
Implementation off a Graph-Based Data Model for Complex Objects

Mark Levene tt, Alexandra Poulovassilis*, Ker ima Benker imi it, Sara Schwartz "t, Eran Tuv t

t Department o f Computer Science, Universi ty Col lege London,

Gower Street, London , W C I E 6BT, U.K.

E-mai l :M.Levene@ uk.ac.ucl.cs.

:~ Department o f Compute r Science, K ing ' s Col lege London,

Strand, London , W C 2 R 2LS, U.K.

E- mail: alex@ uk.ac.kcl .dcs

Abstract

We have developed a graph-based data model called

the Hypernode Model whose single data structure is

the hypernode, a directed graph whose nodes may
themselves reference further directed graphs. A pro-

totype database system supporting this model is being

developed at London University as part of a project

whose aims are threefold : (i) to ascertain the expres-
siveness and flexibility of the hypemode model, (ii)

to experiment with various querying paradigms for

this model, and (iii) to investigate the suitability of
the directed graph as a data structure supported

throughout all levels of the implementation. The pur-

pose of this paper is to report upon our findings to

date.

1. Introduction

Much recent database research has focussed on

deductive and object-oriented databases and also on
graph-based representation and manipulation of data.

Following the general direction of these trends, we

have developed a graph-based data model called the

Hypernode Model which supports object identity and
arbiirarily complex objects.

Other data models have also used graphs as their
underlying data structure. However, a feature com-

mon to all these models is that the database consists

of a single graph. This has the drawback that complex

objects consisting of many inter-connected nodes are
hard to represent in a clear way. In contrast, a hyper-

node database is a set of interconnected graphs. This

unique feature of the model provides inherent support

for data abstraction and allows each real-world object

to be represented as a separate database graph, both

of which are significant aids to data representation
and manipulation.

The hypernode data structure was first described in
[2] while in [7] we described a graph-based language

that can be used for querying and updating hypernode
databases. This work was consolidated in [3]. In [8]

the model and language were extended with types

and an analysis of the efficiency of type checking and

of inference was carried out. In [6] a procedural

language for the model was defined and an account of

functional dependencies for the hypernode model was

given. In [6, 8] the hypemode model was proposed

as a suitable underlying formalism for hypertext. A
detailed comparison of the hypernode model with

other graph-based models can be found in [8].

Finally in [1,9] the implementation of a prototype

database system based on the hypernode model is

described.

The structure of this paper is as follows. In Section
2.1 we present the hypernode data structure, hyper-

node databases, and schemas for these. In Section

2.2 we present and illustrate two query languages for

the model, a procedural language called HNQL and a

rule-based language called Hyperlog. In Section 3

we describe the implementation of our prototype

database system, addressing its physical, conceptual
and external levels in turn. Finally, in Section 4 we

discuss our contribution and list several directions in
which research is proceeding.

2. The Hypernode Model

2.1. Hypernode Databases and Hyper-
node Schemas

For the purposes of defining the hypernode model, we

assume the availability of two disjoint countable sets

of constants, a set L of labels and a set P of primitive

nodes. We denote elements of the set L by identifiers

which start with an upper case letter and elements of
the set P by identifiers which start with a $ or a lower

case letter or by strings delimited by double quotes.

A hypernode is an equation of the form

G -- (N, E)

where G e L is termed the defining label (or simply
the label) of the hypernode and (N, E) is a digraph
such that N c (P ~ L). (N,E) is termed the digraph of

26 S IGMOD RECORD, Vol. 22, No. 4, December 1993

the hypernode (or simply the digraph corresponding

to G)

A hypernode database (or simply a database), HD, is

a finite set of hypernodes that satisfies the following

two conditions:

(HI) no two distinct hypernodes in HD have the

same label;

(I-t2) for any label G in the node set of a digraph of

some hypemode in HD there exists a hyper-

node in HD with label G.

Condition HI corresponds to Codd's entity integrity

since each hypemode can viewed as representing a

real-world entity. In object-oriented database terrni-

nology, labels are unique and serve as object

identifiers. Similarly, condition H2 corresponds to

Codd's referential integrity, since it requires that only

existing entities be referenced.

We illustrate the above definitions in the Appendix

where we show part of a passengers and airlines data-

base. In particular the thee windows in the left-hand

column show :

(1) A hypernode that represents an entity set,

namely a number of PASSENGER entities.

(2) A hypernode that represents a binary relation-

ship between passengers and the airlines they

are currently booked to fly with.

(3) A hypernode encapsulating a passenger record

with the relevant attribute-value pairs. We

node that these hypernodes are bipartite

digraphs whose node sets are partitioned into

attribute names and attribute values (we adopt

the convention of primitive nodes starting with

a $ for attribute names).

