Implementation of a Graph-Based Data Model for Complex Objects

Mark Levene', Alexandra Poulovassilis?, Kerima Benkerimi®, Sara Schwartz!, Eran Tuv’

 Department of Computer Science, University College London,
Gower Street, London, WCIE 6BT, U.K.
E-mail:M.Levene@uk.ac.ucl.cs.

¥ Department of Computer Science, King’s College London,
Strand, London, WC2R 2LS, U.K.
E-mail:alex@uk.ac.kcl.dcs

Abstract

We have developed a graph-based data model called
the Hypernode Model whose single data structure is
the hypernode, a directed graph whose nodes may
themselves reference further directed graphs. A pro-
totype database system supporting this model is being
developed at London University as part of a project
whose aims are threefold : (i) to ascertain the expres-
siveness and flexibility of the hypernode model, (ii)
to experiment with various querying paradigms for
this model, and (iii) to investigate the suitability of
the directed graph as a data structure supported
throughout all levels of the implementation. The pur-
pose of this paper is to report upon our findings to
date.

1. Introduction

Much recent database research has focussed on
deductive and object-oriented databases and also on
graph-based representation and manipulation of data.
Following the general direction of these trends, we
have developed a graph-based data model called the
Hypemode Model which supports object identity and
arbitrarily complex objects.

Other data models have also used graphs as their
underlying data structure. However, a feature com-
mon to all these models is that the database consists
of a single graph. This has the drawback that complex
objects consisting of many inter-connected nodes are
hard to represent in a clear way. In contrast, a hyper-
node database is a set of interconnected graphs. This
unique feature of the model provides inherent support
for data abstraction and allows each real-world object
to be represented as a separate database graph, both
of which are significant aids to data representation
and manipulation.

The hypemode data structure was first described in
{2] while in [7] we described a graph-based language
that can be used for querying and updating hypermode

databases. This work was consolidated in [3]. In [8]

the model and language were extended with types
and an analysis of the efficiency of type checking and
of inference was carried out. In [6] a procedural
language for the model was defined and an account of
functional dependencies for the hypernode model was
given. In [6, 8] the hypernode model was proposed
as a suitable underlying formalism for hypertext. A
detailed comparison of the hypernode model with
other graph-based models can be found in [8].
Finally in [1,9] the implementation of a prototype
database system based on the hypemode model is
described.

The structure of this paper is as follows. In Section
2.1 we present the hypernode data structure, hyper-
node databases, and schemas for these. In Section
2.2 we present and illustrate two query languages for
the model, a procedural language called HNQL and a
rule-based language called Hyperlog. In Section 3
we describe the implementation of our prototype
database system, addressing its physical, conceptual
and external levels in turn. Finally, in Section 4 we
discuss our contribution and list several directions in
which research is proceeding.

2. The Hypernode Model

2.1. Hypernode Databases and Hyper-
node Schemas

For the purposes of defining the hypernode model, we
assume the availability of two disjoint countable sets
of constants, a set L of labels and a set P of primitive
nodes. We denote elements of the set L by identifiers
which start with an upper case letter and elements of
the set P by identifiers which start with a $ or a lower
case letter or by strings delimited by double quotes.

A hypernode is an equation of the form
G=(N,E)

where G € L is termed the defining label (or simply
the label) of the hypemode and (N, E) is a digraph
such that N < (P U L). (N,E) is termed the digraph of

26 SIGMOD RECORD, Vol. 22, No. 4, December 1993

the hypernode (or simply the digraph corresponding
to G)

A hypernode database (or simply a database), HD, is
a finite set of hypernodes that satisfies the following
two conditions:

(1) no two distinct hypernodes in HD have the
same label;

(H2) for any label G in the node set of a digraph of
some hypemode in HD there exists a hyper-
node in HD with label G.

Condition H1 corresponds to Codd’s entity integrity
since each hypernode can viewed as representing a
real-world entity. In object-oriented database termi-
nology, labels are unique and serve as object
identifiers. Similarly, condition H2 corresponds to
Codd’s referential integrity, since it requires that only
existing entities be referenced.

We illustrate the above definitions in the Appendix
where we show part of a passengers and airlines data-
base. In particular the three windows in the left-hand
column show :

(1) A hypernode that represents an entity set,
namely a number of PASSENGER entities.

(2) A hypernode that represents a binary relation-
ship between passengers and the airlines they
are currently booked to fly with.

