
An Overview of Three Commercial Object-Oriented Database
Management Systems: ONTOS, ObjectStore, and 02.

Valery Soloviev"
T h e Un ive r s i t y of Toron to , C a n a d a

A b s t r a c t

We present an analysis of three current object-
oriented DBMS products: ONTOS, ObjectStore, and
O2, as described by their available documentation.
The most attractive feature of ONTOS and Object-
Store is their use of C + + as a user interface - a
widespread object-oriented language.They also pro-
vide persistent data implementation, transaction and
recovery mechanisms, and modern application de-
velopment tool sets following the recommendations
of [Atkinson et al. 89]. 02 was chosen for a well-
developed data type system and end-user interface,
and for its reputation from the literature.

1 I n t r o d u c t i o n

The field of object-oriented databases has rapidly
evolved into a major area of database software re-
search and development. A number of commercial
OODBMS products have been introduced to the mar-
ket in last two years. Recent books and papers
present the current state of both research and com-
mercial OODBMSs by comparing them with rela-
tional DBMSs and with each other. Very few discuss
commercial products, however [Manola 89], [Bancil-
hon et al. 90b], [Kim et al. 89], [Zdonik et al. 90].

This paper presents an analysis of three current
OODBMS products: ONTOS, ObjectStore, and 02,
and is based on available user documentation ([02
Technology 91a], [O2 Technology 91b], [02 Technol-
ogy 91c], [Object Design 90a], [Object Design 90b],
[Ontologic 91]). The goal of analysis was to select
one of the systems as a basic tool for software devel-
opment. The systems were chosen for their support
of C + + as a user interface (ONTOS, ObjectStore),
or for a strong type system, powerful end-user inter-
face tools like Look, and detailed description in the
literature (02).

*soloviev@cs.wisc.edu. Present address: Computer Sci-
e n c e s Department, University of Wisconsin-Madlson, 1210
W e s t Dayton St, Madison, WI 537"06

The rest of the paper is organized as follows. Sec-
tion 2 discusses platforms and architectural features,
Section 3 describes user interfaces and tool sets, Sec-
tion 4 compares data models with example class de-
scriptions, and Section 5 covers data aggregation.
Query processing and concurrency control are de-
scribed in Sections 6 and 7, Section 8 presents the Ob-
jectStore cooperative group model, and finally Sec-
tion 9 summarizes all the systems features in a table.

We do not deal with system performance because a
lack of benchmark results covering all three systems
would make such a comparison too superficial.

2 P l a t f o r m s and a r c h i t e c t u r e

O N T O S , Release 2.0, product of Ontologic Inc, sup-
ports UNIX, HP/Apollo, and OS/2 (in beta). Ob-
jec t S to re [Lamb et al. 91], from Object Design Inc.
was first available in 1990. The current Release 1.1
has two platforms: UNIX and Windows 3.0. The 0 2
S y s t e m ([Deux et al. 91], [Bancilhon et al. 90a])
product of 02 Technology, France, was released in
early 1991, and operates on Sun workstations. It will
be ported to the HP-9000 and to MIPS processor-
based workstations in the future. All three systems
have a client/server architecture.

O b j e c t S t o r e utilizes one server to support many
client workstations. Each workstation can simultane-
ously access multiple databases on many servers, and
is it also possible for a server to be resident on the
same machine as a client.

An ObjectStore application requires 3 auxiliary
processes:

Server. The server handles all access to an
ObjectStore file system, including a storage and
retrieval of persistent data. A single application
can use several databases, including databases
on different file systems, which are handled by
different servers.

• Directory Manager. ObjectStore organizes
databases into logical directories. Two databases

S I G M O D R E C O R D , Vol. 21, No. 1, March 1992 93

in the same directory may be stored on different
disks. The Directory Manager manages a hier-
archy of directories, and maintains permission
modes, creation dates, owners, and groups for
each entry. Each site has one Directory Man-
ager and one or more Servers.

• Cache Manager. Each node running one or
more ObjectStore applications has a single
Cache Manager, which manages each applica-
tion's client cache of this node.

ObjectStore transfers referenced da ta by segment or
by page across the network to an application cache.
Transfer between an application's cache and it 's vir-
tual memory occurs on the page level.

In O N T O S , a client is created by linking the ON-
TOS Client Library into a C + + application. The
server is a process which runs on every node, con-
taining a portion of the database called an area. The
Binder performs functions similar to the ObjectStore
Directory Manager, but cache memory is managed
by the server, i. e. there is a server cache instead of a
client cache. A segment is a single unit of disk access
and data transfer.

The 0 2 S y s t e m has the O2 Engine as its core. It
has three layers:

• The Schema Manager creates and processes
classes, methods, and global names

• The Object Manager is responsible for object
identities, and implements persistence and inher-
itance

• The Wisconsin Storage System (WiSS) [Chou et
al. 85] is a storage system providing files, ob-
jects, and indices plus concurrency control and
recovery services[Deux et al. 91a]

On the client, an application and the workstation ver-
sion of WiSS form one unique process. The server can
service one or more terminal application processes
[Velez et al. 89]. The unit of transfer between the
server and the client is a page, i.e. 02 implements a
page server architecture [Deux et al. 91], as well as
ObjectStore and ONTOS. The server does not need
to be able to run user methods for this architecture.
02 used an object server model for a previous ver-
sion [DeWitt et al. 90], but the overhead was too
expensive.

