L be a sub-language of MAT-
LANG in which we can only do matrix transposition,
matrix multiplication, use the ones-vector operation, and
turn a vector into a diagonal matrix. We denote this frag-
ment L by ML(·,t, ,diag). Then, we may ask whether
A�ML(·,t, ,diag)B implies that A and B are orthogo-
nally similar. That is, whether there exists an orthogonal
matrix O such that A=O·B·O�1 holds. Here, an or-
thogonal matrix is a matrix satisfying O�1=Ot. Now,
we will use that such a matrix O exists if and only if A
and B are co-spectral [39].
Q: Co-spectrality means that these matrices have the
same multi-set of eigenvalues, right?
A: Indeed, this turns out not to be the case when sen-
tences are restricted to those in ML(·,t, ,diag). Now,
what about A�MATLANGB, does this imply that A and
B are co-spectral?
Q: I don’t know. You argued before that MATLANG is
not very well-suited for eigenvalue-related operations,
so my intuition says no.
A: Well, actually co-spectrality is preserved for matri-
ces that are MATLANG-equivalent. To see this, let us
focus on symmetric matrices only. Then, it is known
that (symmetric) matrices A and B are co-spectral if
and only if tr(Ai)=tr(Bi) for all i=0,1,...,n�1. Now,
clearly we can compute Ai for any i in MATLANG.
Q: And you told before how to compute the trace...
A: Precisely, so when A�MATLANGB holds, then also
e(A)=e(B) for all sentences e in MATLANG, includ-
ing the expressions tr(Xi) for all i. And this implies
co-spectrality, as just mentioned.
Q: I see, but why wasn’t this true already for ML(·,t, ,
diag)? Did you find two matrices that are ML(·,t, ,diag)-
equivalent, yet are not co-spectral?
A: Indeed, the adjacency matrices AG1

and AH1
of the

graphs G1 and H1 suffice for this purpose. These
are known not to be co-spectral. An easy way to see this
is to recall that tr(Xi) actually computes the number of
cycles of length i. Clearly, H1 contains cycles of length
three, whereas G1 does not. So, AG1

and AH1
cannot

be co-spectral.
Q: But, how can you tell that they satisfy the same sen-
tences in ML(·,t, ,diag)?

4.2 Connections to Finite Variable Logics
A: To answer this, we observe that G1 and H1 are frac-
tionally isomorphic [40]. That is, there exists a non-
negative real matrix S in which each row and each col-
umn sums up to one, and such that AG1

·S=S·AH1

holds. The matrix S is also called doubly stochastic, and

such matrices are a relaxation of permutation matrices.
A permutation matrix being such that every row and ev-
ery column contains at most one non-zero value, which
is value 1. Note that when AG1

·P=P·AH1
holds for a

permutation matrix P, then G1 and H1 are isomorphic.
Hence, the name fractionally isomorphic when consid-
ering doubly stochastic matrices. Now, we can show,
by induction on expressions e in ML(·,t, ,diag), that
when AG1

·S=S·AH1
holds, then e(AG1

)=e(AH1
).

This provides insights in invariance properties of linear
algebra operations included in ML(·,t, ,diag).
Q: Is the converse also true? Does AG�ML(·,t, ,diag)

AH imply that G and H are fractionally isomorphic?
A: Yes it does. The operations in that fragment suf-
fice to create a collection of sentences (ei)i�I such that
when ei(AG)=ei(AH) for all i�I , then G and H have
a common equitable partition, which in turn is known to
imply that G and H are fractionally isomorphic [40]. In
addition, this correspondence also implies that ML(·,t, ,
diag)-equivalence is the same as equivalence of G and
H by means of sentences in the two-variable fragment
of first-order logic with counting C2 [17].
Q: If I recall correctly, the logic Ck is first-order logic
using k variables only, but in which you can additionally
use counting quantifiers of the from ��txi� indicating
the existence of at least t distinct elements satisfying �?
A: Precisely. We can similarly show that AG�MATLANG

AH if and only if G�C3
H [24]. So again, note the three

variable correspondence. You now see that by consid-
ering equivalence of matrices, we can get a fine-grained
understanding of the different operations in MATLANG.
If you would throw in, e.g., the trace operation, and
consider ML(·,t, ,diag,tr)-equivalence, you obtain an
equivalence notion on graphs that lies between C2- and
C3-equivalence. We fully explored the equivalence of
adjacency matrices for operations in MATLANG in [24],
and lifted some of the results to arbitrary matrices in
[23]. For each sublanguage, one can further identify a
corresponding notion of similarity between matrices, by
considering other kinds of matrices than doubly stochas-
tic matrices. The more operations we allow, the more
restrictive the similarity notion is.

