
Parallel Query Processing in Shared Disk Database Systems
Erhard R a h m

University of Kaiserslautern, Germany
E-mail: rahm@informatik.uni-kl.de

Abstract: System developments and research on parallel
query processing have concentrated either on "Shared Ev-
erything" or "Shared Nothing" architectures so far. While
there are several commercial DBMS based on the "Shared
Disk" alternative, this architecture has received veery little at-
tendon with respect to parallel query processing. A compar-
ison between Shared Disk and Shared Nothing reveals many
potential benefits for Shared Disk with respect to parallel
query processing. In particular, Shared Disk supports more
flexible control over the communication overhead for intra-
transaction parallelism, and a higher potential for dynamic
load balancing and efficient processing of mixed OLTP/
query workloads. We also sketch necessary extensions for
transaction management (concurrency/coherency control,
logging/recovery) to support intra-transacfion parallelism in
the Shared Disk environment.

1 Introduction
Parallel database systems are the key to high performance
transaction and database processing [DG92, Va93a]. These
systems utilize the capacity of multiple locally distributed
processing nodes interconnected by a high-speed network.
Typically, fast and inexpensive microprocessors are used as
processors to achieve high cost-effectiveness compared to
mainframe-based configurations. Parallel database systems
aim at providing both high throughput for on-line transaction
processing (OLTP) as well as short response times for com-
plex ad-hoc queries. This requires both inter- as well as intra-
transaction parallelism. Inter-transaction parallelism (multi-
user mode) is required to achieve high OLTP throughput and
sufficient cost-effectiveness. Intra-transaction parallelism is
a prerequisite for reducing the response time of complex and
data-intensive transactions (queries).

So far, the use of intra-transaction parallelism has mainly
been studied for "Shared Everything" (SE) or "Shared Noth-
ing" (SN) architectures. While several commercial DBMS
support the "Shared Disk" (SD) alternative (IMS, Rdb, Ora-
cle, Ingres, AIM, etc.), these systems are currently restricted
to inter-transaction parallelism 1. The current world record in
the TPC-B benchmark [Gr91] is held by Oracle's SD system
called "Parallel Server". In 1991, more than 1000 tpsB at a
remarkably low cost were achieved on a Ncube system with
64 nodes. Given that more and more microprocessor-based
"cluster" architectures support the shared-disk paradigm

'" Oracle is currently working on intra-query parallelism [Li93].

(Sequent, Pyramid, Encore, etc.), we expect a growing sig-
nilicance of the SD approach for parallel database process-
ing.

Despite the significance of SD for high performance data-
base processing, this approach has found almost no attention
in the open research literature with respect to intra-transac-
tion parallelism. Since many researchers consider SN as the
major architecture for parallel query processing, we discuss
the SD approach by comparing it with SN. For this purpose,
we first compare some general features of both architectures
with respect to database processing (section 2). This discus-
sion reconsiders some of tile arguments that have been made
to promote SN as "the" approach for parallel query process-
ing. In section 3, we extend our comparison by focussing on
parallel query processing for both architectures. The com-
parison is not intended to show that SD is "better" than SN,
but to illustrate that there are major advantages for SD which
make this approach an interesting target area for further re-
search on parallel query processing. In particular, major
problems of the SN approach with respect to intra-transac-
tion parallelism (e.g., physical database design, support for
mixed workloads) are likely to be easier solved for SD 2. In
section 4, we discuss extensions for transaction management
that are to be supported by SD systems for intra-transactiou
parallelism.

2 SN vs. SD revisited
We assume familiarity with the basic differences between
SN and SD. SN systems are based on a physical partitioning
of the database among processing nodes, while in SD sys-
tems each node has access to all external storage devices and
thus to the complete physical database. Transaction/query
execution is distributed for SN if access to multiple database
partitions is needed; communication is also required for the
commit protocol. SD requires inter-node communication for
global concurrency control and coherency control [Ra91,
Ra93a].

The key problem of SN is finding a "good" fragmentation
and allocation of the database. The database allocation has a
profound impact on performance since it largely determines
where database operations have to be processed thus affect-
ing both communication overhead and node utilization. For

~' Given the problems of SN, Valduriez has also recently advocated for
a "shared-something" approach, that is a SD system in which each
node is itself a multiprocessor [Va93b].