(3) A hypernode encapsulating a passenger record
with the relevant attribute-value pairs. We
node that these hypemodes are bipartite
digraphs whose node sets are partitioned into
attribute names and attribute values (we adopt
the convention of primitive nodes starting with
a § for attribute names).

We observe that hypernodes can contain the labels of
other hypernodes, and can thus be conceptualised as
nested digraphs (this is the view that we adopted and
expounded upon in [3, 8]).

Also, if we view hypemodes as representing either
entity sets, entities, or binary relationships, then the
hypernode model can be regarded as a formalisation
of the instance level of the Entity-Relationship model,
extended to allow nesting of entities and relation-
ships.

Anangously to hypemodes and databases above, we
define hypernode types (or simply types) and hyper-
node database schemas (or simply schemas), respec-
tively. For this, we assume the availability of two
disjoint countable sets of constants : a set of type

labels TL whose instances are labels from L, and a
set of primitive types TI® whose instances are primi-
tive nodes from P. A type is then an equation of the
form

T=(M,F)

where T e TL is the label of the type and (M, F)is a
digraph such that M < (TP U TL).

We say that a hypermode G = (N, E) isof type T =
(M, F) if there exists a total and onto function 8: N —
M that preserves both adjacency and aJso the types of
labels and primitive nodes. We say that a database
HD is over a schema HSif VG=(N,E)e HD3IT=
(M, F) e HS such that G = (N, E) is of type T = (M,
F).

We illustrate types in the Appendix where we show
part of the schema for the passengers and airlines
database. In particular, the three windows in the
right-hand column show :

(1) The type SET_OF_PASSENGERS.
(2) The type FLIES_REL.
(3) The type PASSENGER_REC.

It is easily verified that each hypemode illustrated in
the left-hand column is of the type shown next to it.

In [8] we discussed the expressiveness of types. In
particular, as we have illustrated above, set types,
binary relationship types, and nested record types are
all representable. Also, the hypernode is type-
complete in the sense that the only allowed type-
forming operator (digraph definition) can be applied
arbitrarily many times. Furthermore, schemas are
also digraphs and thus the meta data can be queried
and updated using the same formalism as the data.

2.2. Query Languages for the Hypernode
Model

We have defined two query (and update) languages
for the hypemode model : a rule-based query
language called Hyperlog and a procedural language
called HNQL.

Hyperlog programs consist of a finite set of rules.
The body of each rule consists of a number of
digraphs, called templates, which may contain vari-
ables and are matched against the hypernodes in the
database. The head of each rule is also a template
and indicates the updates (if any) to be undertaken for
each match of the templates in the body. The evalua-
tion of a program comprises a repeated matching of

SIGMOD RECORD, Vol. 22, No. 4, December 1993 27

its rules against the databasc (in parallel) until no
more updates can be inferred and a fixpoint is
autained. A comprehensive description of the syntax
and semantics of Hyperlog, and a comparison with
related database languages can be found in [8].

HNQL consists of a basic set of primitive operators
for updating hypernodes and for testing the member-
ship of nodes and arcs in hypemodes. In addition to
these deterministic operators, several non-
deterministic operators are provided for the arbitrary
selection of a node or an arc from a set thereof.
HNQL is further extended into a procedural query
language by adding assignment, sequential composi-
tion, a conditional construct, and bounded and
unbounded iteration. A comprehensive description of
the syntax and semantics of HNQL can be found in
[6].

For the purposes of both these query languages we
assume the availability of a countable set of variables,
V, and denote variables by uppercase identifiers from
the end of the alphabet. We introduce the flavour of
the languages via two simple examples.

The first example is an HNQL program, shown in
Figure 1, that selects the names of passengers who
are flying on flight number "BA212" and puts them
into a new hypemode whose label is RESULT. The
counterpart Hyperlog program is shown in Figure 2.

X1 :=create();
X2 :=rename(X1, RESULT);
X2 :=insert_node(RESULT, $name),
for_all X1 € nodes(PASSENGERS) do
if ($flight_no, "BA212") e arcs(X1) then
for_all (Y1, Y2) e arcs(X1) do
TB
if Y1 = $name then
TB
X2 :=insert_node(RESULT, Y2);
X2 :=insert_arc(RESULT, $name, Y2);
TE
TE

Figure 1.

The second example is an HNQL program, shown in
Figure 3, that modifies flight number "BA212" to
"BA345" for all passengers in the database. The
counterpart Hyperlog program is shown in Figure 4.