4.3 Beyond MATLANG
Q: What if you extend MATLANG with matrix inver-
sion?
A: It does not increase distinguishing power. The rea-
son being that the Cayley-Hamilton Theorem [8] states
that the inverse of a matrix can be expressed in terms of
MATLANG expressions tr(Xi) for various i. So, when
A�MATLANG+invB holds, then any sentence that uses
the matrix inverse operation inv can be rewritten as a
sentence in MATLANG. We emphasise that we can here
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use sentences that depend on the given matrices. We
will need n sentences when the matrices have dimen-
sion n. It thus does not contradict our earlier claim that
matrix inversion is not expressible in MATLANG by ex-
pressions that work for any matrix input.
Q: And Ck-equivalence of graphs for arbitrary k?
A: This turns out to correspond to equivalence of their
adjacency matrices in �MATLANG in which only k vec-
tor variables can be used. We thus complement existing
characterisations of Ck-equivalence of graphs, in terms
of the k-dimensional Weisfeiler-Leman graph isomor-
phism test [17], or homomorphism count vectors [20,
22], by one involving functions computable in MAT-
LANG, for k=2 and k=3, and in the k-vector variable
fragment of �MATLANG for arbitrary k.
Q: Sounds all very interesting but I am eager to find out
more about the connections to arithmetic circuits. Can
we do that next?

5. FOR-MATLANG

5.1 MATLANG + General For Loops
A: Sure, let’s do that. Before we get to the technical
details I need you to take a step back and do something
very basic. Namely, think about classic linear algebra
algorithms that you saw when you first learned about
matrices.
Q: You mean like Gaussian elimination, LU-factorisa-
tion, computing the transitive closure of an adjacency
matrix for a graph, ...

A: Precisely. Now think about the basic “ingredients”
of these algorithms. What are they?
Q: Well, at the most atomic level, I guess you have to be
able to access a single entry in a matrix, and also iterate
up to the matrix dimension. Using vector variables, you
showed already how to access matrix entries and iterate
over those in �MATLANG, but this does not do the trick,
does it? I mean you showed me that transitive closure
can not be computed there.
A: Right. The issue with �MATLANG is that the result
you compute is updated by adding the result of some ex-
pression that depends on the basis vector used in the it-
eration, and you can not access what you computed pre-
viously. In order to remedy this, in [25], for-MATLANG

was introduced. As the name says, this language extends
MATLANG by allowing for-loops; i.e. expressions of
the form

forv,Z.e.

Intuitively, Z is a “new” matrix variable which is itera-
tively updated according to the expression e, and v gets
instantiated by the basis vectors of the appropriate di-
mension. An important point here is that e can depend
on both v and Z.

Q: Wait a moment. So, you still iterate over basis vec-
tors, as before, but the update behaviour is now con-
trolled by means of the variable Z and the expression e?
How does this tie to �MATLANG?
A: In �MATLANG the update mechanism simply cor-
responds to addition: forv,Z.Z+e, where e is an ex-
pression that may use v but not Z. For example, to
compute the vector consisting of all ones we can do
forv,Z.Z+v. In this way, �MATLANG is contained
in for-MATLANG.
Q: I follow. So in for-MATLANG the crux is that one
can now aggregate the results of the iterations with other
operations besides sum, like e.g., matrix multiplication?
A: Precisely, and recall that you can use the current re-
sult in your computation. In for-MATLANG we can
now allow for multiplicative updates by writing, e.g.,
forv,Z.Z ·e, and even arbitrary expression e using v
and Z. For instance, for a matrix variable X , you could
do something crazy like forv,Z.Z ·

�
X+Z+v ·vt

�
.

