
Relational Database Integration in the IBM AS/400

S. Scholerman ~, L. Miller*, J. Tenner #, S. Tomanek #, M. Zolliker #

* Dept. of Computer Science
Iowa State University

Ames, Ia 50011

International Business Machines Corporation
Rochester, MN 55901

Abstract

A great deal of research has been focused on the development
of database machines. In parallel to this work some vendors
have developed general purpose machines with database func-
tion built directly into the machine architecture. The IBM
AS/400 is one of the principle examples of this approach.
Designed with a strong object orientation and the basis func-
tions of the relational database model integrated into it's archi-
tecture, the AS/400 has proved to be a commerical success. In
the present work we look at the database component of the
AS/400.

1. Introduction

A great deal has been written about the utilization of database
machines in or for data processing applications
[HuMP89,HMPE89]. However, at this point the market
remains software based with only limited penetration by
machines that satisfy the typical definition given for database
machines.

Paralleling the work on database machines has been the work
of some manufacturers on integrating database functions into
the architecture of general purpose computers. An important
example of this approach is the IBM AS/400 product line (and
its predecessor, the S/38).

The AS/400 family of computers is a line of general purpose,
mid-range systems. The AS/400 family currently (V2R2 an-
nounced 2/92) includes 13 models ranging from the E02 to the
E90. The smallest model, the E02, supports up to 24MB of
main memory and up to 1,967MB of DASD capacity. The top
of the line E90 machine is a multi-processor that supports
three processors, up to 512MB of main memory and 123.4GB
of DASD capacity. All of these models use the same operat-
ing system, OS/400, and support the same approach to data-
bases so the remainder of this paper will generally apply to
any AS/400 model.

The AS/400 line was introduced by IBM in June of 1988. The

machine was depicted as a merger of the best features of its
predecessors, the System/38 and the System/36. The underly-
ing architecture of the machine is basically the S/38 architec-
ture with some of the S/38 limits removed and additional
enhancements included. The S/36 influence can be seen in the
extensive use of menus and the communication capabilities.

One of the primary features that distinguishes the AS/400
from other computer systems is its integrated function. Func-
tions that are typically implemented via separate system-
software packages are integrated directly into the hardware
and operating system software of the AS/400. This integration
should not be confused with bundling. The problems that
separate software products exhibit such as overlap of function,
inconsistent interfaces and complex system management are
not overcome by bundling. On the other hand, the integration
of function that is used by the AS/400 overcomes these draw-
backs and has the advantages of consistent uzer interfaces,
reduction of system code duplication, increased efficiency of
system software, simplification of application development
and reduced user intervention and system management.

Several other features distinguish the AS/400 line of comput-
ers from other computer systems. First, the architecture of the
machine is object-based and defines high-level interface. A
more detailed description of the AS/400. architecture can be
found in Section 2. The AS/400 also has an integrated rela-
tional database management system. In fact, many of the
system's design decisions were made with database in mind
and its primary use is for data-intensive applications. The re-
lational DBMS is discussed in more detail in Section 3.

2. AS/400 Architectural Features

This section briefly examines some of the architectural
features that set the AS/400 apart from other computers in its
class. Levy discusses the architecture of IBM's System/38 in
[Levy84]; the majority of this information also applies to the
AS/400. Additional information regarding the architecture of
the S/38 can be found in IBM's technical documentation

S I G M O D R E C O R D , Vol. 22, No. 4, D e c e m b e r 1993 5

[HenrS0]. Several reports developed by the ADM consulting
firm [And90a, And90b] provide information on the AS/400 ar-
chitecture and an AS/400 system overview can be found in
[ScTa89].

The primary architectural features of the AS/400 include the
layered organization of function, the high-level machine inter-
face, the notion of a single-level storage, the object orientation
of the machine, capability-based addressing and the tagged
pointer architecture. Each of these concepts will be discussed
briefly in the following paragraphs.

The layered organization of the function in the AS/400 con-
sists of five layers. The bottom 3 layers, the hardware, the
horizontal licensed .internal code (HLIC) and the vertical
licensed internal code (VLIC), implement the machine inter-
face (/vii). Above the MI is the operating system (OS/400)
and the top layer consists of high level language compilers,
utilities, and applications. Each layer provides a well-defined,
consistent interface which makes the layers independent and
allows implementation changes to lower layers without affect-
ing higher levels. An application programmer is prohibited
from using hardware and microcode instructions and is forced
to program at a higher level. This has the net effect of making
application development easier and faster. Figure I shows the
AS/400 architecture.