32 S I G M O D R E C O R D , Vol . 22, No. 4, D e c e m b e r 1993

complex queries, the database allocation must also support
an effective intra-transaction parallelism. Since different
transaction and query types have different data distribution
requirements, the database allocation must inevitably consti-
tute a compromise for an expected workload profde. The
chosen allocation may however easily lead to suboptimal
performance and load imbalances due to short-term work-
load fluctuations or other deviations in the actual from the
expected workload profile. Variations in the number of
nodes (node failure, addition of new node) require a reallo-
cation of the database. SD avoids these problems since there
is no need to physically partition the database among nodes.
In particular, this promises a higher potential for load balanc-
ing since each node can process any database operation. We
will further discuss the role of the database allocation in the
next section.

One advantage of SN is that interconnecting a large number
of nodes is less expensive than for SD since every Oisk needs
only be connected to one node. However, the cost of inter-
connecting nodes and disks is also comparatively low in SD
architectures such as Ncube. These architectures are based
on microprocessors and do not directly attach a disk drive to
all nodes, but achieve the same connectivity by an intercon-
nection network (e.g., hybercube) where I/O requests and
pages may be transferred through intermediate nodes. Such
a message-based I/O interface between processing nodes and
I /0 nodes (disk controllers) is also used in the DEC Vax-
Clusters. This approach does not imply any inherent limit on
the number of processing nodes.

In [DG92], it is speculated that coherency control may limit
the scalability of SD compared to SN. However, for work-
loads for which SN systems could demonstrate scalability so
far, namely read-dominated workloads or perfectly "parti-
tionable" loads like debit-credit (TPC-A, TPC-B), SD has no
problems with coherency control. It is fair to say that SN sys-
tems depend even more than SD on the partitionability of the
workload and database due to the large performance impact
of the database allocation for SN [YD91]. SD can utilize the
partitionability of a workload to limit the number of buffer
invalidations by employing an "affinity-based" workload al-
location which assigns transactions referencing/updating the
same database portions to the same node IRa92]. This is a
dynamic form of workload/data allocation which can more
easily be adapted than the database allocation for SN. Fur-
thermore, SD allows very efficient coherency control by
closely integrating this function into the lock protocol
[Ra91].

In [DG92] it is also argued that SN would scale better than
SD because interference is minimized. In particular, SN
would only move small "questions" and (filtered) answers
through the network, while SD would require moving large
quantities of data. However, this argument no longer holds
for parallel query processing for which SN also requires re-
distribution of large amounts of data, e.g. for join processing

(section 3). Furthermore, SN is highly susceptible to proces-
sor interference since questions on a particular database oir-
ject can only be processed by the owning node, even ff it is
already overutilized. The performance results published for
SN so far were typically based on many best-case conditions
regarding workload profde, database allocation and load bal-
ancing. In particular, almost all performance studies on the
use of intra-transaction parallelism assumed single-user
mode implying minimal processor interference. Under mote
realistic conditions (multi-user mode, mixed workloads), SN
was shown to exhibit much poorer performance [MR92].

3 SN vs. SD for parallel query processing
The comparisons of the different architectures made so far in
the literature did not consider intra-transaction parallelism in
most cases. Even in papers coping with parallel database
processing [Pi90, DG92, Va93a], no special attention was
paid to parallel query processing for SD. In this section, we
show that SD offers significant advantages for parallel query
processing compared to SN, The comparison considers dif-
ferences and commonalities with respect to various parallel-
ization forms, database allocation and processing of scan and
join operations. Furthermore, we discuss processing of
mixed OLTP/query workloads.

3.1 Types of intra-query parallelism
Several forms of intra-query parallelism can be distin-
guished, particularly intra- vs. inter-operator parallelism and
pipeline vs. data parallelism [DG92]. The differences be-
tween SN and SD with respect to inter-operator and pipeline
parallelism are comparatively small. This is because they
primarily work on derived data that can dynamically be re-
distributed among nodes for both architectures. Hence, our
analysis concentrates on data parallelism and intra-operator
parallelism.

