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Abstract: System developments and research on parallel 
query processing have concentrated either on "Shared Ev- 
erything" or "Shared Nothing" architectures so far. While 
there are several commercial DBMS based on the "Shared 
Disk" alternative, this architecture has received veery little at- 
tendon with respect to parallel query processing. A compar- 
ison between Shared Disk and Shared Nothing reveals many 
potential benefits for Shared Disk with respect to parallel 
query processing. In particular, Shared Disk supports more 
flexible control over the communication overhead for intra- 
transaction parallelism, and a higher potential for dynamic 
load balancing and efficient processing of mixed OLTP/ 
query workloads. We also sketch necessary extensions for 
transaction management (concurrency/coherency control, 
logging/recovery) to support intra-transacfion parallelism in 
the Shared Disk environment. 

1 Introduction 
Parallel database systems are the key to high performance 
transaction and database processing [DG92, Va93a]. These 
systems utilize the capacity of multiple locally distributed 
processing nodes interconnected by a high-speed network. 
Typically, fast and inexpensive microprocessors are used as 
processors to achieve high cost-effectiveness compared to 
mainframe-based configurations. Parallel database systems 
aim at providing both high throughput for on-line transaction 
processing (OLTP) as well as short response times for com- 
plex ad-hoc queries. This requires both inter- as well as intra- 
transaction parallelism. Inter-transaction parallelism (multi- 
user mode) is required to achieve high OLTP throughput and 
sufficient cost-effectiveness. Intra-transaction parallelism is 
a prerequisite for reducing the response time of complex and 
data-intensive transactions (queries). 

So far, the use of intra-transaction parallelism has mainly 
been studied for "Shared Everything" (SE) or "Shared Noth- 
ing" (SN) architectures. While several commercial DBMS 
support the "Shared Disk" (SD) alternative (IMS, Rdb, Ora- 
cle, Ingres, AIM, etc.), these systems are currently restricted 
to inter-transaction parallelism 1. The current world record in 
the TPC-B benchmark [Gr91] is held by Oracle's SD system 
called "Parallel Server". In 1991, more than 1000 tpsB at a 
remarkably low cost were achieved on a Ncube system with 
64 nodes. Given that more and more microprocessor-based 
"cluster" architectures support the shared-disk paradigm 

'" Oracle is currently working on intra-query parallelism [Li93]. 

(Sequent, Pyramid, Encore, etc.), we expect a growing sig- 
nilicance of the SD approach for parallel database process- 
ing. 

Despite the significance of SD for high performance data- 
base processing, this approach has found almost no attention 
in the open research literature with respect to intra-transac- 
tion parallelism. Since many researchers consider SN as the 
major architecture for parallel query processing, we discuss 
the SD approach by comparing it with SN. For this purpose, 
we first compare some general features of both architectures 
with respect to database processing (section 2). This discus- 
sion reconsiders some of tile arguments that have been made 
to promote SN as "the" approach for parallel query process- 
ing. In section 3, we extend our comparison by focussing on 
parallel query processing for both architectures. The com- 
parison is not intended to show that SD is "better" than SN, 
but to illustrate that there are major advantages for SD which 
make this approach an interesting target area for further re- 
search on parallel query processing. In particular, major 
problems of the SN approach with respect to intra-transac- 
tion parallelism (e.g., physical database design, support for 
mixed workloads) are likely to be easier solved for SD 2. In 
section 4, we discuss extensions for transaction management 
that are to be supported by SD systems for intra-transactiou 
parallelism. 

2 SN vs. SD revisited 
We assume familiarity with the basic differences between 
SN and SD. SN systems are based on a physical partitioning 
of the database among processing nodes, while in SD sys- 
tems each node has access to all external storage devices and 
thus to the complete physical database. Transaction/query 
execution is distributed for SN if access to multiple database 
partitions is needed; communication is also required for the 
commit protocol. SD requires inter-node communication for 
global concurrency control and coherency control [Ra91, 
Ra93a]. 

The key problem of SN is finding a "good" fragmentation 
and allocation of the database. The database allocation has a 
profound impact on performance since it largely determines 
where database operations have to be processed thus affect- 
ing both communication overhead and node utilization. For 

~' Given the problems of SN, Valduriez has also recently advocated for 
a "shared-something" approach, that is a SD system in which each 
node is itself a multiprocessor [Va93b]. 
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complex queries, the database allocation must also support 
an effective intra-transaction parallelism. Since different 
transaction and query types have different data distribution 
requirements, the database allocation must inevitably consti- 
tute a compromise for an expected workload profde. The 
chosen allocation may however easily lead to suboptimal 
performance and load imbalances due to short-term work- 
load fluctuations or other deviations in the actual from the 
expected workload profile. Variations in the number of 
nodes (node failure, addition of new node) require a reallo- 
cation of the database. SD avoids these problems since there 
is no need to physically partition the database among nodes. 
In particular, this promises a higher potential for load balanc- 
ing since each node can process any database operation. We 
will further discuss the role of the database allocation in the 
next section. 