3 U s e r interfaces and deve lop-
m e n t too l s

O b j e c t S t o r e offers a choice of a C library interface,

a C + + library interface, or a DML preprocessor in-
terface.

The C library interface and C + + library interface
(implemented by the cpp macros facility) preserves
the investment in existing C and C + + applications,
and leverages current C or C + + compilers. However
these interfaces give an access only to one of tools -

B r o w s e r .

The DML preprocessor interface reduces the
amount of code a user must write and offers advanced
features such as parameterized types and query ex-
pressions. This development is provided a full set of
tools: Schema Designer, Browser, and Debugger.

ObjectStore provides a low-cost migration path
that allows users to easily:

1. convert a C program to a C + + program

2. convert C da ta stored in existing file systems to
an ObjectStore database

3. integrate existing applications and libraries writ-
ten in C with new ones written in C + +

Converting a C application to use ObjectStore can
be done easily. In order to make C data structures
persistent 4 steps are required:

1. Declare the database

database *current_db

2. Open the database and insert transaction bound-
aries

current_db=
database::open(''path/filename~');

do_¢ransactions (){
<existing C application code>

>;

3. Change references to "malloc" to "new(db)" in
the existing C application code

4. Delete the code that reads and writes C data
structures from disk

ObjectStore manuals provide an example of an appli-
cation program, where 134 lines of the C application
code are transformed to 48 lines of "C with Object-
Store". application code after conversion by deletion
of reads and writes. Only 6 lines of 48 are new or
changed.

ObjectStore provides the following tools:

* Schema Designer: an interactive graphical de-
sign tool for developing, viewing, and evolving
class schemas.

94 S I G M O D R E C O R D , Vol . 21, No. 1, M a r c h 1992

• Browser: a graphical tool for inspecting the con-
tents of the database.

• Debugger: the extension of the GNU debugger,

ONTOS provides a C++ interface and the ON-
TOS SQL interface to application developers. The
ONTOS Classify utility is a schema compiler. It
reads C++ class definitions contained in C++ header
files and creates a corresponding database schema.
The schema can alternatively be created by the ON-
TOS DBDesigner tool. The ONTOS cplus utility
is a preprocessor used to compile C + + files contain-
ing implementations of persistent classes. The code
added by the utility performs initialization required
for an object activation and procedure invocation. All
source files containing implementations of activation
constructors must be compiled using this utility.

ONTOS supports a hierarchy of Type Definition
Classes, including schema definition classes describ-
ing each element of the class definition and access
method iterators. The description of metaclasses
allows one to define new classes and use them dy-
namically in extensible, interpretive applications. In-
stances of these classes, representing user-defined ob-
jects, are generated automatically by the Classify
utility. Such classes are contained in ONTOS Class
Library along with other ONTOS-provided classes,
like Object, Iterator, Aggregate and others.

The ONTOS SQL interface provides SQL access
to ONTOS interactively and via programs.

The ONTOS DBDesigner , a visual interactive
schema designer and database browser, can be used
to design, examine and modify the database schema
and instances, and to create new object classes.

The 02 Sys tem supports two types of interfaces:
the 02 environment - 02 Tools, and language inter-
faces (now for C and C++). 02 Tools is a front-end
graphical programming environment, implemented as
an 02 application. 02 Tools allows access to 02 util-
ities:

• The 02 shell provides facilities for dynamic cre-
ation and modification of a database schema as
well as creation, compilation, and execution of
CO2 programs. CO2 is an object-oriented ex-
tension of the C language for writing 02 appli-
cation programs and method bodies. 02 Query
is embedded in CO2, but may also be used inde-
pendently as an interactive language.

• The browser for a schema and database.

• A debugger for the interactive maintenance of ap-
plications.

• The interactive mode of O2 Query for monitor-
ing of the contents of the database.

• 02 Look, an interface generator tool. It is
used to visualize, edit, and walk through the
database schema and instances, including mul-
timedia data.

O2 Look is the most powerful graphical tool to dis-
play complex objects we evaluated. It was imple-
mented using the Motif toolkit. Any 02 object or
value can be displayed on the screen with 02 using
the generic editor, which also permits modification to
displayed data. The generic editor associated with an
Object is a part of a presentation, which appears in a
virtual screen (a resizeable window of the X-Window
system). The presentation may be moved around on
the screen, and has buttons to record changes, move
the presentation to the foreground or background, or
erase the display.

An editor associated with a complex object is com-
posed of several subsidiary editors. The tuple edi-
tor, for example, which is the most commonly used,
may contain any or all of the other editors. Each
editor supports standard operations such as copying,
cut-and-paste and erase. An editor associated with
an 02 object contains a menu of standard entries of
displaying and printing formats and public methods
of the object. When users select attributes on the
screen they automatically select an editor of the ap-
propriate type. There are special editors for charac-
ters, booleans, tuples, list, sets, bitmaps, and text,
each with unique additional functions and menus. In
Look, the object structure is interpreted, so users can
edit and rebuilt presentations without code modifica-
tions. 02 provides a set of primitives to manipulate
object presentations. Primitives may be included in a
CO2 application program to describe and manipulate
the Look object presentation.