Data parallelism requires both I/O parallelism and process-
ing parallelism. //O parallelism means that the data to be
processed by a database operation is declustered across mul-
tiple disks so that I/O time is not limited by the low band-
width of a single disk. Processing parallelism requites that
the input data of a database operation can be processed by
multiple CPUs to avoid that execution time is limited by the
capacity of a single processor. For SN and SD, the database
allocation to disk directly determines the maximal degree of
I/O parallelism per relation. Sinoe the data allocation on disk
is expensive to change, the (maximal) degree of I/O parallel-
ism is a rather static parameter. For SN, the degree of pro-
cessing parallelism is also largely dependent on the static
data allocation to disk since each disk is exclusively assigned
to one processing node. This results in a reduced flexibility
for dynamically varying the degree of processing parallelism
compared to SD where each node can access any disk.

S I G M O D R E C O R D , Vol . 22, No . 4, D e c e m b e r 1993 33

3.2 Database allocation
Deciustering in SN systems is typically based on a horizontal
fragmentation and allocation of relations. Fragmentation
may be defined by a simple round robin scheme or, more
commonly, by hash or range partitioning on a partitioning
attribute [DG92]. Data allocation incorporates determina-
tion of the degree ofdeclustering D and mapping of the frag-
ments to D disks (processing nodes). Determination of an
appropriate c/atabase allocation means finding a compromise
with respect to contradicting subgoals: support for a high de-
gree of intra-transaction parallefism, low communication
overhead, and effective load balancing. For instance, a high
degree of dechistering supports intra-transaction parallelism
and load balancing, but at the expense of a high communica-
tion overhead for starting and terminating suboperations. A
small degree of declustering, on the other hand, reduces
communication overhead and may be sufficient to meet the
response time requirements on small relations or for selec-
tive queries (e.g., index scan). Furthermore, it supports effec-
tive inter-transaction parallelism (high OLTP throughput).

For SD, only a database allocation to disk needs to be deter-
mined as already for centralized DBMS. The deciustering of
relations across multiple disks can be defined similarly as for
SN, i.e., either based on round robin, hash or range partition-
ing. The round robin approach may even be implemented
outside the DBMS, e.g., by the operating system's file man-
ager or, in the case of disk arrays [PGK88], by the disk sub-
system. (F'tie blocks rather than records would then
constitute the units of declustering). In this case, the DBMS
optimizer would still have to know the degree of declustering
to allocate resources (CPUs, memory) for parallel query pro-
cessing. Note that centralized DBMS and SN systems typi-
cally are unable to utilize the UO bandwidth provided by disk
arrays. This is because disk arrays can deliver I/O band-
widths in excess of 100 MB/s, while it is estimated that a sin-
gle CPU can process relational data at a rate of merely 0.1
MB/s per MIPS [GHW90]. For SD the CPU bottleneck is
avoided if multiple processing nodes share a disk array and
if the disk array is able to split the output of a single read re-
quest among multiple nodes (memories). Hence, SD is better
positioned than SN or SE to utilize disk arrays for parallel
query processing.

We note that database partitioning will become more diffi-
cult for next-generation applications. For instance, large
mnlti-media objects can be stored in a single tuple ("long
field") so that they would be assigned to a single node in SN
systems. Hence, parallelism cannot be utilized for SN to pro-
cess such large objects. For SD, on the other hand, the object
could physically be declustered across multiple disks so that
at least I/O parallelism could be utilized to reduce UO time.
Similarly, complex objects for engineering applications are
typically large and consist of many inter-connected and het-
erogeneous tuples. Partitioning these objects among multiple
nodes is difficult and would introduce a high communication

overhead for object processing. Even partitioning at the
object level is problematic due to subobjects that are shared
by multiple complex objects. Hence, SD is better able to sup-
port intra-transaction parallelism on complex-object and
object-oriented databases.

3.3 Scan
Scan is the simplest and most common relational operator. If
predicate evaluation cannot be supported by an index, a com-
plete relation scan is necessary where each tuple of the rela-
tion must be read and processed. An index scan accesses
tuples via an index and restricts processing to a subset of the
tuples; in the extreme ease, no tuple or only one tuple needs
to be accessed (e.g., exact-match query on unique atlribute).

