A PERFORMANCE STUDY OF CONCURRENCY CONTROL
IN A REAL-TIME MAIN MEMORY DATABASE SYSTEM

Le Gruenwaid

Sichen Liu

School of Computer Science
The University of Oklahoma
Norman, OK 73019

ABSTRACT Earlier performance studies of
concurrency control algorithms show that in a
disk-resident real-time database system,
optimistic algorithms perform better than two
phase locking with higher priority (2PL-HP). In a
main memory real-time database system, disk
1/Os are eliminated and thus more transactions
are enabled to meet their real-time constraints.
Lack of disk 1/Os in this environment requires
concurrency control be re-examined. This paper
conducts a simulation study to compare 2PL-HP
with a real time optimistic concurrency control
algorithm (OPT-WAIT-50) for a real time main
memory database system, MARS. The results
show that OPT-WAIT-50 outperforms 2PL-HP with
finite resources.

1. INTRODUCTION

In a real-time database system (RTDBMS),
transactions are not only executed correctly but
also completed within their deadlines. This system
is needed for many applications in which meeting
transaction deadlines is crucial. ([Son, 1992],
[Ulusoy, 1992]). For example, in
telecommunications, transactions supporting call
setups and timestamp for billing information must
be completed in a very short amount of time. In
radar systems, database operations involved in
recognizing, tracking, and controlling objects must
meet real-time requirements to be of any use. To
ensure that transactions (or the majority of
transactions) will meet their deadlines, among
many issues that a RTDBMS designer must be
concemed about is concurrency control.
Specifically, the designer must provide an answer
to each of the following questions: Should locking
or time-stamping or optimistic be used? What kind
of transaction priority assignment should be
employed? If locking is used, then how priority

inversion should be handled?

Earlier studies of concurrency control
algorithms based on locking and optimistic
approaches have addressed the problems of
concurrency control in RTDBMS ([Abbott, 1988],
[Abbott, 1989], [Carey, 1989], [Haritsa, 1989,
1990}, [[Hung, 1992], [Son, 1993]). Recent papers
[Haritsa, 1989; 1990] have conducted a
performance comparison between two phase
locking with higher priority (2PL-HP) and
optimistic broadcasting (OPT-BC) algorithm, and a
comparison among different versions of OPT-BC
algorithm, including OPT-BC, OPT-Sacrifice, OPT-
Wait, and OPT-Wait-50. They concluded that in a
firm real-time environment, OPT-BC outperforms
2PL-HP and OPT-WAIT-50 is the best one among
the various versions of OPT-BC.

Previous studies of concurrency control
algorithms for RTDBMS are mostly based on disk-
resident databases. We recognize that in a main
memory database (MMDB) environment, the
primary copy of the database is memory-resident.
Disk 1/Os are thus eliminated which subsequently
allows many transactions to meet their real-time
constraints. The performance of concurrency
control algorithms in MMDB may be different from
that in a disk-based database system since the
time needed for accessing data objects is different
in both environments. For example, the time for
locking a page in a disk-resident database is much
less than that for accessing a page. However, in
MMDB the time for locking a page is compatible to
that for accessing a page. Overhead incurred in
obtaining/releasing locks may be unacceptable.
Time needed for validation in an optimistic
approach may be two high for MMDB transaction
processing, which might cause many transactions

38 SIGMOD RECORD, Vol. 22, No. 4, December 1993

to miss their deadlines. Therefore it is important for
us to examine the concurrency control issue for a
RTDBMS in which the database is memory-
resident. We call this a real-time main memory
database (RTMMDB) system.

The objective of this paper is to conduct a
performance comparison of two concurrency
control protocols, 2PL-HP and OPT-WAIT-50,
which have been proposed by {Abbott, 1988] and
[Haritsa, 1990] for a main memory database
system, MARS ([Eich, 1987], [Gruenwald, 1990],
[Gruenwald, 1991]). In Section 2, we describe
these two protocols. In Section 3, an overview of
MARS is given. Section 4 describes our simulation
model and analyzes the simulation results. Section
5 concludes the paper.