One advantage of  SN is that interconnecting a large number 
of nodes is less expensive than for SD since every Oisk needs 
only be connected to one node. However, the cost of inter- 
connecting nodes and disks is also comparatively low in SD 
architectures such as Ncube. These architectures are based 
on microprocessors and do not directly attach a disk drive to 
all nodes, but achieve the same connectivity by an intercon- 
nection network (e.g., hybercube) where I/O requests and 
pages may be transferred through intermediate nodes. Such 
a message-based I/O interface between processing nodes and 
I /0  nodes (disk controllers) is also used in the DEC Vax- 
Clusters. This approach does not imply any inherent limit on 
the number of processing nodes. 

In [DG92], it is speculated that coherency control may limit 
the scalability of SD compared to SN. However, for work- 
loads for which SN systems could demonstrate scalability so 
far, namely read-dominated workloads or perfectly "parti- 
tionable" loads like debit-credit (TPC-A, TPC-B), SD has no 
problems with coherency control. It is fair to say that SN sys- 
tems depend even more than SD on the partitionability of the 
workload and database due to the large performance impact 
of the database allocation for SN [YD91]. SD can utilize the 
partitionability of  a workload to limit the number of buffer 
invalidations by employing an "affinity-based" workload al- 
location which assigns transactions referencing/updating the 
same database portions to the same node IRa92]. This is a 
dynamic form of workload/data allocation which can more 
easily be adapted than the database allocation for SN. Fur- 
thermore, SD allows very efficient coherency control by 
closely integrating this function into the lock protocol 
[Ra91]. 

In [DG92] it is also argued that SN would scale better than 
SD because interference is minimized. In particular, SN 
would only move small "questions" and (filtered) answers 
through the network, while SD would require moving large 
quantities of data. However, this argument no longer holds 
for parallel query processing for which SN also requires re- 
distribution of large amounts of data, e.g. for join processing 

(section 3). Furthermore, SN is highly susceptible to proces- 
sor interference since questions on a particular database oir- 
ject can only be processed by the owning node, even ff it is 
already overutilized. The performance results published for 
SN so far were typically based on many best-case conditions 
regarding workload profde, database allocation and load bal- 
ancing. In particular, almost all performance studies on the 
use of intra-transaction parallelism assumed single-user 
mode implying minimal processor interference. Under mote 
realistic conditions (multi-user mode, mixed workloads), SN 
was shown to exhibit much poorer performance [MR92]. 

3 SN vs. SD for parallel query processing 
The comparisons of the different architectures made so far in 
the literature did not consider intra-transaction parallelism in 
most cases. Even in papers coping with parallel database 
processing [Pi90, DG92, Va93a], no special attention was 
paid to parallel query processing for SD. In this section, we 
show that SD offers significant advantages for parallel query 
processing compared to SN, The comparison considers dif- 
ferences and commonalities with respect to various parallel- 
ization forms, database allocation and processing of scan and 
join operations. Furthermore, we discuss processing of 
mixed OLTP/query workloads. 

3.1 Types of intra-query parallelism 
Several forms of intra-query parallelism can be distin- 
guished, particularly intra- vs. inter-operator parallelism and 
pipeline vs. data parallelism [DG92]. The differences be- 
tween SN and SD with respect to inter-operator and pipeline 
parallelism are comparatively small. This is because they 
primarily work on derived data that can dynamically be re- 
distributed among nodes for both architectures. Hence, our 
analysis concentrates on data parallelism and intra-operator 
parallelism. 