For SN, parallelizing a scan operation is straight-forward and
determined by the database allocation. For hash and range
partitioning, exact-match queries on the partitioning at-
tribute can be restricted to a single processor; range partition-
ing also allows restricting the number of nodes for range
queries on the partitioning attribute. However, all other scan
queries must be processed by all nodes holding fragments of
the respective relation. This approach has the obvious disad-
vantage that it does not support dynamic load balancing, i.e.,
varying the number of processing nodes and selecting the
scan nodes according to the current system state. Further-
more, for selective queries supported by an index it is gener-
ally inefficient to involve all nodes holding a fragment of the
relation due to an unfavorable ratio between communication
overhead and useful work per node. The latter disadvantage
can be reduced by a multidimensional range partitioning ap-
proach [GDQ92]. In this case, fragmentation is defined on
multiple partitioning attributes so that queries on each of
these attributes can be limited to a subset of the fragments/
nodes. While this approach can reduce communication over-
head for certain queries compared to one-dimensional range
partitioning, the degree of processing parallefism and thus
the communication overhead are still statically determined
by the database allocation.

In SD systems each node has access to the entire database on
disk. Hence, scan operations on a relation can be performed
by any number of nodes. For example, index scans on any at-
Ixibute may be performed by a single processor thereby min-
imizing communication overhead. This would especially be
appropriate for exact-match and selective range queries, and
supports high OLTP throughput. For relation scans, on the
other band, a high degree of processing parallelism can be
employed to utilize intra-query parallelism to reduce re-
sponse time and to achieve load balancing. Not only the de-
gree of processing parallelism can be chosen based on a
query's resource requirements, but also which processors
should perform the scan operations. Furthermore, both
scheduling decisions c3n be drawn according to the current
system state. For instance, a scan may be allocated to a set of
processors with low CPU utilization in order to avoid inter-
ference with concurrent transactions on other nodes.

34 S I G M O D R E C O R D , Vol . 22, No . 4, D e c e m b e r 1993

The ability to dynamically determine the degree of scan par-
allelism and the scan processors represents a key advantage
of SD compared to SN. It is critical for a successful use of
intra-transaction parallelism in multi-user mode where the
current load situation is Constantly changing. This is because
the optimal degree of intra-query, parallelism (yielding the
best response time) strongly depends on the system state and
is generally the lower the higher the system is utilized
[RM93].

The result of a scan operation may be too large to be kept in
main memory at the query's home node so that it must be
stored in a temporary t-de on disk. In the case of SN, a high
overhead is necessary to send the local scan results to the
query's home node, to write out the data to disk and to read
it in later to perform some postprocessing and return it to the
application/user. SD can avoid the communication overhead
for the data transfers since each scan processor can directly
write its local scan result to a temporary file on the shared
disks (or in shared semiconductor memory). After the tem-
porary file is written, the query's home node is informed that
the file can be read from external storage.

3.4 Join
Parallel (equi-)join processing typically consists of a parallel
scan phase and a parallel join phase. During the scan phase,
the scan processors read the input relations from disk and
perform selections on them. The scan output is then redis-
tributed among multiple join processors performing the join
phase using any sequential algorithm (e.g., hash join or sort-
merge). Finally, the local join results are merged at a desig-
nated node. Typically, data redistribution between scan and
join processors is performed by applying a hash function on
the join attribute. This ensures that matching tuples of both
input relations arrive at the same join processor.

Even for SN there is a high potential for dynamic load bal-
ancing since the join processors obtain their input from the
scan processors and do not operate on base relations. In par-
ticular, the number of join processors as well as the choice of
these processors can he based on the current load situation.
Simulation experiments have shown that such a dynamic ap-
proach is necessary for efficient parallel join processing in
multi-user mode [RM93].

The sketched approach is also applicable to SD. However,
there are still significant advantages for SD with respect to
parallel join processing. First, SD supports dynamic load
balancing not only for the join phase but also for the scan
phase. Furthermore, the possibility to exchange intermediate
data across shared storage devices can greatly reduce com-
munieation overhead for redistributing data between scan
and join processors. This is particularly advantageous for
large intermediate results which cannot be held memory-res-
ident at the join processors [Ra93b]. Finally, index-support-
ed join queries that only require access to few tuples can be
limited to one (or a few) node(s) for SD, while a high com-
munication overhead may be necessary for SN.