2. DESCRIPTIONS OF 2PL-HP AND OPT-WAIT-
50

In 2PL-HP [Abbott, 1988], two-phase
locking is augmented with a priority scheme to
ensure that high priority transactions are not
delayed by lower priority transactions. The locking
process is divided into two phases [Korth, 1991].
In the growing phase, a transaction may obtain
locks but may not release any lock; in the
shrinking phase, a transaction may release locks
but may not obtain any locks. When a transaction
requests a lock on an object, if the lock
requester’s priority is higher than that of the lock
holder, the holder is restarted, and the requester
gets the lock. Otherwise, the requester has to wait
for the holder to release the lock.

OPT-WAIT-50 is based on the optimistic
approach [Haritsa,1990], Transactions are
executed and validated before they commit. When
a transaction reaches its validation phase, it is
made to wait when the percentage of higher
priority transactions is greater than 50%, that is,
while half or more of its corflict set is composed of
higher priority transactions [Haritsa,1990]. This
gives a chance for higher prirority transactions to
meet their deadlines first. When the percentage
falls below 50%, the transactions in the conflict
sets are restarted and the validating transaction is
committed unless it has been restarted due to the
commit of one of higher priority transactions in its
conflict set.

3. MARS OVERVIEW

MARS (MAin memory with a Recoverable Stable
log) is shown in Figure 1. It has two processors:
database processor (DP) and recovery processor
(RP). Both processors execute independently. The
primary copy of the database is in a volatile main
memory (MM). The backup copy of database is on
an archive memory (AM). DP receives transaction
requests from the host processor, performs
database processing, and sends the results back
to the host. RP is in charge of logging, transaction
termination, checkpointing, and recovery. RP
periodically performs a fuzzy checkpointing by
copying dirty (modified) pages from MM to AM
periodically. All updates take place in a stable
memory (SM). When a transaction commits, then
its updates are copied to the permanent database

stored in MM.
-
= [
Elinty

Figure 1. MARS Architecture

HOST

o [op rien |

MM SM

4. SIMULATION DESCRIPTIONS

We have written a simulation program
using the simulation language SLAM [to measure
the performance of 2PL-HP and OPT-WAIT-50 in
terms of percentage of transactions that miss their
deadlines (miss percentage), and overall system
throughput. The simulation is conducted for a firm
real-time environment in which late transactions
are discarded. The earliest deadline policy is
used for priority assignment [Abbott, 1988]. This
policy gives a transaction that has the earliest
deadline the highest execution priority. In this
Section, we describe simulation parameters,
transaction representation, and transaction
runtime estimates.

4.1. Simulation Parameters
Tables 1 and 2 show the dynamic and

SIGMOD RECORD, Vol. 22, No. 4, December 1993 39

static parameters used in our simulation program.
The majority of these parameters were adopted

the static parameters remain the same while the
dynamic parameters keep changing within its

from [Gruenwald, 1990]. In each simulation run, specified range.
Parameter Meaning Default values
ArrivalRate mean number of transaction arrivals per time unit 300

DatabaseSize number of pages in database 1800
WriteProb write probability 0.2
ReadProb read probability 08
SlackFactor slack factor in deadline formula 6
PriorityPolicy transaction priority policy earliest deadline
LatePolicy firm or soft deadline firm deadline
MPL multiprogramming level 10
NumProcessor number of processors DP and RP
Table 1. Dynamic Parameters