The C and C++ interfaces are implemented with
an export/import of classes to/from 02. Applica-
tions written in C may use O2 to store their data as
persistent. However, these interfaces are not as seam-
less for C++ applications as in ONTOS and Object-
Store. For example, in order to use C class Person
into O2 a user must include import from C schema
command:

import ''path/filename'' class Person from C;

A number of new C facilities would be available
for the application from 02 as a result of the import
implementation:

• typedef for O2.Person to declare C variables of
the 02 class Person

S I G M O D RECO RD, Vol. 21, No. 1, March 1992 95

• Person_new, Person_read, and Person_wri te
functions to create 02 Person objects, read them
into C structures and write C structures into
them

Summarizing our presentation of the user interfaces
and tools, we note that the ObjectStore user interface
is oriented only to application designers, whereas ON-
TOS and O2 support interactive database processing
as well. However, ObjectStore has special facilities to
support low-cost migration of old programs.

4 D a t a m o d e l s and pers i s t ence

The systems use the following terminology for a data
description:

ONTOS ObjectStore 02

type class class
property data member attr ibute
procedure member function method

ONTOS and ObjectStore use C + + Release 2.0 to
describe program data, and extend it by adding fa-
cilities to provide object persistence.

In O N T O S all persistent objects are instances of
some persistent classes. A separation of classes for
persistent and transient is made at the level of a class
description. All persistent classes must be derived
from a superclass - the client library class Object. A
database schema is defined by all persistent classes,
each of them has a C + + class description. Classes
in ONTOS often are named by types to provide a
denotative class description. Types differ from classes
in two aspects.

1. Types are denotable, i. e. it is possible to declare
a variable as a pointer to a type. Denotable
types, the representations of classes, enable an
application to create new types at run-time.

2. ONTOS types may have an ex tens ion - the col-
lection of all instances of the type, which is useful
for writing queries.

Class descriptions are stored in header files and
loaded into a database by the ONTOS classi fy util-
ity. A persistent class description must satisfy the
following criteria:

1. derivability from the class Object,

2. a special constructor member function (in addi-
tion to the usual C + + constructor) must be in-
cluded. It is used to search for an object in the
database and move it to an application program,

3. a get Direct Type member function must be in-
cluded to return a pointer to the persistent ob-
ject of the class in order to access it from a pro-
gram,

4. if a class description has a destructor, then a
Destroy function must be added to run when any
exceptions are raised,

5. if a class description contains an operator new,
then its signature must be identical to that which
is used by ONTOS to Mlocate memory for a
newly allocated object.

ONTOS supports object references of two types:
direct references implemented as C + + pointers, and
abstract references - instances of the ONTOS system
class Reference. Abstract references allow a user to
ignore whether an object pointed to by a reference
is in memory or not. The method binding of the
class Reference returns an in-memory pointer to the
object, activating it (reading it from a database) if
necessary. In general there are three main ways to
activate objects in ONTOS:

1. using a system function to activate an object by
n a m e

Object* OC_lookup (char* objectName)

2. using a system function to activate an object by
direct reference

Object* OC_direct Activate Object
(Entity** fieldAddress)

3. using an activation via an abstract reference

Entity* Reference::Binding
(Entity* context)

Abstract references also allow the use of differ-
ent memory management techniques for different in-
stances of a class. Each abstract reference is associ-
ated with a certain context - an instance of a special
storage manager based class. When an abstract refer-
ence is created or reset to refer to a particular entity,
its associated context stores a 32-bit value into the
reference. This value denotes the entity. A binding
method having a context as its argument allows the
context to interpret that 32-bit value as a reference

96 S I G M O D R E C O R D , Vol . 21, No. 1, M a r c h 1992

to the original entity and return a pointer to this en-
try. Different contexts may implement different im-
plementations of the same 32-bit reference value. We
can see that abstract references take an extra indi-
rection but improve flexibility.

Object names are organized in directories. Direc-
tories themselves are ONTOS objects. The ONTOS
system lookup function provides searches of names in
directories.

ONTOS supports a multiple inheritance as in C + +
2.0. There are some restrictions, however: 1) virtual
persistent base classes are not allowed, 2) persistent
base classes have to be public, 3) multiply inheritable
classes can not be created dynamically.

Here is an example 1 of ONTOS class descriptions
containing three classes:

• class Person with fields Name, Age, and Chil-
dren,

• Person subclass Employee with field Employers,

• class Company with fields Name, Employee.

c l a s s Person: p u b l i c Object{
p r i v a t • :
Char* name ;
Int age ;
Reference children;

public :
Person (C h a r * n a m e) ; / / 1
Person (APL* theAPL); / / 2
"Person () ; / / 3
virtual Type* get Direct Type (); / / 4
virtual void Destroy

(Boolean aborted=FALSE) ; / / 5
virtual void put Object

(Boolean deallocate=FALSE) ; // 6
virtual void delete Object

(Boolean deallocate=FALSE) ; // 7
Char* Name () { r e t u r n name }; / / 8
Int Age () { return age }; // 9
Set* Children () { return (Set*)

children.Binding (this); }; // I0
void Name (Char* newname)