A general SN approach to process 0-joins (non-equi joins)
between two relations is to dynamically replicate the smaller
relation at all nodes holding a fragment of the larger relation
and to perform the 0-joins at the latter nodes. This approach
causes an enormous communication overhead and does not
scale well since the communication overhead increases qua-
dratically with the number of nodes (holding fragments of
the two relations). SD avoids the communication overhead
for data redistribution altogether since each node can directly
read all fragments from disk. Furthermore, the numbex of
join processors is not predetermined by the degree of declus-
tering but can dynamically be selected. A high degree of de-
clustering with respect to the disk allocation is favorable to
reduce disk contention for SD. Disk contention is also re-
duced by the use of large main memory caches and disk
caches.

3.5 Mixed workloads
Supporting mixed OLTP/query workloads is already diffi-
cult in centralized (or SE) DBMS due to increased resource
and data contention. In parallel database systems, there are
two additional areas where performance problems for mixed
workloads may occur: communication overhead and load
balancing. Intra-query parallefism inevitably causes in-
creased communication overhead (compared to a sequential
execution on one node), leading to higher resource utiliza-
tion and contention and therefore lower throughput. To limit
the communication overhead and resource contention and to
effectively utilize the available processing capacity, dynam-
ic load balancing is particularly important for mixed work-
loads. As the preceding discussions have already shown, SD
offers advantages over SN in both areas:

SN cannot efficiently support both workload types, but
requires definition of a (static) database allocation for an
"average" transaction prof'de. This inevitably leads to
sub-optimal performance for both workload types and
does not support dynamic load balancing. In partieniar,
ad-hoc queries have to be restricted to fewer nodes than
desirable to limit the communication overhead so that re-
sponse times may not sufficiently be reduced. On the oth-
er hand, OLTP transactions cannot be contrmed to a sin-
gle node in many cases thereby causing extra communi-
cation overhead and lowering throughput. In both cases,
the sub-optimal performance must be accepted even if
only one of the two workload types is temporarily active.

In SD systems, declustering of data across multiple disks
does not increase the communication overhead for
OLTP. In general, OLTP transactions are completely ex-
ecuted on one node to avoid the communication over-
head for intra-transaction parallefism and distributed
commit. The degree of processing parallelism and thus
the communication overhead for ad-hoc queries can be
adapted to the current load situation. Furthermore, re-
source contention for CPU and memory between OLTP
transactions and complex queries may largely be avoided
by assigning these workload types to disjoint sets of pro-
cessors which is not possible for SN, in general.

S I G M O D R E C O R D , Vol . 22, No . 4, D e c e m b e r 1993 35

4 SD Transaction Management for Paral-
lel Query Processing

Without intra-transaction parallelism, there is no need for
distributed transactions for SD. Each node can perform all
database operations since the entire database is directly ac-
cessible. In particular, all modifications by a transaction are
performed at one node and logged in this node's local log
file. Hence, no distributed commit protocol is necessary as
for SN to guarantee the ACID properties. Communication is
necessary for global concurrency and coherency control.
Furthermore, the local log files have to be merged into a glo-
hal log to support media and crash recovery.

However, intra-transaction parallelism results in a decompo-
sition of transactions and queries into multiple subwansac-
tions running on different nodes. In SN systems, the
separation of global Wansactions into sublransactions is de-
termined by the database allocation. This approach typically
ensures that each subtransacfion operates on data owned by
the respective node. Concurrency control is a local function
since each node can process all lock requests on its dam For
SD, on the other hand, it cannot generally be excluded that
subtransactions of a given transaction reference and modify
the same database objects (e.g., index pages) at different
nodes. Hence, there is a need for concurrency control be-
tween parallel subtransactions. Furthermore, coherency con-
trol is also required between parallel subtransacfions to avoid
access to obsolete data and to propagate updated database
objects between subtransactions (Fig. 1).