RESULT = ({$name, Y}, {(Sname, Y)}) «
X = ({$flight, "BA212",$name,Y },
{($flight, "BA212") (Sname,Y)}),
PASSENGERS = ({X}, @)

Figure 2.

for_all X1 € nodes(PASSENGERS) do
for_all (Y1, Y2) € arcs(X1) do
B
if (Y1, Y2) = ($flight_no, "BA212") then
™8
X2 :=delete_arc(X1, Y1, Y2);
X2 :=delete_node(X1, Y?2);
X2 :=insert_node(X1, "BA345");
X2 :=insert_arc(X1, Y1, "BA345");
TE
TE

Figure 3.

X = ({="BA212","BA345"},{($flight,"BA345") })
X = ({$flight,"BA212"}, {($flight,"BA212")}),
PASSENGERS = ({X},@)

Figure 4.

Not surprisingly, the Hyperlog programs are more
compact than their HNQL equivalents. They are also
more suitable for end users since they can easily be
represented graphically. Conversely, sequencing is
expressed more easily in HNQL which is conse-
quently more useful for low-level computations
(although see [8] for an example of how to simulate
counter programs in Hyperlog). We have also shown
in [8] and [6] respectively that both Hyperlog and
HNQL are wupdate-complete i.e. all computable
updates can be expressed in both languages.

3. Implementation

In this section we describe the implementation of a
prototype database system based on the hypemode
model. The main aim of this prototype has been to
investigate the suitability of the directed graph as a

28 SIGMOD RECORD, Vol. 22, No. 4, December 1993

data structure supported throughout all levels of the
implementation. We address each of the three levels
of the implementation in tumn in the following threc
sub-sections.

3.1. The Physical Level

The physical level is a hypernode database consisting
of two components, a storage manager and an index
manager. The main effort at this level has been
directed towards developing a modular and extensible
storage manager which can be used as a reliable and
stable core for future versions of the software. In
particular, the storage manager caters for :

- object-identity and referential sharing between
hypemodes;

- efficient update of hypemodes, including large
hypernodes, i.e. ones with a large node set or
with one or more large primitive nodes, and
complex hypemodes, i.e. ones with a dense
edge set;

- clustering strategies for hypernodes in secon-
dary storage;

- buffering of hypernodes in main memory;

- retrieval operations which utilise indexing pro-
vided by the index manager.

The main novelty of the storage manager compared
with other persistent stores is its use and optimisation
of a single graph data structure. The software is a
library of C++ classes which provides four categories
of operations for : creating, updating, traversing, and
associative querying of a hypernode database. A
comprehensive description of the implementation of
the storage manager can be found in [9].

3.2. The Conceptual Level

The conceptual level is the Hyperlog interpreter. The
main effort here has been directed towards develop-
ing efficient algorithms for the matching of templates
in rules against the database. A bottle neck that arises
in this matching process is the calculation of permu-
tations of node sets - in [8] we discuss several heuris-
tics which can be used to ameliorate this problem.
We also discuss there how type checking of Hyperlog
programs can be performed statically and in polyno-
mial time.

The software for the Hyperlog interpreter is a library
of C++ classes which provides three categories of
operations for : matching templates in rule bodies,

SIGMOD RECORD, Vol. 22, No. 4, December 1993

performing the updates arising from rule heads, and
composing these for the overall processing of rules
and programs.

Recently, we have developed a semi-naive evaluation
algorithm for Hyperlog programs without deletions
which is analogous to the well-known algorithm for
the (much simpler) Datalog language. In the absence
of EDB and IDB predicates, this is achieved by syn-
tactically partitioning the templates in the bodies of
Hyperlog rules into those templates which cannot be
affected by any updates to the database during the
evaluation of a program and those templates which
may be affected by updates to the database. The
former templates play a role similar to that of EDB
predicates and the latter similar to that of IDB predi-
cates in relational databases. A description of this
work can be found in [1].

3.3. The External Level

A graphical interface for Hyperlog is currently being
developed at this level. Also, a hypertext interface
which we call HyperGUI has been implemented
using Motif and X-windows., HyperGUI allows the
user to build up a database of hypernodes and to
update and navigate through the hypemodes of an
existing database. Updates are performed via menus
that allow the user to add and delete nodes and arcs in
the current hypernode. Navigation is performed by
clicking on buttons that represent the labels of hyper-
nodes, causing a window containing the nodes and
arcs of the selected hypernode to be displayed. Two
additional windows are displayed in order to help the
user navigate through the database. The first of these
is an overview diagram which contains all the labels
of hypernodes that are directly referencing or being
referenced by the current hypemode being browsed.
The second window lists all the labels of hypemnodes
in the database, allowing simpie random access to
any hypernode. Browsing of a textual fragment is
performed by displaying the text file containing the
text in a separate window. In the appendix we show
several screen dumps of hypemodes that have been
created using HyperGUIL

4. Conclusions

We have shown the viability of developing a database
system for the hypernode model which is based on
graphs throughout all its levels, from the user inter-
face down to the physical level :

29

) Al the physical level we have the developed a
repository (the storage manager) which is well
suited to the storage and update of hypernodcs.