{ name=new_name }; // 11
void Age (Int years) { age=years }; // 12
void Children (Person* new_kid)
{ ((Se t*) children.Binding

(this))->Insert (new_kid) ; } ; // 13
};

1Exaznples in th i s p a p e r a re i n t e n d e d on ly to i l lus t ra te
the genera l cha rac t e r i s t i c s of s y n t a x in t h e var ious s y s t e m de-
sc r ibed , a n d h a v e n o t ac tua l ly been t e s t ed on t he t a rge t sys-
t e m s . As a r e su l t , t h e s y n t a x is n o t g u a r a n t e e d to be to ta l ly
a c c u r a t e or c o m p l e t e .

c l a s s Employee: pub l i c Person{
p r i v a t e :

Set* inverse Company.employers employees;
p u b l i c :

Employee (Set* Company); / / 1
Employee (APL* theAPL); / / 2
"Employee () ; / / 3
v i r t u a l Type* ge t D i r e c t Type () j / / 4
v i r t u a l vo id Destroy

(Boolean aborted=FALSE); / / 5
};

class Company: public Object{
private:

Char* name;
Set* inverse Employee.employees employers;

public:
Company (Char* name); / / 1
Company (APL* theAPL); // 2
"Company () ; / / 3
v i r t u a l Type* ge t D i r e c t Type () ; / / 4
v i r t u a l vo id Destroy

(Boolean abortedfFALSE); / / 5
v i r t u a l vo id put Object

(Boolean deallocatefFALSE); // 6
virtual void delete Object

(Boolean deallocate=FALSE); // 7
>;

Apart from a normal constructor (1) an ONTOS
class definition also takes a special constructor (2)
used during activation. (3) is a destructor. (4) and
(5) are obligatory special member functions. (6) and
(7) are optional member functions to write/delete an
object to/ f rom a database. (8)-(10) are read acces-
sots, and (11)-(13) are update accessors for particular
properties. The children property in the class Person
is described as an abstract reference, an instance of
class Reference, that is why we cast it to Set* type
in (13). Member functions (6) and (7) are inherited
in the class Employee from the class Person.

O b j e c t S t o r e has no special persistent class. Each
object can be declared as persistent when it is de-
clared. Classes created in an application are added
to the schema during compilation. At run time, if an
object is written to a database then its description is
added to the schema. Schema information is stored
in a separate ObjectStore database.

A search of persistent objects in the database is
done via navigation from other persistent objects us-
ing data member pointers, or via queries performed
over persistent collections. A retrieve of an ini-
tial persistent object, i. e. an entry point of the
database, is accomplished through the use of either
database roots or persistent variables. The Object-

SIGMOD RECORD, Vol. 21, No. 1, March 1992 97

Store class database has member functions: create,
destroy, open, close. A database root can be cre-
ated as a variable of the system class database root
by using the database claw member function create
root. Another system function of this class, find, re-
turns a database entry point. A persistent variable
declaration with an initializer automatically creates
a database root which is the variable name, and it
has the value of the initializer as its initial value.

ObjectStore differs from ONTOS in that it doesn't
require constructors in addition to those required by
C + + , nor does it require object access functions. Ob-
jectStore also provides global overloaded persistent
New and Delete functions.

Both ONTOS and ObjectStore support an inverse
data member concept inherited from Vbase [Andrews
et al. 87]. Data members can be declared as inverses
of one another. Inverses model bidirectional links,
and support referential integrity in an easy way.

Our example takes the following form in Object-
Store:

extern database *dbl
class person
K

public:
persistent <dbl> set <person*> extent;
char* name indexable;
int age;
set <person*> children;
person (char* person_name, int years,

set <person*> kids)
{name=person.name; age=years;

children=kids;
extent.insert((person*)this);>;

"person () ~extent.remove (this)>

class employee
(

public:
set <company*> employers

inverse-member employees;

class company

public:
char* name;
set <employee*> employees

inverse-member employers;

The Person name is indexable. This facility is pro-
vided explicitly in ObjectStore and in 02 System.
ONTOS allows indexes only on aggregate classes.
Member functions consist of a constructor and de-

structor. They use insert 0 and remove 0 functions
to add/delete a new object to / f rom a repository, im-
plemented in our example with the variable named
e2:.lent. The extent of a class is a collection contain-
ing pointers to all its instances. It is described as
a persistent data member. Persistent data members
are a special kind of persistent storage. Class extents
are used often as database entry points.

In the 0 2 S y s t e m a database schema is described
using O2 shell commands. A data model is based on
three fundamental ideas - a value; object, and name.
Values are entities of O2. Values can be atomic or
have a complex structure and can be grouped into
types. Complex values are represented by tuples,
lists, sets, and their compositions. An object has
a value, identity, and a set of methods. If a value
acquires an identity and a set of methods, and is in-
eluded into a class, then it is transformed into an ob-
ject, i. e. the value is encapsulated by the class. An
object itself is a pointer to access the encapsulated
value. An object and a value can be made persis-
tent by executing the name instruction. Since whole
classes or separate objects can be declared persistent,
the specification of persistence is as flexible as in Ob-
jectStore. The separation of objects and values al-
lows construction of data structures both inside and
outside of the class system. Named values allow, in
particular, creation of a set of values as a repository
for all or some objects of a particular class.