The new requirements can be met by supporting a nested
transaction model and by extending the SD concurrency/co-
herency control schemes for sequential transactions accord-
ingly. Since the applications should remain unchanged
compared to sequential transaction processing, nested trans-
actions are only used internally by the DBMS to structure

P I P2 PJ

Subtransacfions of transaction T 1 are running in parallel
at processing nodes Pl, P2 and P3. Subtransacfion T12 at
P2 has modified page B in main memory; the copies of
B at P3 and on disk are obsolete. When subtransactions
Ti i and Ti3 want to read page B, a synchronization with

Fig. 1: Concurrency/coherency control problem
between subtransactions

queries into a hierarchy of subtransactions or subqueries.
Subtransactions can be executed concurrently at different
nodes. Furthermore, subtransactions may be rolled back
without impact on other subtransactions, i.e., the scope of
undo recovery can be substantially limited compared to fiat
transactions. Isolation between subtransactions is achieved
by a suitable locking protocol defining the rules for lock pro-
cessing within a transaction hierarchy. Such a protocol sup-
porting parallel subtransactions, upward and downward
inheritance of locks as well as multiple lock granularities has
been proposed in [HR93] and can be extended to the SD en-
vironment. One difference for SD results from the fact that
lock requests may have to be sent to a global lock manager
thus incurring communication overhead and delays. Further-
more, coherency control must be incoq~orated into the con-
currency control scheme. Fortunately, this can be
accomplished in a similar way than for sequential transac-
tions, e.g., by a so-called on-request invalidation protocol
that uses extended global lock information to detect obsolete
page copies and to record where a page was modified most
recently [Ra91]. Such an approach detects obsolete page
copies during lock processing so that extra messages for this
purpose are avoided.

In addition to the extensions needed for concurrency and co-
herency control, parallel update transactions in SD systems
require major changes for logging and recovery. In particu-
lar, the updates of a single transaction may now be per-
formed at multiple nodes so that a transaction's log data are
spread over multiple local log files. While this is also the
ease for SN, SN has the advantage that each local log file
only contains log data of one database partition thereby sup-
porting media recovery without the need for a global log file.
Hence, parallel update transactions for SD world require
support of the logging and recovery protocols of both SN
(distributed commit, distributed undo and redo recovery) and
SD (construction of a global log file). Possibilities to avoid
the complexity and overhead of supporting both recovery
paradigms are discussed in [Ra93b].

'The mentioned problems are largely introduced by parallel
update transactions. The implementation complexity for
supporting intra-transaction parallelism for SD can thus
largely be reduced if merely read-only transactions/queries
may be parallelized. In this case, no changes are necessary
with respect to logging and recovery compared to conven-
tional SD systems. Furthermore, lock conflicts between con-
current subtransaction of the same Wansaction are avoided as
well as the need for coherency control within transactions.
Still, most of the performance gains of intra-transaction par-
allefism can be obtained since complex transactions/queries
are mostly read-only. Executing update (OLTP) transactions
sequentially at one processing node also reduces communi-
cation overhead thereby supporting high Iransaction rates.

Even with intra-transaction parallelism be restricted to read-
only transactions, a nested transaction model is still needed

36 S I G M O D R E C O R D , Vol . 22, No . 4, D e c e m b e r 1993

to propagate locks within the transaction hierarchy (e.g., be- 6
tween main transaction and subtransactions). Furthermore, a DG92
hierarchical lock protocol with multiple lock granularities
should be supported to keep the concurrency conUrol (com-
munication) overhead for complex queries small. For in- GDQ92
stance, a relation scan may lock the entire relation with one
global lock request. Subtransactions performing scan opera-
lions on different relation fragments in parallel do not have
to request additional locks, but may inherit a read lock on
their relation fragment from the parent transaction. At the
end of a subtransaction, the fragment lock is returned to the Gr91
parent transaction which can f'mally release the entire rela-
tion lock with a single message. Such a hierarchical lock pro-
tocol has also to be extended to support coherency control as HR93

discussed in [Ra93b]. lA93

5 Concluding remarks MR92

Shared Disk (SD) database systems promise significant ad-
vantages for parallel query processing compared to Shared
Nothing (SN). SD supports intra-transaction parailelism PGK88
with less communication overhead than SN, in particular for
scan operations. The degree of scan parallelism can dynam-
icany be determined for SD so that selective queries can be Pi90
processed with minimal communication overhead while
large relation scans are spread over many nodes to shorten
response time. The nodes that should perform a given oper- Ra91
ation can also be selected according to the current system
state resulting in a high flexibility for dynamic load balanc-