We observe that hypernodes can contain the labels of

other hypernodes, and can thus be conceptualised as

nested digraphs (this is the view that we adopted and

expounded upon in [3, 8]).

Also, if we view hypemodes as representing either

entity sets, entities, or binary relationships, then the

hypemode model can be regarded as a formalisation

of the instance level of the Entity-Relationship model,

extended to allow nesting of entities and relation-

ships.

Analogously to hypemodes and databases above, we

define hypernode types (or simply types) and hyper-

node database schemas (or simply schemas), respec-

tively. For this, we assume the availability of two

disjoint countable sets of constants : a set of type

labels TL whose instances are labels from L, and a

set of primitive types TP whose instances are primi-

tive nodes from P. A type is then an equation of the

form

T = (M, F)

where T e TL is the label of the type and (M, F) is a

digraph such that M ~ (TP u TL).

We say that a hypemode G = (N, E) is o f type T =

(M, F) if there exists a total and onto function 0: N

M that preserves both adjacency and also the types of

labels and primitive nodes. We say that a database

l i d is over a schema t-IS if V G = (N, E) ~ kiD 3 T --

(M, F) e HS such that G = (N, E) is of type T -- (M,

F).

We illustrate types in the Appendix where we show

part of the schema for the passengers and airlines

database. In particular, the three windows in the

fight-hand column show :

(1) The type SET OF PASSENGERS.

(2) Thetype FLIES REL.

(3) The type PASSENGER_REC.

It is easily verified that each hypemode illustrated in

the left-hand column is of the type shown next to it.

In [8] we discussed the expressiveness of types. In

particular, as we have illustrated above, set types,

binary relationship types, and nested record types are

all representable. Also, the hypemode is type-

complete in the sense that the only allowed type-

forming operator (digraph definition) can be applied

arbitrarily many times. Furthermore, schemas are

also digraphs and thus the meta data can be queried

and updated using the same formalism as the data.

2.2. Query Languages for the Hypernode
Model
We have defined two query (and update) languages

for the hypernode model : a rule-based query

language called Hyperlog and a procedural language

called HNQL.

Hyperlog programs consist of a finite set of rules.

The body of each rule consists of a number of

digraphs, called templates, which may contain vari-

ables and are matched against the hypemodes in the

database. The head of each rule is also a template

and indicates the updates (if any) to be undertaken for

each match of the templates in the body. The evalua-

tion of a program comprises a repeated matching of

S I G M O D R E C O R D , Vol . 22, No . 4, D e c e m b e r 1993 27

its rules against the database (in parallel) until no

more updates can be infl-wred and a fixpoint is

attained. A comprehensive description of the syntax

and semantics of Hyperlog, and a comparison with

related database languages can be found in [8].

HNQL consists of a basic set of primitive operators

for updating hypernodes and for testing the member-

ship of nodes and arcs in hypernodes. In addition to

these deterministic operators, several non-

deterministic operators are provided for the arbitrary

selection of a node or an arc from a set thereof.

HNQL is further extended into a procedural query

language by adding assignment, sequential composi-

tion, a conditional construct, and bounded and

unbounded iteration. A comprehensive description of

the syntax and semantics of HNQL can be found in

[6].

For the purpose s of both these query languages we

assume the availability of a countable set of variables,

V, and denote variables by uppercase identifiers from

the end of the alphabet. We introduce the flavour of

the languages via two simple examples.

The first example is an HNQL program, shown in

Figure 1, that selects the names of passengers who

are flying on flight number "BA212" and puts them

into a new hypemode whose label is RESULT. The

counterpart Hyperlog program is shown in Figure 2.

X1 := create0;

X2 := rename(X1, RESULT);

X2 :-- insert_node(RESULT, Sname);

for all X1 e nodes(PASSENGERS) do
r -

if($flight_no, "BA212") e arcs(X1)then

for all (Y1, Y2) ~ arcs(X1) do

TB

if Y 1 =$name then

TB

X2 := insert_node(RESULT, Y2);

X2 := insert_arc(RESULT, Sname, Y2);

TE

TE

Figure 1.

The second example is an HNQL program, shown in

Figure 3, that modifies flight number "BA212" to

"BA345" for all passengers in the database. The

counterpart Hyperlog program is shown in Figure 4.