Directly tied to the layered organization of function is the
high-level machine interface (MI). This interface exists
between the operating system (OS/400) and the vertical
licensed internal code (VLIC). This interface is referred to as
an opaque interface because it is the lowest interface that can
be accessed by the layers above it. All of the implementation
details below this interface are hidden and can be changed
without affecting the user.

Secondary and main storage on the AS/400 is viewed as one
large contiguous space. All objects reside in this single level
store and can be accessed by any program that has the proper
authority. All secondary and main storage is managed by a
single storage management component that is part of the
VLIC. At the MI level, one addressing method is used to
reference both objects in main memory and objects on disk.
Object sharing therefore becomes straight-forward because of
this uniform addressability.

Everything that is stored on the AS/400 is stored as an object.
The main difference between user objects and system objects
is that system objects are used as the building blocks of user
objects. The object orientation follows the abstract data type

paradigm as opposed to the message passing paradigm. Sys-
tem objects and user objects are encapsulated. Figure 2 shows
an example of a complex user object.

The interface part of an system object is defined by the MI in-
struction set. The instruction set contains some generic object
operations like change object owner and grant authority.
Since the information required to perform these operations is
stored in the common object header, one operation definition
can handle any object type. The instruction set also defines
operations that are specific to certain object types like activate
cursor and insert tJ~tn space entry. These MI instructions that
operate on objects, whether they are generic operations or type
specific operations, can be thought of as "methods". The code
which implements all of these operations or methods is con-
tained within the Vertical Licensed Internal Code.

It is also possible to associate an unencapsulated space area
with a system object. This space area is called an associated
space. It is a byte accessible area that can be accessed by the
machine user (the operating system) and is generally used to
store control blocks or object definition information. All or
part of the information in the associated space of a machine
object is typically presented to the user upon the issuance of
the appropriate display description command. A special type
of object that contains no encapsulated part and only has an
associated space is a space object. Whether the space is part
of a space object or an associated space for another object, it
is not used by the VLIC or the hardware. It is only used by
and has meaning to the machine user (the operating system).

Ac:~:~tica¢ions

I Hi~n Level Languages i

s /36 I s/3a
Environment Envirortnen~

OS/~O0

ver:~cat License'~ [n~ernat C=ae

~orizon~at kicense~ !n~ernat Co~e

Hardware

Figure 1. AS/400 Layered Architecture.

6 S I G M O D R E C O R D , Vol. 22, No. 4, D e c e m b e r 1993

The AS/400 utilizes capability-based addressing. On a
capability-based system, each user and program has access to
a list of capabilities which define those objects that the user or
program is authorized to access. A capability can be thought
of as a token that gives the possessor permission to access an
object. On the AS/400, a capability is implemented as an au-
thorized system pointer. The system pointer contains the ad-
chess of the object as well as a set of usage rights. Initially, a
system pointer is in an unresolved state. In this state, the
pointer contains the name of the object, not the address. Upon
first reference, the system searches for the object and, once
found, replaces the name with the address. Subsequent refer-
ences to the pointer will not require the search.

These features make the AS/400 unique and provide the basis
for the integrated database approach used in the design of the
AS/400.

3. AS/400 Integrated Relational DBMS

3.1. Basic Notions

Although the AS/400 is not a database machine in the tradi-
tional sense, the design of the system was heavily influenced
by database considerations to the point that a relational data-
base management system (RDBMS) was integrated directly
into the machine to overcome the drawbacks of a separate re-
lational DBMS software package. Support for the DBMS can
be found implemented in the hardware, the vertical licensed
internal code (VLIC) and the operating system. Separate

Composite User Object - * FILE

I
I data sp

MI

A single mcanbered, non-keyed user physical file consisting
of three MI objects, one of type space, one of type cursor
and one of type data space.

Figure 2. An example of a composite user object.

software packages (e.g. SQL/400, Query/400, etc.) relating to
the DBMS are available and can be added to the system but
these packages primarily offer alternative interfaces to the
DBMS. Each of these separate interface products supports a
subset of the total database function that is implemented by
the operating system, the VLIC and the hardware.

The base DBMS interface supported by the AS/400 operating
system is usually called the "native" support. Most of the
function that is supported by the DBMS can be accessed
through the systems Control Language or CL. Since CL is
part of the operating system, all users automatically have ac-
ceess to the relational DBMS as soon as the operating system is
installed. CL commands can be used to create the two basic
file types on the system, the physical file and the logical file.