Ra92
ins. This flexibility is particularly valuable for supporting
mixed OLTP/qnery workloads. The communication over-
head for parallel query processing is further reduced for SD Ra93a
by the possibility to exchange large intermediate results
across shared storage devices rather than over the network.
Finally, SD is better positioned than SN to utilize disk arrays Ra93b
and to support parallel query processing for next-generation
database applications (object-oriented DBMS) for which
partitioning the database among multiple nodes is very diffi-
cult. RM93

While many concepts and algorithms for parallel query pro-
cessing developed for SE and SN can be adapted to the SD

Va93a
environment, substantially more work is needed to fully ex-
ploit the SD potential. This is primarily the case for the areas
of transaction management, dynamic load balancing and Va93b
disk allocation. Furthermore, the performance advantages of
SD outlined in this paper must be validated by detailed per- YD91
formance studies.

GHW90

References
DeWitt, DJ., Gray, J.: Parallel Database Systems: The
Future of High Performance Database Systems.
Comm. ACM35 (6), 85-98, 1992
Ghandeharizadeh, S., DeWill, DJ., Qureshi, W.: A Per-
formance Analysis of Alternative Multi-Attribute
Declustering Strategies. Proc. ACM SIGMOD Conf.,
29-38, 1992
Gray, J., Hot'st, B., Walker, M.: Parity Striping of Disc
Arrays: Low-Cost Reliable Storage with Accept-
able Throughput. Proc. 16th Int. Conf. on Very Large
Data Bases, 148-161, 1990
Gray, J. (ed.): The Benchmark Handbook for Database
and Transaction Processing Systems. Morgan Kaufinann
Publishers, 1991
Hiirder, T., Rothermel, IC: Concurrency Control Issues
in Nested Transactions. VLDB Journal 2 (1), 1993
lander, B.: Oracle Parallel RDBMS on Massively
Parallel Systems. Proc. PDIS-93, 67-68, 1993
Marek, R., Rahm, E.: Performance Evaluation of Par-
allel Transaction Processing in Shared Nothing Da-
tabase Systems, Proc. 4th Int. PARLE Conf., Springer-
Verlag, LNCS 605, 295-310, Paris, June 1992
Patterson, D.A., Gibson, G., Katz, R.H.: A Case for Re-
dundant Arrays of Inexpensive Disks (RAID). Proc.
ACM SIGMOD Conf., 109-116, 1988
Pirahesh, H. et al.: Parallelism in Relational Data
Base Systems: Architectural Issues and Design Ap-
proaches. In Proc. 2nd IEEE Int. Symp. on Databases in
Parallel and Distributed Systems, 1990
Rahm, E.: Concurrency and Coherency Control in
Database Sharing Systems, Techn. Report 3/91, Univ.
Kaiserslautern, Dept. of Comp. Science, Dec. 1991
Rahm, E.: A Framework for Workload Allocation in
Distributed Transaction Processing Systems. Jour-
nal of Systems and Software 18, 171-190, 1992
Rahm, E.: Empirical Performance Evaluation of
Concurrency and Coherency Control for Database
Sharing Systems. ACM Trans. on Database Systems 18
(2), 333-377, 1993
Rahm, E.: Parallel Query Processing in Shared Disk
Database Systems for High Performance Database
Systems. TR 1/93, Univ. Kaiserslautern, DepL of Comp.
Science (full version of this paper)
Rahm, E., Marek, R.: Analysis of Dynamic Load Bal-
ancing Strategies for Parallel Shared Nothing Data-
base Systems, Proc. 19th Int. Conf. on Very Large Data
Bases, 1993
Valduriez, P.: Parallel Database Systems: Open Prob-
lems and New Issues. Distr. and Parallel Databases 1
(2), 137-165, 1993
Valduriez, P.: Parallel Database Systems: The Case
for Shared*Something. Proc. 9th Int. Conf. on Data En-
gineering, 460-465, 1993
Yu, P.S., Dan, A.: Comparison on the Impact of Cou-
pling Architectures to the Performance of Transac-
tion Processing Systems. Proc. 4th Int. Workshop on
High Performance Transaction Systems, 1991

S I G M O D RECORD, Vol. 22, No. 4, D e c e m b e r 1993 37