RESULT =(.($name, Y}, (($name, Y)})

X = ({$flight, "BA212",$name,Y },

{($flight, "BA212"),(Sname,Y) }),

PASSENGERS = ({X}, Q)

Figure 2.

for all X1 ~ nodes(PASSENGERS) do

for all (YI, Y2) ~ arcs(X1) do

TB

if (Y 1, Y2) = ($flight_no, "BA212") then

TB

X2 := delete_arc(Xl, YI, Y2);

X2 := delete node(Xl, Y2);

X2 :-- insert_node(X1, "BA345");

X2 := insertarc(X1, Y1, "BA345");

TE

TE

Figure 3.

X = ((~"BA212","BA345" •,{($flight,"BA345") })~-.-

X = ({$flight,"BA212"}, (($flight,"BA212'9}),

PASSENGERS -- (,(X },G)

Figure 4.

Not surprisingly, the Hyperlog programs are more

compact than their HNQL equivalents. They are also

more suitable for end users since they can easily be

represented graphically. Conversely, sequencing is

expressed more easily in HNQL which is conse-

quently more useful for low-level computations

(although see [8] for an example of how to simulate

counter programs in Hyperlog). We have also shown

in [8] and [6] respectively that both Hyperlog and

HNQL are update-complete i.e. all computable

updates can be expressed in both languages.

3. I m p l e m e n t a t i o n

In this section we describe the implementation of a

prototype database system based on the hypernode

model. The main aim of this prototype has been to
investigate the suitability of the directed graph as a

28 S I G M O D R E C O R D , Vol . 22, No. 4, D e c e m b e r 1993

data structure supported throughout all levels of the
implementation. We address each of the three levels

of the implementation in turn in the following three
sub-sections.

3.1. T h e P h y s i c a l L e v e l

The physical level is a hypernode database consisting

of two components, a storage manager and an index
manager. The main effort at this level has been

directed towards developing a modular and extensible

storage manager which can be used as a reliable and

stable core for future versions of the software. In

particular, the storage manager caters for :

object-identity and referential sharing between

hypemodes;

efficient update of hypernodes, including large
hypernodes, i.e. ones with a large node set or

with one or more large primitive nodes, and

complex hypernodes, i.e. ones with a dense
edge set;

- clustering strategies for hypernodes in secon-
dary storage;

buffering of hypernodes in main memory;

retrieval operations which utilise indexing pro-

vided by the index manager.

The main novelty of the storage manager compared

with other persistent stores is its use and optimisation

of a single graph data structure. The software is a
library of C++ classes which provides four categories

of operations for : creating, updating, traversing, and

associative querying of a hypemode database. A
comprehensive description of the implementation of

the storage manager can be found in [9].

3.2. T h e C o n c e p t u a l L e v e l

The conceptual level is the Hyperlog interpreter. The
main effort here has been directed towards develop-

ing efficient algorithms for the matching of templates
in rules against the database. A bottle neck that arises

in this matching process is the calculation of permu-

tations of node sets - in [8] we discuss several heuris-

tics which can be used to ameliorate this problem.
We also discuss there how type checking of Hyperlog

programs can be performed statically and in polyno-

mial time.

The software for the Hypeflog interpreter is a library
of C++ classes which provides three categories of

operations for : matching templates in rule bodies,

performing the updates arising from rule heads, and

composing these for the overall processing of rules
and programs.

Recently, we have developed a semi-naive evaluation

algorithm for Hyperlog programs without deletions
which is analogous to the well-known algorithm for
the (much simpler) Datalog language. In the absence

of EDB and IDB predicates, this is achieved by syn-
tactically partitioning the templates in the bodies of

Hypedog rules into those templates which cannot be

affected by any updates to the database during the

evaluation of a program and those templates which

may be affected by updates to the database. The

former templates play a role similar to that of EDB

predicates and the latter similar to that of IDB predi-

cates in relational databases. A description of this

work can be found in [1].

3.3. The External Level

A graphical interface for Hyperlog is currently being

developed at this level. Also, a hypertext interface

which we call HyperGUI has been implemented
using Motif and X-windows. HyperGUI allows the

user to build up a database of hypernodes and to

update and navigate through the hypemodes of an
existing database. Updates are performed via menus

that allow the user to add and delete nodes and arcs in
the current hypemode. Navigation is performed by

clicking on buttons that represent the labels of hyper-

nodes, causing a window containing the nodes and

arcs of the selected hypernode to be displayed. Two

additional windows are displayed in order to help the

user navigate through the database. The first of these

is an overview diagram which contains all the labels
of hypemodes that are directly referencing or being

referenced by the current hypernode being browsed.
The second window lists all the labels of hypernodes
in the database, allowing simple random access to

any hypernode. Browsing of a textual fragment is

performed by displaying the text file containing the
text in a separate window. In the appendix we show

several screen dumps of hypernodes that have been

created using HyperGUI.