Q: Hmm, not sure why someone would do something
like that, but I get the intuition. This seems powerful
indeed. Though I am still a bit puzzled as to how you
actually compute these iterations.
A: Basically, we start with the zero matrix of the appro-
priate dimension (same as Z), and then start iterating.
In the first iteration (when v is instantiated with the first
basis vector b1), the expression e takes Z=0 and eval-
uates. Denote the result of this iteration A1. For the
second iteration (v=b2), we now evaluate e, but instan-
tiate Z with A1, thus obtaining A2. In general, itera-
tion i+1 assigns Ai to Z when evaluating e (and bi+1

is assigned to v). The result of the expression is then
the result of the final iteration. With some tinkering, we
can also show that you can start by assigning to Z and
arbitrary matrix A in iteration one instead of the zero
matrix. To denote this, we write forv,Z=A.e.
Q: I guess that transitive closure is now within reach?
A: Correct. We can compute the transitive closure of a
matrix by simulating the Floyd-Warshall algorithm [19].
The following for-MATLANG expression does the trick:

for v3,Z1=AG. Z1 +
for v1,Z2. Z2 +

for v2,Z3. Z3 +
(vt

1 ·Z1 ·v3 ·vt
3 ·Z1 ·v2)·v1 ·vt

2

Here we basically copy the Floyd-Warshall algorithm
using the for-MATLANG syntax. The first vector v3 will
check whether we can go through the vertex k (using
bk) in order to connect vertices i and j (using bi and bj

in v1 and v2). The inner expression simply updates the
corresponding position in the matrix Z3, which in turn
propagates the results to Z2 and finally to Z1, which will
have, at the end of the iterations, a non zero entry in a
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position (i,j) when there is a path from i to j in our
graph. Notice that we start with AG stored in Z1.
Q: Right, I now see the use of iterating expressions that
depend on these Z variables. One thing still bothers me.
Unlike in �MATLANG, here the order in which the ba-
sis vectors are iterated over actually matters. Can this
functionality be used somehow?
A: Indeed, this is a very important point. As you noted,
our semantics of for expressions assumes that the ba-
sis vectors are always accessed in some fixed order. In-
terestingly, for-MATLANG is powerful enough to make
this order information explicit. In particular, we can
construct a matrix S�, which has the property that bt

i ·
S� ·bj equals one if and only if i�j. With this matrix
we can construct all sorts of order operators, allowing us
to check whether we are manipulating the first/last basis
vector, or to produce the following/previous basis vector
from the current one.

5.2 Gaussian Elimination and Matrix In-
version

Q: I guess that the availability of such order informa-
tion adds considerable power. Can you do Gaussian
elimination, or find the inverse of a matrix using this?
A: Actually you can. In fact, in [25], explicit expres-
sions for performing Gaussian elimination, both without
and with pivoting, are given. To provide some intuition,
think how Gaussian elimination works in the case when
no pivoting is required (that is, the diagonal element we
are processing in each iteration is non zero).

When working with the matrix A, you take the first
diagonal entry A(1,1), and then iterate over the rows j
below this first row, multiplying them by the constant
�A(j,1)

A(1,1) , and adding this row to the previous values.
This way, we get all zeros in the first column below
A(1,1), and the process continues.

We can simulate this in for-MATLANG with three
nested for-loops: the first one to mark the iteration of
the Gaussian elimination; the second one to fetch the
rows that follow; and the final one to update the entries
of each row fetched by the second for-loop. Having ex-
plicit order via the matrix S� allows us to check when
the basis vector in the second for-loop corresponds to a
row that should be modified in this iteration. The com-
putation that needs to be performed requires some de-
tails though, and can be found in [25]. In essence, it
boils down to defining elementary matrices to perform
row transformations.
Q: But you need the division function for this, correct?
A: Precisely. In order to perform the reduction of the
current column we need to divide with the diagonal ele-
ment. But you would probably be hard pressed to come
up with an algorithm that can do Gaussian elimination

without being able to divide two numbers.
Q: I’ll give you that. What about pivoting?
A: Well, if you allow us to also compare whether a
number is greater than 0 we can perform a so-called
PLU factorisation as well. Namely, we can construct
expressions e