02 provides an interactive style of a schema cre-
ation. Users can interactively add applications,
classes, methods, attributes, names (either for class
objects or for instances of types), and programs.
They can also bind arguments to methods, define
bodies of a method with CO2 instructions, delete
classes, methods, and instances, and make class at-
tributes and methods private or public dynamically.
They can run application programs and execute CO2
instructions. O2 programs are grouped by applica-
tions (named groups of programs) and are related
to a particular database. A user can launch sepa-
rate programs, or complete applications using the O2
shell.

A method body is implemented using the C02
programming language. Since the actual choice of
method (called binding) is done at run time, the
schema of methods may be changed at any time with-
out recompiling existing methods. Method version-
ing is allowed, and the rename command can choose
a method version.

The 02 type system supports multiple inheritance.
The common subclass can either define its own im-
plementation of an ambiguous method (overwriting),
or it can specify which superclass to inherit a method

98 S I G M O D R E C O R D , Vol . 21, No. 1, M a r c h 1992

from with the .from qualifier.
Obligatory constructors and destructors, used in

C + + , are missing among O2 methods. Object ini-
tialization is the responsibility of the user describ-
ing the class. Adding and deleting objects to / f rom
the database is done with the add/delete name com-
mands. Late binding allows dynamic addition of new
methods.

Our example in O2:

add c l a s s Person
t y p e t u p l e (name: s t r i n g ,

age: i n t ,
c h i l d r e n : s e t (P e r s o n)) ;

method i n i t () : person in c l a s s Person
is public; //I

p u b l i c read name, read age, read
c h i l d r e n in c l a s s Person;

p u b l i c w r i t e name, w r i t e age, w r i t e
children in class Person;

add class Employee
inherits Person
type tuple (employer: set (Company));

public * in class Employee;

add class Company
type tuple (name: string,

employers: set (Employee));
public * in class Company;

add name The_persons: set (Person); //2
add name The_employees: set (Employee); //3
add name The_parts: set (Company); //4

execute C02 ~ The_persons=set ();}$;
execute C02 ~ The_employees=set ();}$;
execute C02 ~ The_parts=set () ;~$;

body init (): Person in class
Person C02(

02 Person new_person;
The_persons += set (new_person);
return (new_person);
~$;

~IS
l i e
117
118

(1) is an initialization method signature. Its body
(5)-(8) is described using CO2 instructions. Each
of the classes Employee and Company includes the
public* instruction, which makes its structure public.
The attributes of the class Person are rendered public
by the public write command.

In addition to the three classes, there are three
named values (2)-(4), one corresponding to each class.
The named values are used as repositories for the

objects of the classes. Moreover, objects which are
members of these named sets are persistent.

5 Aggregates

Each of the systems provide ample opportunities to
develop data aggregates.

In O N T O S the aggregates are represented by the
persistent class aggregate and its derived classes: set,
list, and association. The last one itself has sub-
classes array and dictionary. The aggregate class
defines some common properties for all subclasses:
i) memberSpec, which return a type of the aggre-
gate, and 2) cardinality, returning the number of
objects. Aggregates also specify a number of proce-
dures: isMember, isSubSet, checkMemberSpec, getIt.
erator, getClusterSize, putCluster. Each of the aggre-
gates defines an isSimilar procedure, which checks if
the members of two Aggregates are of the same class
and are organized in the same way. The aggregate
functions generally apply to a particular member or
the entire aggregate. Functions for individual mem-
bers include lnsert, setMember, Remove, the [] get
membei" operator , and isMember.

Each of the leaf aggregate classes - list, array, dic-
tionary, set - has an associated nonpersistent auxil-
iary iterator class. Iterators query aggregates sequen-
tially, usually over a user defined range. All aggregate
iterators follow a similar protocol. Each of them de-
fines a constructor, a Reset function, a moreData
function, and a () operator, returning the aggregate
elements one by one. An iterator enables access to
all or a specified subset of the aggregate elements.

The functions copy and activation handle entire
aggregates. The copy constructor is defined for each
aggregate class. Inactive elements are not copied by
the copy constructor. Tha t is why the copy construc-
tor is more efficient for making copies than iterating
over the aggregate and inserting the elements into a
new aggregate one by one.

The set class is implemented with linear hashing to
allow for growth in the number of set elements. There
are insert and delete functions, the SetIierator class,
a copy constructor, isSimilar, isSubSet, and deacti-
vation functions putObject, putCluster. The set of
functions is modest, but can be expanded very easy.

The list class has the ListIterator, insertion, updat-
ing, removal of elements and other function, specified
in the class aggregate. Why was the Iterator is in-
troduced? The efficiency of a for loop would have
been far worse because it would have required start-
ing from beginning of a list for each loop iteration.
The reason is the C + + for loop does not know inter-

S I G M O D R E C O R D , Vol. 21, No. 1, M a r c h 1992 99

nals of the list object.
Associations- the array and dictionary classes - are

classes whose every member is associated with a key
or an index. Array indexes cover a continuous range
of integers. Arrays can be resized by specifying new
bounds. Dictionaries may be ordered or unordered
and may or may not allow duplicates. Ordered die.
tionaries use B* tree access structures. Unordered
dictionaries use a linear hashing algorithm.