Parameter Meaning Default values

SM_ACCESS access an SM word 0.00011 ms

ALLOC ™ Allocate a MM page 0.05 ms

AMREQ_TM Request an 1/0O from AM 0.02ms

PRETRAN PREPROCESS A TRANSACTION 1.25 ms

PREOP Preprocess an operation 0.005 ms

RELEASE_TM Release an MM page 0.05 ms

BMAP_TM Read until 1 in bit map 0.00011 ms

MM_ACCESS Access an MM word 0.0001 ms

SM_SEAR SM address translation 0.5 * MM_ACCESS

MM_SEAR MM address translation 3 *MM_ACCESS

MSEEK Minimum seek time 3ms

REC_SZ SM or log record 12 bytes

ET_T™ End transaction 1.26 ms

INTIO_TM Initiate log 1/0 0.01 ms

LOGIO_TM Wirite a log page 12ms

LOGPG_SZ Log page size 2000 bytes

WORD_SZ Bytes per word 4 bytes

TRACK_CYL Tracks per Cylinder 15

SEEK Average seek time 16 ms

LATENCY Average latency 83ms

INDN_T™M Initial down time 5ms

LOCK T™M Get one lock 0.025 ms

UNLK ™™ Release one lock 0.025 ms

NUM_AFIMS Number of committed AFIM in log 10

CPU POWER Processor Power 2 MIPS

Table 2. Static Parameters

as a collection of pages. Transactions arrive in an
exponential distribution. Each transaction consist
of an identifier, arrival time (AT), deadline (DT), run
time estimate (RT), operations (read/write), and

4.2. Transaction Representation and Runtime
Estimate
In our simulation, the database is organized

40 SIGMOD RECORD, Vol. 22, No. 4, December 1993

data pages processed by the operations. The
deadline (DT) is computed using the following
formula: DT =AT + SF * RT. Slack Factor (SF) is a
positive number greater than or equal to 1 which is
used to tight or slack the deadlines. If SF is larger,
transactions are allowed to have more time to run.
Otherwise, they have less time to complete. We
represent the tightness or slackness of the
deadline of a transaction by varying the slack
factor. The run time estimate of a transaction is
the worst time needed to complete alf its
operations.

Table 3 illustrates all processing steps a
transaction must go through in MARS and times
required to finish these steps when the 2PL-HP
algorithm is being used for concurrency control.
The runtime estimate for a transaction is the total
time need to complete all these steps. In Table 3,
NUMOPG represents the total number of
operations; NUMPGS represents the number of
pages needed; NUMWRT is the total number of
write operations. Note that checkpoint time is not
included in the runtime estimate since we assume
that checkpoint is performed by RP with the
lowest execution priority while DP performs normal
transaction processing in parallel with RP. If RP is
busy checkpointing and other activities such as
transaction termination or logging need RP,
checkpointing will be interrupted and RP will then
be assigned to these activities Immediately.
Runtime estimate does not include logging time
due to the following reasons. In MARS, logging
only happens when the log buffer is full and log
pages need to be flushed out onto log disks by RP.
RP at this point will be assigned to logging which
will cause some transactions to be delayed. Since
logging does not occur very often in our system,
and it is difficult to estimate which transactions are
delayed by logging; we do not include logging
time in transaction runtime estimate.

5. SIMULATION RESULTS

To compare the performance of 2PL-HP
and OPT-WAIT-50, we conducted two testing
cases: vary slack factor and vary arrival rate.
Following are the results of these testing cases.

5.1. Vary Slack Factor
The slack factor is varied from 1 to 10

while the other parameters are kept the same for
both 2PL-HP and OPT-WAIIT-50 algorithms. The
mean arrival rate is set to be 300. As shown in
Figure 2a, with a lower slack factor, both
algorithms show a higher miss percentage. This is
expected since transactions are operating under
very tight deadlines, cannot wait long for their turn
to be executed, and thus have a higher chance to
miss their deadlines. As slack factor increases,
miss percentage decreases since transactions are
given more time to complete. However, on
average, OPT-WAIT-50 gives 45% less miss
percentage than 2PL-HP does. One reason for
this Is that in the latter, transactions must wait to
obtain locks on data objects . The time needed for
lock requests is compatible to time for accessing
data objects in MMDB. This overhead causes
many transactions to miss their deadlines, while in
the former technique, this overhead does not exist.
Another reason is that in the latter, a transaction
may be restarted by anocther transaction which
later misses its deadline. This wastes CPU time,
and in turn might yield many late transactions.