Data parallelism requires both I/O parallelism and process- 
ing parallelism. //O parallelism means that the data to be 
processed by a database operation is declustered across mul- 
tiple disks so that I/O time is not limited by the low band- 
width of a single disk. Processing parallelism requites that 
the input data of a database operation can be processed by 
multiple CPUs to avoid that execution time is limited by the 
capacity of a single processor. For SN and SD, the database 
allocation to disk directly determines the maximal degree of 
I/O parallelism per relation. Sinoe the data allocation on disk 
is expensive to change, the (maximal) degree of I/O parallel- 
ism is a rather static parameter. For SN, the degree of pro- 
cessing parallelism is also largely dependent on the static 
data allocation to disk since each disk is exclusively assigned 
to one processing node. This results in a reduced flexibility 
for dynamically varying the degree of  processing parallelism 
compared to SD where each node can access any disk. 
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3.2 Database allocation 
Deciustering in SN systems is typically based on a horizontal 
fragmentation and allocation of relations. Fragmentation 
may be defined by a simple round robin scheme or, more 
commonly, by hash or range partitioning on a partitioning 
attribute [DG92]. Data allocation incorporates determina- 
tion of the degree ofdeclustering D and mapping of the frag- 
ments to D disks (processing nodes). Determination of an 
appropriate c/atabase allocation means finding a compromise 
with respect to contradicting subgoals: support for a high de- 
gree of  intra-transaction parallefism, low communication 
overhead, and effective load balancing. For instance, a high 
degree of dechistering supports intra-transaction parallelism 
and load balancing, but at the expense of a high communica- 
tion overhead for starting and terminating suboperations. A 
small degree of  declustering, on the other hand, reduces 
communication overhead and may be sufficient to meet the 
response time requirements on small relations or for selec- 
tive queries (e.g., index scan). Furthermore, it supports effec- 
tive inter-transaction parallelism (high OLTP throughput). 

For SD, only a database allocation to disk needs to be deter- 
mined as already for centralized DBMS. The deciustering of  
relations across multiple disks can be defined similarly as for 
SN, i.e., either based on round robin, hash or range partition- 
ing. The round robin approach may even be implemented 
outside the DBMS, e.g., by the operating system's file man- 
ager or, in the case of  disk arrays [PGK88], by the disk sub- 
system. (F'tie blocks rather than records would then 
constitute the units of declustering). In this case, the DBMS 
optimizer would still have to know the degree of declustering 
to allocate resources (CPUs, memory) for parallel query pro- 
cessing. Note that centralized DBMS and SN systems typi- 
cally are unable to utilize the UO bandwidth provided by disk 
arrays. This is because disk arrays can deliver I/O band- 
widths in excess of  100 MB/s, while it is estimated that a sin- 
gle CPU can process relational data at a rate of merely 0.1 
MB/s per MIPS [GHW90]. For SD the CPU bottleneck is 
avoided if multiple processing nodes share a disk array and 
if the disk array is able to split the output of a single read re- 
quest among multiple nodes (memories). Hence, SD is better 
positioned than SN or SE to utilize disk arrays for parallel 
query processing. 

We note that database partitioning will become more diffi- 
cult for next-generation applications. For instance, large 
mnlti-media objects can be stored in a single tuple ("long 
field") so that they would be assigned to a single node in SN 
systems. Hence, parallelism cannot be utilized for SN to pro- 
cess such large objects. For SD, on the other hand, the object 
could physically be declustered across multiple disks so that 
at least I/O parallelism could be utilized to reduce UO time. 
Similarly, complex objects for engineering applications are 
typically large and consist of many inter-connected and het- 
erogeneous tuples. Partitioning these objects among multiple 
nodes is difficult and would introduce a high communication 

overhead for object processing. Even partitioning at the 
object level is problematic due to subobjects that are shared 
by multiple complex objects. Hence, SD is better able to sup- 
port intra-transaction parallelism on complex-object and 
object-oriented databases. 

3.3 Scan 
Scan is the simplest and most common relational operator. If 
predicate evaluation cannot be supported by an index, a com- 
plete relation scan is necessary where each tuple of the rela- 
tion must be read and processed. An index scan accesses 
tuples via an index and restricts processing to a subset of the 
tuples; in the extreme ease, no tuple or only one tuple needs 
to be accessed (e.g., exact-match query on unique atlribute). 

For SN, parallelizing a scan operation is straight-forward and 
determined by the database allocation. For hash and range 
partitioning, exact-match queries on the partitioning at- 
tribute can be restricted to a single processor; range partition- 
ing also allows restricting the number of nodes for range 
queries on the partitioning attribute. However, all other scan 
queries must be processed by all nodes holding fragments of 
the respective relation. This approach has the obvious disad- 
vantage that it does not support dynamic load balancing, i.e., 
varying the number of processing nodes and selecting the 
scan nodes according to the current system state. Further- 
more, for selective queries supported by an index it is gener- 
ally inefficient to involve all nodes holding a fragment of the 
relation due to an unfavorable ratio between communication 
overhead and useful work per node. The latter disadvantage 
can be reduced by a multidimensional range partitioning ap- 
proach [GDQ92]. In this case, fragmentation is defined on 
multiple partitioning attributes so that queries on each of 
these attributes can be limited to a subset of  the fragments/ 
nodes. While this approach can reduce communication over- 
head for certain queries compared to one-dimensional range 
partitioning, the degree of  processing parallefism and thus 
the communication overhead are still statically determined 
by the database allocation. 