L
�1·P and eU such that evaluating them on

the matrix A as the input, they give matrices L�1 ·P and
U such that L�1 ·P·A=U, where P is a permutation
matrix. The greater than zero function here is used to
simulate a limited if-then-else operation, which allows
us to do pivoting.
Q: And can you push this all the way to compute in-
verses and determinants?
A: Sure, one can construct expressions edet and einv that
return the determinant of a matrix A, and its inverse ma-
trix, respectively, whenever A is invertible [25]. When
A is not invertible, these expressions simply return the
zero matrix. Actually the greater than zero function can
be eliminated here, as our connection with arithmetic
circuits will show.

5.3 Linear Algebra and Arithmetic Circuits
Q: Right. Let’s take a step back. You initially devised
MATLANG in order to gain an understanding of the ex-
pressive power of linear algebra operations. Now, with
for-MATLANG you have a quite powerful iteration mech-
anism at hand which allows you to do complex linear
algebra computations. How can we gain insights in the
power of specific linear algebra operations? For ex-
ample, what does this all imply for transitive closure
or matrix inversion? Furthermore, what is the limit of
for-MATLANG in terms of expressive power?
A: That are a lot of questions. To better understand
specific linear algebra operations, one way that this can
be approached is by investigating what kind of update
mechanisms are needed in the for-loops. More precisely,
how complex does the expression e in forv,Z.e needs
to be, in order to do, say transitive closure. We actually
looked into that, but let’s get back to this later on. To
answer your question about the limit of for-MATLANG,
we will compare with arithmetic circuits.
Q: OK, let’s move on to circuits first then. But tell me
one thing first: why compare with arithmetic circuits?
A: If you recall, our objective was to have a rough ap-
proximation of what a core language for linear algebra
should be. And arithmetic circuits of bounded depth are
sometimes said to capture linear algebra [4]. In a broad
sense of course. The intuition is that arithmetic circuits
perform basic number manipulations, and pass them up,
as one does when, for example, multiplying matrices.
Also, most standard linear algebra algorithms (such as
the ones we discussed thus far), can be expressed by
arithmetic circuits [41, 42].
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Q: I guess I could sort of see your point. Or rather,
if I press you further, you will ask me what is a good
formalism that captures linear algebra, and I don’t have
a definitive answer. So let us proceed. Can you please
explain first what arithmetic circuits are?
A: Quite simple: they are similar to boolean circuits
[7], but the input gates now take numbers over R, and
the computations they perform are + and �, not just
boolean operations. For instance, f(x1,x2,x3,x4):=
x1�x2+x3�x4, can be computed with the circuit:

+

�

x1 x2

�

x3 x4

Basically, an arithmetic circuit is a directed acyclic
graph, where nodes are called gates, and the edges wires.
Gates denoted by variables (e.g. x3 above) have no in-
coming arrows, and are called input gates. If a gate has
no outgoing arrows it is called an output gate. When
a circuit � has n input gates and a single output gate,
it computes a polynomial function f :Rn ��R, in a nat-
ural way. In this case, we will write �(a1,...,an) for
the number computed by the output gate when receiving
a1,...,an in the input gates.

5.4 FOR-MATLANG and Arithmetic Cir-
cuits

Q: Since for-MATLANG expressions can be evaluated
on matrix inputs of arbitrarily large dimensions, to com-
pare for-MATLANG with arithmetic circuits, I guess you
need a notion of uniformity to handle circuits with a
varying number of input gates?
A: Precisely. As usual, we will work with a circuit fam-
ily {�n |n=1,2,...}, where each �n has n inputs and a
single output. We will call this family uniform, if there
is a LOGSPACE Turing machine, which, given 1n as in-
put, produces a description of �n. Finally, we will need
to restrict our circuit families a bit. For now, we will
focus of families of logarithmic depth, where the depth
is defined as the longest distance from any input gate, to
the output gate of the circuit.