O b j e e t S t o r e provides three aggregate classes,
called collections: Set, Bag, and List. The func-
tions insert and delete are supported for Set and Bag
classes. The ObjectStore foreach loop operator was
added to C + + to search elements instead of the it-
erators in ONTOS. Elements of sets and bags are re-
stricted to pointer types only for the current release.

The classes Set and Bag are parameterized with the
types of their elements. The parameterized classes of
ObjectStore have been approved as an ANSI draft
s tandard version for a future C + + release.

The classes Set and Bag have four constructors:

• empty collection constructor

• copy constructor

• conversion constructor to transform a set into a
bag and visa versa

• singleton constructor to create a collection with
one specified value

The classes Set and Bag define a number of set-
theoretical operations like a union, difference, inter-
section, and many others. Sets and bags can be mixed
in these operations. Arguments may also be not only
collections, but elements as well.

ObjectStore provides a variety of ways to control
i teration order by describing a path expression on
data members. Class instances are processed in or-
der of the da ta member values. The data members
mentioned in the path expression must be declared
as indezable.

Updates performed within an iteration to the data
member controlling the iteration order are dangerous.
For example, if values of a data member, defining an
access path of a foreach loop, are changed in the loop
body, these values could be visited again. The same
problem exists in ONTOS as well.

Adding or deleting indezable declaration forces a
recompilation of the class declarations and a reorga-
nization of all existing persistent objects too.

If the foreach loop doesn't provide sufficient con-
trol over the iteration process for some applications,
ObjectStore supports access to elements of collections
using a cursor facility. The cursor class includes

member functions to create and move cursors, and
retrieve an element by cursor. Cursors provide much
more elaborate and flexible ways to retrieve elements
of collections than does the foreach loop.

The 0 2 S y s t e m supports three structured types:
sets, lists, and tuples. The specification of a class
contains three parts: the identifier of the class, the
type specification, and a list of methods. A usage
of the tuple type as the type specification makes the
description of class at tr ibutes very convenient.

The most impor tant set operations in 0 2 are:

union, intersection, and difference

addition, removal, and membership testing of el-
ements

filters - an extraction of a subset specified by a

condition

conversion of a list to a set

iteration: for i in X {instruction}, where the
variable i must be of the same type as the ele-
ments of X. A when modifier may optionally be
added to restrict the iterations to a subset of X

Some interesting list operations are:

• concatenation

• append

• testing membership

• extracting and modifying elements

• extracting a sublist

• filters

• conversion of a set to a list

Lists, sets, and tuples can be integrated into more
complex structures by arbi t rary composition.

6 Query Facilities

An O N T O S user can write queries using C + + or
Object SQL. The ONTOS C + + interface supports
the Instance Iterator class which defines an iterator
tha t yields all the instances of a given type. The us-
age of-the instance iterator is possible only if the class
is described as a type, that is it has an extension. The
Iterator class is abstract (i. e. without instances) non-
persistent ONTOS class, having a few derived classes
- Array Iterator, Instance I terator and others.

The ONTOS lookup function, allocated in the it-
erator body, activates a named object. Consecutive

100 S I G M O D R E C O R D , Vol . 21, No. 1, M a r c h 1992

executions of the iterator in the loop body return all
instances of the given class. The search is performed
by name on the hierarchical directory.

Object SQL is implemented with a single class
called Query Iterator, which allows queries to be
stored as objects in the database. Each instance of
this class represents a particular query. The results of
the query are obtained by calling the yieldRow mem-
ber function. Each call returns the next row of re-
sults, like a FETCH statement of a relational SQL. A
query has a usual "SELECT . . . FROM . . . WHERE"
form. Query iterators support recursive and hierar-
chical queries. The FROM clause in Object SQL ac-
cepts any argument that evaluates to a collection of
objects in addition to class names. The SELECT
clause accepts property names as well as member
function invocations and navigational-style property-
chain expressions, like person.children.children.age
for the grandchildren's age of our class Person.

An example of an Object SQL query using ONTOS
C + + notation:

Katity *cturrent_name
QueryIt erator query=(

'°Select Children.name
From Employee
Where Employers="Ford") ;

while (Query.more Data ())
Query. yieldRow (current_name)
<process data>

}

Indexes in ONTOS are created with Association
Constructor at compile time and can't be created or
destroyed dynamically.

O b j e e t S t o r e provides data navigation with stan-
dard C + + facilities, expanding them with an associa-
tive data processing facility - a DML query expres-
sion. The query expression has a form

expression 1 [:expression e:]

where the expression 1 is a collection and the ex-
pression 2 bounds selected elements. Queries may
be nested. Queries can process Bag and Set classes,
but queries involving List class instances are not sup-
ported by the ObjectStore release 1.1.

A C + + loop could express the identical actions ex-
ecuted by the query expression, but the introduction
of a special construction for queries improves opti-
mization opportunities. A user can influence opti-
mization with dynamic creation and deletion of in-
dexes. The creation of an index on a complex path,
i. e. on the path over a few layers of a data hierarchy,
involves the creation and maintenance of indexes on
each layer. The indexes are implemented with hash

tables for unordered indexes, and with B-trees for
range queries.