. At the conceptual level we have developed a
query and update language (Hyperlog) which
supports both queriecs and updates.

. At the external level we have developed a
graphical interface (HyperGUI) which provides
a user-friendly way to set up, update, and navi-
gate a database of hypemodes. We are also
implementing a graphical interface for Hyper-
log.

The results of the hypermode project contribute

towards general research into graph-based database

systems. We particularly envisage the suitability of
the hypermode model for applications such as CASE,
hypertext, and knowledge bases. With respect to

CASE, we are developing an integrated data and pro-

cess model for modelling the software development

process [5). There are also several open problems
that have arisen from the project and require further
investigation :

. We would like to extend the type system of {8]
to cater for structural inheritance. This is an
important feature that can naturally be sup-
ported by our nested graph structures (as dis-
cussed in (4] for a predecessor of the Hyper-
node Model).

. An ongoing research problem is that of query
optimisation for query languages for complex
objects. In particular, the work of [1] needs to
be extended to cater for deletions as well as

" insertions. Also, at the physical level the index
manager needs to be extended with more
sophisticated indexing suitable for the graph
matching that underlies Hyperlog.

. We would also like to investigate other kinds of
query paradigms for the Hypernode Model e.g.
functional and object-oriented ones ([2] gives a
preliminary discussion of these).

. Finally, we feel that the results of this project
provide a sound foundation for further work in
the emerging research into hypertext, in partic-
ular into integrating navigational and declara-
tive queries over hypertext databases.

Acknowledgements

This work has been funded by Grant GR/G26662 of
the U.K. Science and Engineering Research Council.

We would like to thank our collecagues George
Loizou and Ray Offen for many fruitful discussions.

References

{11 Benkerimi K. and Poulovassilis A. 1993.
Semi-Naive Evaluation for Hyperlog, a graph-
based language for complex objects. To appear
in Proc. 1st International Workshop on Rules
in Database Systems, Ediburgh. Springer-
Verlag.

{2] Levene M. and Poulovassilis A. 1989. The
hypernode model - A graphical approach to
integrating data and computation. In Proc. Ist
International Workshop on Foundations of
Models and Languages for Data and Objects,
Aigen, Austria, pp. 55-77.

[3] Levene M. and Poulovassilis A. 1990. The
hypernode model and its associated query
language. Proc. Fifth Jerusalem Conference on
Information Technology, pp 520-530.

[4] Levene M. and Poulovassilis A. 1991. An
object-oriented data model formalised through
hypergraphs. Data & Knowledge Engineering,
Vol. 6, No. 3, pp. 205-224.

[51 Levene M. and Offen R. 1992. A unified
graph-based data and process model. Research
Note RN/92/99, Dept. Computer Science,
University College London.

[6) Levene M. and Loizou G. 1993. A graph-
based data model and its ramifications. IEEE
Transactions on Knowledge and Data
Engineering, in press.

[7] Poulovassilis A. and Levene M. 1989. Hyper-
node programs as the basis for a graphical
query language. Research Note RN/89/87,
Dept. Computer Science, University College
London.

{81 Poulovassilis A. and Levene M. 1993. A
nested-graph model for the representation and
manipulation of complex objects. ACM Tran-
sactions on Information Systems, in press.

[91 Tuv-E., Poulovassilis A. and Levene M. 1992.
A storage manager for the hypermmode model.
In Proc. 10th British National Conference on
Databases, Aberdeen, pp. 59-77. Springer-
Verlag LNCS Vol. 618.

30 SIGMOD RECORD, Vol. 22, No. 4, December 1993

Appendix

Edit Hyperrode

=

‘PASS3

st b e)
A7
BB e]

Ysrersent |~ TS5

PASSENGER_REC

¥ selec

‘ Edit Hypernode

tonpopp.

—

PASSENGER _REC

ATRLINE REC

| ftfligw |

CLEMSOmS| ot e

A

gstring J

!‘att_depaﬂent J

SIGMOD RECORD, Vol. 22, No. 4, December 1993

31