In SD systems each node has access to the entire database on 
disk. Hence, scan operations on a relation can be performed 
by any number of  nodes. For example, index scans on any at- 
Ixibute may be performed by a single processor thereby min- 
imizing communication overhead. This would especially be 
appropriate for exact-match and selective range queries, and 
supports high OLTP throughput. For relation scans, on the 
other band, a high degree of  processing parallelism can be 
employed to utilize intra-query parallelism to reduce re- 
sponse time and to achieve load balancing. Not only the de- 
gree of processing parallelism can be chosen based on a 
query's resource requirements, but also which processors 
should perform the scan operations. Furthermore, both 
scheduling decisions c3n be drawn according to the current 
system state. For instance, a scan may be allocated to a set of 
processors with low CPU utilization in order to avoid inter- 
ference with concurrent transactions on other nodes. 
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The ability to dynamically determine the degree of scan par- 
allelism and the scan processors represents a key advantage 
of SD compared to SN. It is critical for a successful use of 
intra-transaction parallelism in multi-user mode where the 
current load situation is Constantly changing. This is because 
the optimal degree of intra-query, parallelism (yielding the 
best response time) strongly depends on the system state and 
is generally the lower the higher the system is utilized 
[RM93]. 

The result of a scan operation may be too large to be kept in 
main memory at the query's home node so that it must be 
stored in a temporary t-de on disk. In the case of SN, a high 
overhead is necessary to send the local scan results to the 
query's home node, to write out the data to disk and to read 
it in later to perform some postprocessing and return it to the 
application/user. SD can avoid the communication overhead 
for the data transfers since each scan processor can directly 
write its local scan result to a temporary file on the shared 
disks (or in shared semiconductor memory). After the tem- 
porary file is written, the query's home node is informed that 
the file can be read from external storage. 

3.4 Join 
Parallel (equi-)join processing typically consists of a parallel 
scan phase and a parallel join phase. During the scan phase, 
the scan processors read the input relations from disk and 
perform selections on them. The scan output is then redis- 
tributed among multiple join processors performing the join 
phase using any sequential algorithm (e.g., hash join or sort- 
merge). Finally, the local join results are merged at a desig- 
nated node. Typically, data redistribution between scan and 
join processors is performed by applying a hash function on 
the join attribute. This ensures that matching tuples of both 
input relations arrive at the same join processor. 

Even for SN there is a high potential for dynamic load bal- 
ancing since the join processors obtain their input from the 
scan processors and do not operate on base relations. In par- 
ticular, the number of  join processors as well as the choice of 
these processors can he based on the current load situation. 
Simulation experiments have shown that such a dynamic ap- 
proach is necessary for efficient parallel join processing in 
multi-user mode [RM93]. 

The sketched approach is also applicable to SD. However, 
there are still significant advantages for SD with respect to 
parallel join processing. First, SD supports dynamic load 
balancing not only for the join phase but also for the scan 
phase. Furthermore, the possibility to exchange intermediate 
data across shared storage devices can greatly reduce com- 
munieation overhead for redistributing data between scan 
and join processors. This is particularly advantageous for 
large intermediate results which cannot be held memory-res- 
ident at the join processors [Ra93b]. Finally, index-support- 
ed join queries that only require access to few tuples can be 
limited to one (or a few) node(s) for SD, while a high com- 
munication overhead may be necessary for SN. 

A general SN approach to process 0-joins (non-equi joins) 
between two relations is to dynamically replicate the smaller 
relation at all nodes holding a fragment of the larger relation 
and to perform the 0-joins at the latter nodes. This approach 
causes an enormous communication overhead and does not 
scale well since the communication overhead increases qua- 
dratically with the number of  nodes (holding fragments of 
the two relations). SD avoids the communication overhead 
for data redistribution altogether since each node can directly 
read all fragments from disk. Furthermore, the numbex of 
join processors is not predetermined by the degree of declus- 
tering but can dynamically be selected. A high degree of de- 
clustering with respect to the disk allocation is favorable to 
reduce disk contention for SD. Disk contention is also re- 
duced by the use of  large main memory caches and disk 
caches. 