~ {Arrivat Ratex300 Trans/Sec)

OPT-WAIT-50

1 2 3 4 5 [7 8 9 10
Sisck Factor

Figure 2a. Effect of Slack Factor on Miss
Percentage

Figure 2b shows a comparison of throughput
obtained in the two algorithms when changing
slack factor. As slack factor increases, throughput
also increases. However, when slack factorisina
lower range (between 1 to 6) the increase amount
in throughput is much higher than that when slack
factor is in a higher range (between 6 to 10).
Throughput changes more drastically in OPT-
WAIT-50 than in 2PL-HP. On average, OPT-WAIT-

SIGMOD RECORD, Vol. 22, No. 4, December 1993 41

50 yields about 20% better throughput than 2PL- HP.
Processing Steps Time needed
(1) Preprocess of a transaction PRETRAN
(2) Get all the locks of the data objects NUMPGS *LOCK _TM
involved
(3) Preprocess of operations NUMOPS * PREOP
(4) Check whether the data object is in SM SM_SEARCH
(5) If the data object is in SM, do one of
the following:
* read a SM word for each operation SM_ACCESS

* write an entire SM record
(6) If the data object is not in SM,
go to MM, and
do one of the following:
* read a MM word for read operation
* write an entire SM record for write
operation
(7) repeat steps 3, 4, 5 and 6 until every
operation is done
(8) Commit time usage is only for write
operations, for every write operation,
do the following:
* copy SM records to log buffer and
also write BT and ET records
* update Bit Map
(9) Unlock all locks
(10) End transaction

SM_ACCESS * WORDS
MM_SEARCH + SM_SEARCH
MM_ACCESS

SM_ACCESS * WORDS

SM_ACCESS * NUMWRT * 2 *
WORDS
BMAP_TM+SM_ACCESS*WORDS
UNLOCK_TM*NUMPGS

ET T™

Table 3. Steps and Times Involved in Runtime Estimate Calculation

w
o
o

Throughput
~N
-3
o

-
o
o

(-3
-3

>

-3
+
+

+
&

Figure 2b. Effect of Slack Factor on System
Throughput

5.2. Vary Arrival Rate

As shown in Figure 3a, with a lower mean
arrival rate, both algorithms show a lower value of
miss percentage. As mean arrival rate increases,
miss percent increases, and 2PL-HP increases
sharply as mean arrival rate reaches about 250. As
mean arrival rate is lower than 100, every
transaction has enough time to complete, and no
one missed its deadline. However, OPT-WAIT-50
performs about 40% better on average than 2PL-
HP. As mean arrival rate increases, transactions
have more conflicts on resources, and thus fewer
transactions are committed. In the case of 2PL-HP,
as mean arrival rate reaches 400, about 50% of the
transactions missed their deadlines. At this arrival
rate, transactions may have more conflicts on
processors and other resources, and some of
transactions have to wait for their pages, which
subsequently might cause the transactions to miss
their deadlines. In OPT-WAIT-50, since

42 SIGMOD RECORD, Vol. 22, No. 4, December 1993

transactions do not need to wait for pages, they
are expected to run faster.

Figure 3b shows that the throughput in
both algorithms increases as mean arrival rate
increases within a range of 100 and 300, and
decreases when mean arrival rate is higher than
300. This can be explained as follows. When
mean arrival rate increases, more transactions are
executed;thus system throughput increases.
However when mean arrival rate gets above 300,
conflicts among transactions are too high that
cause transaction delays and restarts which in turn
reduce system throughput. On average,
throughput in OPT-WAT-50 is 34% better than that
in 2PI-HP,

—_
- OPT-wAIT-50
(IR N L

(Slack Fectors$)

100 150 200 250 00 3s0 400 450 500
Megn Arrivel Raw

Figure 3a. Effect of Arrival Rate on Miss
Percentage

I

100 {Slack Factoras)