In [25] we then show that for any uniform family {�n |
n=1,2,...}, where depth of �n is bounded by O(log(n)),
we have a single for-MATLANG formula e�, which uses
a vector variable v, such that for any k and a1,...,ak�
R, it holds that evaluating e� by assigning the vector
[a1 ···ak]t to v, produces the same result as computing
�k(a1,...,ak). Effectively, we can simulate any log-
depth uniform circuit family with a single for-MATLANG

formula! So, for-MATLANG is quite powerful.
Q: I share your enthusiasm, but there seems to be a lot
going on here. Can we please unpack this a little bit?

First, how does the Turing machine for generating the
circuit interact with your for-MATLANG expression?
A: Actually, here we show something more general: any
Turing machine which works in polynomial time, uses
only linear space on its work tape, and produces a linear
size output, can be simulated by means of a for-MAT-
LANG expression. In particular, this allows us to have
an expression eM , which simulates the LOGSPACE ma-
chine M that generates the circuit family.
Q: Hmm, I’ll read the paper for more details. Can you
say more about the polynomial functions computed by
log-depth uniform circuit families and thus by for-MAT-
LANG? For example, what about the degree of the poly-
nomials that your circuits compute? Can any connection
be drawn there?
A: Indeed. First, given that each circuit �n with n in-
puts and a single output computes a polynomial over
Rn, we will call the degree of the circuit �n the degree
of this polynomial. We will say that a family of arith-
metic circuits {�n |n=1,2,...} is of polynomial degree,
if there is a polynomial p such that the degree of �n is
bounded by p(n). Our previous results only tells us that
a polynomial degree family of circuits can be simulated
in for-MATLANG when the family is also of logarithmic
depth.

We can, however, actually drop the restriction on cir-
cuit depth due to the result of Valiant et. al. [44] and Al-
lender et. al. [5] which says that any function computed
by a uniform circuit family of polynomial degree (and
polynomial depth), can also be computed by a uniform
circuit family of logarithmic depth. Therefore, for-MAT-
LANG can simulate any polynomially bounded uniformly
generated circuit family. We can also extend these result
to circuits with multiple output gates. The degree here
is simply the maximum of the degrees of all the output
gates.
Q: It seems fairly easy to come up with a for-MAT-
LANG expression that computes a polynomial of expo-
nential degree. For example, consider the following for-
loop program exp(x,n) given by

for i=1,...,n do
x=xx

return x

would compute exp(a,n)=a2
n

for a�R. Clearly not
polynomial. I assume that exp(x,n) can be encoded
in for-MATLANG? So, can circuits simulate for-MAT-
LANG? Or did you go too far?
A: Yes, exp(x,n) can be encoded in for-MATLANG.
And no, we did not go too far. If we extend arithmetic
circuits in a natural way to take matrices as inputs (by
arranging the indices into input gates), and produce ma-
trices as output (by allowing multiple output gates), we
can also show that for any for-MATLANG expression e,
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there is a uniform circuit family {�e
n}, computing the

same function over matrices.
Q: Aren’t you hiding something here? The depth ver-
sus degree connection seems lost with this result?
A: Yes, you are correct. When we go from for-MAT-
LANG to circuits we put no restrictions on the degree
of the circuits, in this way we can take care of your
exp(x,n) program. For the other way around, we need
polynomial degree circuits.