3.5 Mixed workloads 
Supporting mixed OLTP/query workloads is already diffi- 
cult in centralized (or SE) DBMS due to increased resource 
and data contention. In parallel database systems, there are 
two additional areas where performance problems for mixed 
workloads may occur: communication overhead and load 
balancing. Intra-query parallefism inevitably causes in- 
creased communication overhead (compared to a sequential 
execution on one node), leading to higher resource utiliza- 
tion and contention and therefore lower throughput. To limit 
the communication overhead and resource contention and to 
effectively utilize the available processing capacity, dynam- 
ic load balancing is particularly important for mixed work- 
loads. As the preceding discussions have already shown, SD 
offers advantages over SN in both areas: 

SN cannot efficiently support both workload types, but 
requires definition of  a (static) database allocation for an 
"average" transaction prof'de. This inevitably leads to 
sub-optimal performance for both workload types and 
does not support dynamic load balancing. In partieniar, 
ad-hoc queries have to be restricted to fewer nodes than 
desirable to limit the communication overhead so that re- 
sponse times may not sufficiently be reduced. On the oth- 
er hand, OLTP transactions cannot be contrmed to a sin- 
gle node in many cases thereby causing extra communi- 
cation overhead and lowering throughput. In both cases, 
the sub-optimal performance must be accepted even if 
only one of  the two workload types is temporarily active. 

In SD systems, declustering of  data across multiple disks 
does not increase the communication overhead for 
OLTP. In general, OLTP transactions are completely ex- 
ecuted on one node to avoid the communication over- 
head for intra-transaction parallefism and distributed 
commit. The degree of processing parallelism and thus 
the communication overhead for ad-hoc queries can be 
adapted to the current load situation. Furthermore, re- 
source contention for CPU and memory between OLTP 
transactions and complex queries may largely be avoided 
by assigning these workload types to disjoint sets of pro- 
cessors which is not possible for SN, in general. 
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4 SD Transaction Management for Paral- 
lel Query Processing 

Without intra-transaction parallelism, there is no need for 
distributed transactions for SD. Each node can perform all 
database operations since the entire database is directly ac- 
cessible. In particular, all modifications by a transaction are 
performed at one node and logged in this node's local log 
file. Hence, no distributed commit protocol is necessary as 
for SN to guarantee the ACID properties. Communication is 
necessary for global concurrency and coherency control. 
Furthermore, the local log files have to be merged into a glo- 
hal log to support media and crash recovery. 

However, intra-transaction parallelism results in a decompo- 
sition of  transactions and queries into multiple subwansac- 
tions running on different nodes. In SN systems, the 
separation of global Wansactions into sublransactions is de- 
termined by the database allocation. This approach typically 
ensures that each subtransacfion operates on data owned by 
the respective node. Concurrency control is a local function 
since each node can process all lock requests on its dam For 
SD, on the other hand, it cannot generally be excluded that 
subtransactions of a given transaction reference and modify 
the same database objects (e.g., index pages) at different 
nodes. Hence, there is a need for concurrency control be- 
tween parallel subtransactions. Furthermore, coherency con- 
trol is also required between parallel subtransacfions to avoid 
access to obsolete data and to propagate updated database 
objects between subtransactions (Fig. 1). 

The new requirements can be met by supporting a nested 
transaction model and by extending the SD concurrency/co- 
herency control schemes for sequential transactions accord- 
ingly. Since the applications should remain unchanged 
compared to sequential transaction processing, nested trans- 
actions are only used internally by the DBMS to structure 

P I  P2 PJ  

Subtransacfions of transaction T 1 are running in parallel 
at processing nodes Pl,  P2 and P3. Subtransacfion T12 at 
P2 has modified page B in main memory; the copies of 
B at P3 and on disk are obsolete. When subtransactions 
Ti i  and Ti3 want to read page B, a synchronization with 

Fig. 1: Concurrency/coherency control problem 
between subtransactions 

queries into a hierarchy of subtransactions or subqueries. 
Subtransactions can be executed concurrently at different 
nodes. Furthermore, subtransactions may be rolled back 
without impact on other subtransactions, i.e., the scope of 
undo recovery can be substantially limited compared to fiat 
transactions. Isolation between subtransactions is achieved 
by a suitable locking protocol defining the rules for lock pro- 
cessing within a transaction hierarchy. Such a protocol sup- 
porting parallel subtransactions, upward and downward 
inheritance of  locks as well as multiple lock granularities has 
been proposed in [HR93] and can be extended to the SD en- 
vironment. One difference for SD results from the fact that 
lock requests may have to be sent to a global lock manager 
thus incurring communication overhead and delays. Further- 
more, coherency control must be incoq~orated into the con- 
currency control scheme. Fortunately, this can be 
accomplished in a similar way than for sequential transac- 
tions, e.g., by a so-called on-request invalidation protocol 
that uses extended global lock information to detect obsolete 
page copies and to record where a page was modified most 
recently [Ra91]. Such an approach detects obsolete page 
copies during lock processing so that extra messages for this 
purpose are avoided. 