The physical file is the file that holds the data records(Figure
2). The format of the record can be defined in several ways.
The most powerful way is to define the record format with
Data Description Specifications (DDS). When this method is
used, the field level descriptions are known to the system. A
file created in this way will have "externally described dam".
It is also possible to only define the length of the record to the
system with the field level descriptions contained within appli-
cation programs. All of the records that are stored in a single
physical file will have the same single record formal A phy-
sical file may have zero or more "members". A physical file
without a member contains no data and is a file description
only. The members are what actually store the data records
and they are the vehicles by which records are inserted into
and retrieved from files. Multiple members for a single physi-
cal file can be used to subset the data that is stored in the file.
For example, an accounts receivable physical file may have 12
members, one for each month of the year where each member
contains the accounts receivable records for that month.

The logical file is used to define an alternate view of the data
that is stored in physical files. A simple logical file is built
over one physical file. The simple logical file can be used to
rearrange or subset the fields of the physical file. It can also
be used to map a single field to a different data type or length
or it can be used to substring a field or concatenate two or
more fields. A simple logical file may also contain selection
specifications. A join logical file can be used to join the data
records of up to 32 physical files. The join logical file sup-
ports either inner join or left partial outer join. All the func-
tions that can be performed on the fields in a simple logical
file can also be done in a join logical file. A third type of logi-
cal file is the multi-format logical file. This file type can also
be used to combine the records of up to 32 physical files but it

S I G M O D R E C O R D , Vol . 22, No. 4, D e c e m b e r 1993 7

does not join records. It can be used to define a hierarchy
between the records of the physical files. When the records
are retrieved, they are returned in this hierarchical fashion.

A physical or logical file may be keyed or unkeyed. A keyed
file is one that has one or more fields defined as key fields.
The AS/400 currently supports up to 2000 bytes of key data
per file. An access path is created and maintained by the sys-
texa where this access path specifies the order of the records
based on the values of the key fields and any other access path
attributes that may have been specified by the user. The
operating system tries to share access paths as often as possi-
ble. Sharing occurs when two or more logical files define
compatible access paths over the same physical data.

An important concept on the AS/400 is that of externally
described data. Any file that is created through the native ap-
proach using DDS is externally described. Tables and views
that are created using SQL/400 are also externally described.
An externally described file is characterised by the fact that all
of the field level descriptions of the record format are known
to the system. When a program is written, the field declara-
tions can be automatically pulled into the program by the sys-
tern when it is compiled. This prevents programs from using
files that may have changed formats. The open of a file by a
program will be disallowed if the program has been compiled
against an incompatible version of the file.

The AS/400 supports multiple interfaces to data that resides
on the system. As previously mentioned, the native system
support can be accessed through CL. It is also possible to
query dam using the CL command, Open Query File
(OPNQRYF) which is very powerful and, when issued, results
in the open of a query member. Through this query member,
the records meeting the query criteria can be retrieved. Once
this member is opened, it is possible to override the file of a
program to use this open member instead. This provides the
user with an easy way to supply query results to a traditional
file-oriented application.

An SQL product called SQL/400 is also available. The SQL
product provides the user with an interactive SQL interface as
well as the compile-time SQL routines needed to compile pro-
grams with embedded SQL statements. The runtime SQL rou-
tines needed to run programs with embedded SQL are provid-
ed as part of the operating system. This means that a user may
purchase an application with embedded SQL and may run this
application without purchasing the SQL/400 product. The
SQL/400 product provides the user with the ability to create
SQL collections (native library with a data dictionary), SQL

tables (native physical files), SQL indexes (native simple
keyed logical files) and SQL views (special logical file which
cannot be created through the native interface).

Another query product supported is Query/400. This query
product is typically used to create reports for existing data.
The query definitions created with the product can be saved
and later run by issuing a single command. Also supported is
the Interactive Data Definition Utility (IDDU). The AS/400
IDDU is similar to the S/36 IDDU and it primarily provides
the S/36 environment users with a menu-driven, interactive
method for describing data. Externally described files can be
created with IDDU or IDDU can be used to link a program
described file to an IDDU-defined format description.

It is important to note that files created through any interface
can typically be accessed through any of the other interfaces.
For the AS/400 user, this fact is probably the most significant
advantage of integration. This flexibility allows the user to
see the data as files in one application and see the data as part
of the relational model in another application. It eliminates the
need to duplicate data for file and relational applications as is
typically done on systems that utilize both a file system and a
database management system. Data security and integrity are
also strengthened since both native file access and relational
access use the same security, journaling and commitment con-
trol functions that are implemented below the Machine Inter-
face.

Another advantage of the integrated DBMS is the perfor-
mance advantage it offers over traditional systems. As was
previously mentioned, database function is implemented
throughout the layers of the system including the microcode
and the machine. This means that some database functions
run more efficiently than they do on other systems. For exam-
ple, several data conversion instructions are supported by the
machine instruction set.