4. C o n c l u s i o n s

We have shown the viability of developing a database

system for the hypemode model which is based on
graphs throughout all its levels, from the user inter-
face down to the physical level :

S I G M O D R E C O R D , Vol . 22, No. 4, D e c e m b e r 1993 29

• At the physical level we have the developed a

repository (the storage manager) which is well

suited to the storage and update of hypernodes.

• At the conceptual level we have developed a

query and update language (Hyperlog) which

supports both queries and updates.

• At the external level we have developed a

graphical interface (HyperGUI) which provides

a user-friendly way to set up, update, and navi-

gate a database of hypernodes. We are also

implementing a graphical interface for Hyper-

log.

The results of the hypernode project contribute

towards general research into graph-based database
systems. We particularly envisage the suitability of

the hypernode model for applications such as CASE,

hypertext, and knowledge bases. With respect to

CASE, we are developing an integrated data and pro-

tess model for modelling the software development

process [5]. There are also several open problems

that have arisen from the project and require further

investigation :

• We would like to extend the type system of [8]

to cater for structural inheritance. This is an

important feature that can naturally be sup-

ported by our nested graph structures (as dis-

cussed in [4] for a predecessor of the Hyper-

node Model).

• An ongoing research problem is that of query

optimisation for query languages for complex

objects. In particular, the work of [1] needs to

be extended to cater for deletions as well as
insertions. Also, at the physical level the index

manager needs to be extended with more

sophisticated indexing suitable for the graph

matching that underlies Hyperlog.

• We would also like to investigate other kinds of

query paradigms for the Hypemode Model e.g.

functional and object-oriented ones ([2] gives a
preliminary discussion of these).

• Finally, we feel that the results of this project

provide a sound foundation for further work in

the emerging research into hypertext, in partic-
ular into integrating navigational and declara-

tive queries over hypertext databases.

A c k n o w l e d g e m e n t s

This work has been funded by Grant GR/G26662 of
the U.K. Science and Engineering Research Council.

We would like to thank our colleagues George

Loizou and Ray Often for many fruitful discussions.

References

[1] Benkerimi K. and Poulovassilis A. 1993.

Semi-Naive Evaluation for Hypedog, a graph-

based language for complex objects. To appear

in Proc. 1st International Workshop on Rules

in Database Systems, Ediburgh. Spnnger-

Verlag.

[2] Levene M. and Poulovassilis A. 1989. The

hypernode model - A graphical approach to
integrating data and computation. In Proc. 1st

International Workshop on Foundations of

Models and Languages for Data and Objects,

Aigen, Austria, pp. 55-77.

[3] Levene M. and Poulovassilis A. 1990. The

hypernode model and its associated query

language. Proc. Fifth Jerusalem Conference on

Information Technology, pp 520-530.

[4] Levene M. and Poulovassilis A. 1991. An
object-oriented data model formalised through

hypergraphs. Data & Knowledge Engineering,

Vol. 6, No. 3, pp. 205-224.

[5] Levene M. and Often R. 1992. A unified

graph-based data and process model. Research

Note RN/92/99, Dept. Computer Science,

University College Londom

[6] Levene M. and Loizou G. 1993. A graph-
based data model and its ramifications. IEEE

Transactions on Knowledge and Data

Engineering, in press.

[7] Poulovassilis A. and Levene M. 1989. Hyper-

node programs as the basis for a graphical

query language. Research Note RN/89/87,

Dept. Computer Science, University College

London.

[8] Poulovassilis A. and Levene M. 1993. A
nested-graph model for the representation and
manipulation of complex objects. ACM Tran-

sactions on Information Systems, in press.

[9] Tuv E., Poulovassilis A. and Levene M. 1992.
A storage manager for the hypemode model.

In Proc. lOth British National Conference on

Databases, Aberdeen, pp. 59-77. Spnnger-

Verlag LNCS Vol. 618.

S IGMOD RECORD, Vol. 22, No. 4, December 1993

Appendix

Edit Hyperr,ode

m l i I
ii~ " J j '

Edit ~emode

i .) ,) , -

Edit ~'node

(- ' , ~ - . + • r . r

f

i i , .

Edit Hypernode
l lll i llm

IPASSENGER_RECI

. , "rill I I , 1 r ~ ~ ' ~ r ' ~ : l~"] " l l

Edit ~pernode I
II IIJ I i i I i

Emi"E_RE+-t+---fPissE, .REC{

• " ' ~ " ~ i . ~ _

Edit

I~-~-~l

!$att.de~endent I is~m9]

SIGMOD RECORD, Vol. 22, No. 4, December 1993 31