In addition to the extensions needed for concurrency and co- 
herency control, parallel update transactions in SD systems 
require major changes for logging and recovery. In particu- 
lar, the updates of  a single transaction may now be per- 
formed at multiple nodes so that a transaction's log data are 
spread over multiple local log files. While this is also the 
ease for SN, SN has the advantage that each local log file 
only contains log data of  one database partition thereby sup- 
porting media recovery without the need for a global log file. 
Hence, parallel update transactions for SD world require 
support of the logging and recovery protocols of both SN 
(distributed commit, distributed undo and redo recovery) and 
SD (construction of a global log file). Possibilities to avoid 
the complexity and overhead of supporting both recovery 
paradigms are discussed in [Ra93b]. 

'The mentioned problems are largely introduced by parallel 
update transactions. The implementation complexity for 
supporting intra-transaction parallelism for SD can thus 
largely be reduced if merely read-only transactions/queries 
may be parallelized. In this case, no changes are necessary 
with respect to logging and recovery compared to conven- 
tional SD systems. Furthermore, lock conflicts between con- 
current subtransaction of the same Wansaction are avoided as 
well as the need for coherency control within transactions. 
Still, most of  the performance gains of intra-transaction par- 
allefism can be obtained since complex transactions/queries 
are mostly read-only. Executing update (OLTP) transactions 
sequentially at one processing node also reduces communi- 
cation overhead thereby supporting high Iransaction rates. 

Even with intra-transaction parallelism be restricted to read- 
only transactions, a nested transaction model is still needed 
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to propagate locks within the transaction hierarchy (e.g., be- 6 
tween main transaction and subtransactions). Furthermore, a DG92 
hierarchical lock protocol with multiple lock granularities 
should be supported to keep the concurrency conUrol (com- 
munication) overhead for complex queries small. For in- GDQ92 
stance, a relation scan may lock the entire relation with one 
global lock request. Subtransactions performing scan opera- 
lions on different relation fragments in parallel do not have 
to request additional locks, but may inherit a read lock on 
their relation fragment from the parent transaction. At the 
end of a subtransaction, the fragment lock is returned to the Gr91 
parent transaction which can f'mally release the entire rela- 
tion lock with a single message. Such a hierarchical lock pro- 
tocol has also to be extended to support coherency control as HR93 

discussed in [Ra93b]. lA93 

5 Concluding remarks MR92 

Shared Disk (SD) database systems promise significant ad- 
vantages for parallel query processing compared to Shared 
Nothing (SN). SD supports intra-transaction parailelism PGK88 
with less communication overhead than SN, in particular for 
scan operations. The degree of  scan parallelism can dynam- 
icany be determined for SD so that selective queries can be Pi90 
processed with minimal communication overhead while 
large relation scans are spread over many nodes to shorten 
response time. The nodes that should perform a given oper- Ra91 
ation can also be selected according to the current system 
state resulting in a high flexibility for dynamic load balanc- 

Ra92 
ins. This flexibility is particularly valuable for supporting 
mixed OLTP/qnery workloads. The communication over- 
head for parallel query processing is further reduced for SD Ra93a 
by the possibility to exchange large intermediate results 
across shared storage devices rather than over the network. 
Finally, SD is better positioned than SN to utilize disk arrays Ra93b 
and to support parallel query processing for next-generation 
database applications (object-oriented DBMS) for which 
partitioning the database among multiple nodes is very diffi- 
cult. RM93 

While many concepts and algorithms for parallel query pro- 
cessing developed for SE and SN can be adapted to the SD 

Va93a 
environment, substantially more work is needed to fully ex- 
ploit the SD potential. This is primarily the case for the areas 
of  transaction management, dynamic load balancing and Va93b 
disk allocation. Furthermore, the performance advantages of  
SD outlined in this paper must be validated by detailed per- YD91 
formance studies. 

GHW90 
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