An example of a query in ObjectStore is

set <employee> selected_employee=employee
[: employer="Ford" :]

This query expression doesn't provide a selection
of children's names. The user has to yield them by
processing se lec ted_employee in his C + + program,
or can use aforeach iterator with a variable a_path as
a parameter, where a_pa th define~ a path of length 2

a_path = pa thof (employee*, chi ldren->name) ;

The 0 2 S y s t e m provides the CO2 language,
an object-oriented extension of C, to describe both
methods and queries. The 02 query language [02
Technology 91c] may be used to write associative
queries in CO2 programs as well. A query has an
SQL-like form

select arg_l from arg_2 inset_or.list.name
where condition

A query in CO2 always returns either a set value or
a list value, and therefore it can be treated as a set
or list value in the CO2 program or method. 02
queries may be integrated into CO2 or may be used
autonomously as an interactive language. Only O2
supports queries against heterogeneous collections in-
cluding lists and sets together.

In the O2 query language our example is:

select tuple (e . c h i l d l e n . n a m e)
from e in Employee
where "Ford" in e.employers

7 T r a n s a c t i o n m o d e l s a n d con-

c u r r e n c y c o n t r o l

0 2 supports conventional transactions and performs
concurrency control with a two-phase locking pro-
tocol on files and pages. Concurrent access to ob-
jects is handled by WiSS used as the low-level Ob-
ject Manager layer [Velez et al. 89]. However, an
application can not run more than one transaction
at any particular time. The CO2 language includes
only commit and abort commands for transactions.
Restarts, checkpoints, and nested transactions are
not provided.

Both ONTOS and ObjectStore provide a number
of options to support a concurrent application execu-
tion. O b j e c t S t o r e supports conventional transac-
tions, including nested transactions, and long trans.
actions.

S I G M O D R E C O R D , Vol. 21, No. 1, March 1992 101

Conventional transactions may be described in one
of three ways:

• transaction statement - for applications using
DML

• cpp macros - for applications using only the
C++ library interface

• the above methods describe only static, lexical
transactions. For dynamic transaction bound-
aries member functions transaction::begin () and
transaction::commit 0 of the ObjectStore trans-
action class are used

The transaction ::abort 0 function, executed
within nested transactions, provides a way to abort
the innermost transaction or the outermost one.
However, no locks are released until the outermost
transaction is terminated. Lexical transactions ex-
ecute redo after system aborts, but dynamic trans-
actions do not. Read-Only transactions may be de-
clared to increase performance. Long transactions
are used for no-conflict concurrency control to sup-
port the cooperative group model.

O N T O S implements both conservative (conven-
tional) and optimistic concurrency control. With an
optimistic policy readers and writers do not conflict,
but it increases the risk of a preemptive transaction
abort compare with a more conservative policy. The
optimistic policy allows a read lock to be set on an
object that already has a write lock if the conflicting
transactions can be serialized (as if one transaction
occurs entirely after another). The ONTOS transac-
tionCheckpoint function can be used to provide ad-
ditional points of t ime to serialize transactions. ON-
T 0 S supports two lock-resolution options: waiting
until the lock is relinquished or conflict notification.

The 0 N T O S buffering policy allows:

• no buffering (immediate write)

• write is performed after about ten put operations
(the default policy)

• write is performed either when the transaction is
commit ted or the buffer is full

Cache cleanup functions may be executed after the
commit of one transaction and before the start of
another one. The options for a cache cleanup are:

• all objects are deallocated

• no cache cleanup

• objects are maintained in a form to be used by
a following transaction

• selective cache refresh to reread only modified
objects

ONTOS also has a nested transaction facility tha t
is analogous to ObjectStore.

8 ObjectStore Cooperative
Group Model

Today, with increasing applicatic)n design complex-
ity, it is impor tant tha t application team members
be able to create new objects or new object versions
without overwri t ingsomeone else's work, as well as
preventing new versions from use by others. In addi-
tion we would like to keep our t emporary versions as
private.

ObjectStore proposes very at t ract ive facilities to
provide cooperative group work. This feature is no-
tably absent in the other systems. A user can check
out groups of objects, make changes, and checks
them back in to the main development branch. The
changes may be visible to other team members. The
cooperative group work supports configurations of
objects tha t are treated as a single versioned unit,
workspaces as environments for access and update
of versioned object configurations, and no-conflicl
concurrency control. The same application can ac-
cess both versioned and nonversioned instances of
the same type. The virtual memory mapping archi-
tecture allows no penalty for access to non-versioned
data.

The new operation has a configuration argument
to allocate a new object into a configuration. Groups
of objects can be placed into a single configuration
and treated as a single unit for versioning. The con-
figurations may be nested.

A user designates a workspace to control access to
versioned data in configurations via an argument of
do_transaction. Workspaces are created to perform
a set of tasks. Multiple users can selectively control
access to each other 's work in progress through the
use of nested workspaces. If a user has a workspace
and configuration, he can check out the configuration
into the workspace to work on it. It creates a new
version, but the version is visible only from the user's
private workspace. Transactions always operate in
the context of the current workspace. When the work
is done, the user checks in the configuration to make
the new version visible in the parent workspace to
other team members.