To save our face we can offer the following equiv-
alence: consider any function f that as its input takes
matrices A1,...,Ak, and produces a matrix A as output.
The dimension of each Ai is �i��i, with �i,�i�{n,1}.
That is, the function works on matrices of different di-
mensions for each n, same as for-MATLANG, or circuit
families. Then we can show that f is computed by a
polynomial degree uniform circuit family if and only if
it is computed by a for-MATLANG formula of polyno-
mial degree. Here a for-MATLANG formula is of poly-
nomial degree if it has an equivalent polynomial degree
circuit family.
Q: OK, so the equivalence holds for circuits and expres-
sions of polynomial degree. Can you detect when your
formulas are of polynomial degree easily?
A: Actually we can not. That is, the problem of deter-
mining whether a for-MATLANG expression is of poly-
nomial degree is undecidable [25]. This result follows
from the fact that we can simulate Turing machines (up
to a fixed amount of space).
Q: And do you at least know some nice class of expres-
sions in for-MATLANG of polynomial degree?
A: We actually already showed you one: �MATLANG.
Q: Yes, but for that fragment we did not really need the
detour to circuits, right? I now notice that your circuits
only use sum and product. Given that algorithms such
as Gaussian elimination need to perform division, I find
it difficult to believe circuits can simulate this. Can you
please explain?
A: OK, you caught us red handed again. But we did not
lie actually. Basically, the arithmetic circuit people did
all of our work for us [4]. What they showed is that in
circuits that use sum, product, and division, the division
operator can be postponed as to be used only once at the
output gate without affecting the result [43, 14, 34].

So we are left with circuits that use only sum and
product (the degrees also remain polynomial), and can
use division at the very end. What we can then show is
that a function over matrices is computed by a uniform
family of polynomial degree that uses sum, product and
division, if and only if it is computed by a for-MATLANG

expression of polynomial degree that uses division.
Q: I see. I take away from all this that for-MATLANG

is bounded by uniform circuit families, and that a large

class of uniform circuits can be simulated in for-MAT-
LANG. I have an online lecture soon, but before I go,
can we get back to my earlier question about what kind
of update mechanism are needed to carry out specific
linear algebra computations, such as transitive closure
or matrix inversion?

6. FRAGMENTS OF FOR-MATLANG
A: Do you remember how we defined the sum iteration
of �MATLANG with the for-operator?
Q: Sure. It was something like forv,Z.Z+e, where
e is an expression that could use v but not Z.
A: Exactly. This expression stores the partial outputs
in Z and updates them by summing with e and the next
basis vector. There is nothing special about the use of
the sum here. We can use the same expression but with
a different operator like:

forv,Z=I�.Z�e

where � is any operation between matrices and I� ini-
tialise Z accordingly to �.
Q: I see where you are going. You want to define new
operators included in for-MATLANG in analogy to how
�MATLANG was defined.
A: Yes, there we go. Now, for-MATLANG gives a lan-
guage for computing linear algebra with the same ex-
pressive power as arithmetic circuits. We can restrict
the for-loops with the above trick to understand, for ex-
ample, which restrictions capture transitive closure or
matrix inversion.
Q: I like the idea. A natural choice for � is matrix mul-
tiplication, but the output will be zero if the for-loop
starts with the zero matrix. Not very interesting.
A: You are right, and for this reason, we need the ini-
tialisation matrix I�. For matrix multiplication, we can
use the identity matrix. Another choice is to use the
Hadamard product for � and initialise the loop with the
the matrix I� having value one in all its entries.
Q: Hadamard product? Sorry, I am not familiar with
this operation.
A: Hadamard product is the pointwise multiplication
between matrices of the same dimension. If we use this
product in place of � in the above expression, we get an
iteration operator which we denote by �Hv.e. It takes
the pointwise product of evaluating e with v replaced
by basis vectors. Then we define �PMATLANG (sum-
product MATLANG) as the extension of �MATLANG

with this operator. Since the Hadamard product is com-
mutative, the order used to iterate over basis vectors
does not matter here, just as for �MATLANG.
Q: I agree that it is a natural next step after �MATLANG.
So, what can you do with such an operator? Does it ex-
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tend the expressive power of �MATLANG?
A: Indeed. For example, you can compute the product
of the values in the diagonal of a matrix A by evaluat-
ing �Hv.vt ·X ·v. Its output grows exponentially with
the matrix dimension, but the output of a �MATLANG

formula is bounded by a polynomial. So, �PMATLANG

is strictly more expressive than �MATLANG.
Q: OK, this is a nice way to extend �MATLANG. You
already told me that �MATLANG coincides with posi-
tive relational algebra over semiring-annotated relations.
Can you get a similar equivalence for this fragment?
A: Yes, but we need to move from relational algebra to
another logic formalism over annotated relations, called
weighted logic [21]. Roughly speaking, weighted logic
extends first-order logic from the boolean semiring to
any semiring, using the sum instead of disjunction and
product instead of conjunction. In particular, �x and
�x are evaluated as sums and products over the domain.
This logic was used for characterising the expressive
power of weighted automata [21], but recently it has
been proposed as a first-order logic for provenance [27]
and for studying the descriptive complexity of counting
complexity classes [6].