100 150 00 250 300 %o 400 480 800
Mot Arvivat Raes

Figure 3b. Effect of Mean Arrival Rate
on System Throughput

6. CONCLUSIONS

We have presented a simulation study of the
relative performance of two concurrency control
techniques, 2PL-HP and OPT-WAIT-50, using the
earliest deadline priority assignment policy in a
real-time main memory database system, MARS.
The simulation experiments showed that in a firm
real-time environment, as slack factor increases,
deadline becomes slack so that transactions get
more time to complete, and fewer transactions
would miss their deadlines. As mean arrival rate
increases, the conflicts on resources increase,
transactions spend more time waiting for
resources, and the number of late transactions
also increases. Therefore, increasing slack factor
and decreasing mean arrival rate would help more
transactions to complete on time. On average, for
a fim realtime environment, OPT-WAIT-50
performs about 50% better in terms of percentage
of late transactions, and about 30% better in terms
of system throughput than 2PL-HP in MARS. Our
future research include conducting the simulation
comparison for a soft real-time environment, and
making use of different priority assignment

policies.
7. REFERENCES

[Abbott,88] Abbott, R., and Garcia-Molina, H.,
“Scheduling Real Time Transactions: a
performance evaluation”, Proc. of the 14th VLDB
conference, Aug. 1988.

[Abbott,89] Abbott, R., and Garcia-Molina, H.,
“Scheduling Real Time Transactions with Disk
Resident Data”, Proc. of the 15th VLDB
conference, Agu. 1989.

[Carey, 89] Carey, M., Jauhari, R., and Livny, M.,
“Priority in DBMS Resource Scheduling,” Proc. of
the 15th VLDB Conference, Aug. 1989.

[Eich, 87] Margaret H., Eich, “MARS: The Design
of A Main Memory Database Machine”, Proc. of
the 1987 International workshop on Database
Machines, October, 1989.

(Eich, 89] Margaret H., Eich, “Main Memory
Database Research Directions”, Proc. of the 1989

SIGMOD RECORD, Vol. 22, No. 4, December 1993 43

International workshop on Database Machines,
Deauville, France, June, 1989.

[Gruenwald, 90) Le Gruenwald, “Reload in a main
memory database system: MARS”, Ph.D.
dissertation, Department of Computer Science,
Southern Methodist University, Aug. 1990.

[Gruenwald, 91] Le Gruenwald, and Margaret H.
Eich, :MMDB Reload Algorithms’, ACM SIGMOD
Record, Volume 20, No. 2, June 1991.

[Hung, 92] S. Hung, and K Lam, "Locking
Protocols for Concurrency Control in Real-Time
Database Systems®, SIGMOD RECORD, Vol. 21,
No. 4, December 1992.

[Haritsa,89] Jayant R. Haritsa, Michael J. Carey
and Miron Livny, “Dynamic Real Time Optimistic
Concurrency control”, Proc. of 11th Real Time
Systems Symposium, Dec. 1990.

[Haritsa,90] Jayant R. Haritsa, Michael J. Carey
and Miron Livny, “On Being Optimistic about Real
Time Constraints”, Symposium on Principles of
Database Systems, Dec., 1990.

[Korth, 91] Henry Korth, and Abraham Silberchatz,
“Database System Concepts”, McGraw-Hill, NY,
1991.

[Son, 92] Sang Son, “Scheduling Real-Time
Transactions Using Priority”, Information and
Software Technology, Vol 34, No. 6, June 1992.

[Son, 93] Sang Son and Seog Park, "Scheduling
and Concurrency Control for Real-Time Database
Systems”, International Symposium on Database
Systems for Advanced Applications, April 1993.

[Ulusoy, 92] Ozgur Ulusoy, “Current Research on

Real-Time Databases”, SIGMOD RECORD, Vol. 21,
No. 4, December 1992.

44 SIGMOD RECORD, Vol. 22, No. 4, December 1993