A versioned object can be changed only if its con-
figuration is checked out. Checking out freezes the
old version of every object in the configuration. But

102 S I G M O D R E C O R D , Vol . 21, No. 1, M a r c h 1992

Features J~ ObjectStore J~ ONTO S__~.__Q2__~
+ page server architecture

SQL-like interface
graphical schema designer
graphical browser
graphical data editor
debugger
C + + interface
easiness of existing C and C + + program migration
persistence at the level of objects rather then at the class level
metaclass support
indexing
inverse data members
explicit object deletion instead of garbage collection
dynamic adding new classes
data aggregate support
query optimization (simplistic)
conventional transaction
nested transactions
long transactions
optimistic transactions
fault recovery
cooperative group model

+
+

+
+
+
+

+
+
+

+
+
+
+
+

+
+

+
+
+
+
+

+

+
+2
+
+
+
+

+
+

+
+

Figure 1: Features of ObjectStore, ONTOS, and O2

the workspace hierarchy is a dynamic structure, de-
scribing how users share the data of the configuration
hierarchy.

No-conflict concurrency control is appropriate
because users have private versions of configura-
tions. Privately checked out versions are guaranteed
conflict-free: they will never interfere.

9 C o n c l u s i o n

Each of the systems discussed has a modern
client/server architecture and offer a number of in-
terfaces and tools for object-oriented application de-
velopment.

We summarize particular system features in the
Figure 1.

10 A c k n o w l e d g m e n t s

I am grateful to Alberto Mendelzon for starting me on
the line of research presented here, to David DeWitt
and Kurt Brown for their helpful comments on earlier
drafts.

2ONTOS supports only static indexes for associations.

R e f e r e n c e s

[Andrews et al. 87]

[Atkinson et al. 89]

[Bancilhon et al. 90a]

[Bancilhon et al. 90b]

T. Andrews, C. Harris. "Com-
bining Language and Data-
base Advances in an Object-
Oriented Development Envi-
ronment", Proceedings of the
2nd OOPSLA , 1987, 430-440.

M. Atkinson, F. Bancilhon,
D. DeWitt, K. Dittrich, D.
Mayer, S. Zdonik. "The Ob-
ject-Oriented Database Sys-
tem Manifesto", Proceedings
of the 1st Intl. Conf. on De-
ductive and Object-Oriented
Databases, Kyoto, Japan, De-
cember 1989, 40-57.

F. Bancilhon, P. Bridon, M.
James. "The 02 Object-ori-
ented DBMS", Rapport Tech-
nique, Altair 58-90, October
1990.

F. Bancilhon, W. Kim. "Ob-
ject-Oriented Database Sys-
tems: In Transitions", SIG-

SIGMOD RECORD, Vol. 21, No. 1, March 1992 103

[Chou et al. 85]

[Deux et al. 91]

[DeWitt et al. 90]

[Kim et al. 89]

[Lamb et al. 91]

[Manola 89]

[Object Design 90a]

[Object Design 90b]

[Ontologic 91]

[02 Technology 91a]

MOD RECORD , 19(4) De-
cember 1990, 49-53.

H.-T. Chou, D. DeWitt, R.
Katz, A. Klug. "Design and
Implementation of the Wis-
consin Storage System", Soft-
ware - Practice and Experi-
ence, 15(10), October 1985.

O. Deux et al. "The 02 Sys-
tem", CACM, 34(10) October
1991, 34-48.

D. DeWitt, P. Futtersack, D.
Maier, F. Velez. "A Study
of Three Alternative Work-
station- Server Architectures
for Object Oriented Database
Systems", Proceedings of the
16th VLDB Conf., 1990, 107-
121.

W. Kim, F. Lochovsky (eds.).
"Object-Oriented Concepts,
Databases, and Applications",
Addison- Wesley (ACM Press)
,1989.

C. Lamb, G. Landis, J. Oren-
stein, D. Weinreb. "The Ob-
jectStore Database System",
CACM, 34(10) October 1991,
50-63.

F. Manola. "An Evaluation
of Object-Oriented DBMS De-
velopments", GTE Laborato-
ries, Technical Report TR-
0066-10-89-165, October 31,
1989.

Object Design Inc. "Object-
Store User Guide", Release
1.0, October 1990.

Object Design Inc. "Object-
Store Reference Manual", Re-
lease 1.0, October 1990.

Ontologic Inc. ONTOS De-
veloper's Guide", Version 2.0,
February 1991.

02 Technology. "The 02 Us-
er's Guide", Version 2.2, May
1991.

[02 Technology 91b]

[02 Technology 91c]

[Velez et al. 89]

[Zdonik et al. 90]

O2 Technology. "The 02 Ap-
plication Designer's Manual",
Version 2.2, May 1991.

O2 Technology. "The O2 Pro-
grammer's Manual", Version
2.2, May 1991.

F. Velez, G. Bernard, V.
Darnis. "The 02 Manager:
an Overview", Proceedings of
15th VLDB, 1989, 357-366.

S.B. Zdonik, D. Maier (eds.).
"Readings in Object-Oriented
Database Systems", Morgan
Kaufmann Publishers, 1990.

104 SIGMOD RECORD, Vol. 21, No. 1, March 1992