Similarly to �MATLANG and positive relational al-
gebra, we can show that �PMATLANG has the same
expressive power as weighted logics over annotated bi-
nary relations [25]. There is a natural correspondence
between the sum and product (�H ) operator and exis-
tential and universal quantification of weighted logic.

Furthermore, connections can be drawn again with
the FAQs mentioned earlier. Indeed, FAQs support sum-
mation and multiplication over variables and in this way
also extend existential and universal quantification over
semiring annotated relations.
Q: Nice connection! But if �PMATLANG coincides
with first-order logic, I guess it cannot express transitive
closure. Let’s say that I am a bit disappointed. But, wait,
we haven’t discussed yet what happens if I use matrix
multiplication for � instead of the Hadamard product.
A: Yes, if we use matrix multiplication for �, we can
get an iteration operator we which denote by �v.e. We
call prod-MATLANG the extension of �MATLANG with
this operator. One can show that �Hv.e can be simu-
lated with �v.e, and thus �PMATLANG is included in
prod-MATLANG. Expressions in prod-MATLANG are
no longer invariant under a change of order among the
basis vectors, due to the use of matrix multiplication, by
contrast to expressions in �PMATLANG.
Q: I am a bit lost in all these fragments, but I see that
you have a hierarchy of languages inside for-MATLANG.
I would expect that prod-MATLANG is strictly more ex-
pressive than �PMATLANG. Furthermore, by iterating
the matrix product, can you do some sort of transitive

closure?
A: Indeed, in prod-MATLANG we can define transitive
closure. If we add order information in the form of S�,
we can compute the determinant of a matrix and do ma-
trix inversion. So, this operator is quite powerful. It is an
open problem whether this fragment is strictly included
in for-MATLANG.
Q: So, we finally reached a fragment that naturally in-
cludes transitive closure and matrix inversion. Just in
time, because my online lecture is about to start. Before
leaving, can you say what remains to be done?

7. CONCLUSION
A: Sure. There are some open problems that can be
addressed. For example, we do not know any graph
property expressible in MATLANG+eigen but not in
MATLANG+inv. Also, understanding MATLANG ex-
tended with complex linear algebra operations, such as
LU decomposition, Singular Value decomposition, etc.,
is open. Similarly, the precise expressive power of the
various fragments of for-MATLANG mentioned above
is unknown. One may want to compare these fragments
to various recursive extensions of first-order logic.

Other iteration mechanisms could be considered as
well. For example, one may consider a “simple itera-
tion” fragment of for-MATLANG in which an ordinary
MATLANG expression is iterated n times, where n is
the dimension of the input matrix. This is similar to the
for-extension of relational algebra proposed by Chandra
[18]. Such expressions are order-independent. Is this
strictly weaker than order-independent for-MATLANG?
Whereas transitive closure can be computed in this way,
it seems unlikely that such simple iterations suffice for
matrix inversion.

Furthermore, since many (graph) neural network for-
malisms are phrased in linear algebra terms, one can
view these naturally as expressions in a matrix query
language. What do our expressiveness results imply for
such machine learning methods? In this context, MAT-
LANG was recently used to extend graph neural net-
works [9]. If you are interested in this kind of questions,
we recommend [29] and [11] (also a principles column)
as further reading.

Finally, beyond expressiveness one may look into al-
gorithmic aspects of matrix query languages. In par-
ticular, the mentioned connections to Functional Aggre-
gate Queries (FAQs) [2, 3] and their evaluation methods
could perhaps be leveraged.
Q: All very interesting. Thanks for introducing me to
the world of matrix query languages!
A: Thanks for your questions and insightful comments,
it was entirely our pleasure to talk to you.
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