The AS/400 does have some disadvantages as well. The
AS/400 tends to use more storage to store the same informa-
tion than traditional file systems like VSAM. Data for a single
object may be spread over several disk drives. The failure of
a single disk drive can mean a complete reinstall of the system
since it is impossible to reconstruct the objects on the system,
unless some prevention feature has been used (e.g. mirroring,
checksumming, alternate storage pools). This is not only a
problem for file objects, it exists for all objects on the system.

The AS/400 has advantages in the way that the SQL catalogs
have been implemented. On traditional systems, the catalogs

8 S I G M O D RECORD, Vol. 22, No. 4, December 1993

are referenced whenever queries are compiled in order to re-
trieve definition information. Catalogs are also referenced
during other operations like authority changes and table dele-
tion. Therefore, these catalogs become a bottleneck. On the
AS/400, definition information is stored with the objects so
that references to relational data do not require references to
the catalogs.

The SQL/400 product does suffer from a performance disad-
vantage verses native DBMS access due to the fact that the
product is built on top of the nadve database management sys-
tem and SQL queries must therefore execute a longer code
path than native DBMS accesses.

3.2. Distributed Data

The integrated DBMS of the AS/400 system provides key ad-
vantages in the area of distributed relational database and dis-
tributed file access. Probably the greatest advantage is that the
same objects can be accessed by either method. This com-
bined with the integration of database functions with other
system functions improves the function and usability of the
0S/400 database.

Distributed file access is provided on the AS/400 system by
Distributed Data Management (DDM) files. These files con-
tain information used by the local system to locate remote sys-
tems and access remote files. File access operations are per-
formed using the statements supported by the high-level
language. For example, OPEN and UPDAT are used in
RPG/400 applications while OPEN and REWRITE are used in
COBOL/400. These statements are used to access remote files
in the same way that they are used to access local files. Like-

wise, the same CL commands that are used to operate on a lo-
cal file are used to operate on a remote file. For both high-
level language access and CL access, when an application run-
ning on the local system performs operations against a DDM
file, OS/400 communicates with the remote system using Dis-
tributed Data Management architected flows to have the
operation performed against the remote file. Although access
to remote files is not through SQL, the integrated DBMS
makes it possible to access SQL tables and views on remote
AS/400 systems using the high-level language file access
statements and CL just as it does for local SQL tables and
views.

Distributed relational database access is provided by using
Distributed Relational Database Architecture (DRDA) to com-
municate with remote relational databases identified in a rela-
tional database directory. Each directory entry identifies a re-

lational database and information on how to access it. Each
AS/400 system is exactly one relational database. Therefore,
for the relational database entries that refer to AS/400 sys-
tems, each entry refers to a unique system. Each relational da-
tabase usually has several collections and/or libraries. Each li-
brary or collection usually contains several tables, views,
indexes, etc. When an application wants to work with a
specific table in a collection at a specifi6 relational database, it
directs it's SQL statements to the relational database by identi-
fying its name on an SQL CONNECT statement. OS/400
determines if the relational dzmbase is remote or local by exa-
mining the relational database directory entry. When the rela-
tional database is remote, DRDA flows are used to communi-
cate between the remote relational database and the local

AS/400 system. At the remote relational database, an object
called a SQL package is used to access the relational database.
The SQL package is created at precompile time and contains
information about the SQL statements and host variables to
provide efficient processing of the statements. It also provides
a means to have statements run under the profile of the appli-
cation owner. Although access to remote relational databases
is not through high-level languages and CL, the integrated
DBMS makes it possible to access physical files and logical
file on remote AS/400s using SQL just as SQL can be used
against local files.

3.3. Role of VLIC

There are four are.as of the VLIC that are concerned with data-
base function. Each is a separate "component" of the VLIC;
they are commit management, database management, in-
dependent index management and journal management. The
commit component provides the capability to group a series of

operations to make them appear as one operation. The data-
base component provides the support to insert, retrieve, update
and delete records from the database as well as define alter-
nate views of data. The index component provides the access
path support to insert and delete keys from a data space index
and the support to find entries in the index. Finally, the jour-
nal component provides the support to record changes to data
spaces and data space indexes in a journal. The journal is
used for commitment control, for backup and recovery pur-
poses and for audit trails. There are other components of the
VLIC that indirectly support the database facility as well.
Some of these include storage management, authorization
management and recovery initialization.

In addition to providing the support for the database-related
MI instructions, the database VLIC component supports many
internal functions. Some examples include building keys, in-

S I G M O D R E C O R D , Vol . 22, No. 4, D e c e m b e r 1993 9

validating data space indexes, verifying mapping templates,
unlocking data space entries and forcing recently inserted and
modified entries.

All of the database functions described above operate on the
machine objects that comprise a database file. A physical file
consists of a space object which contains the file control block
(FCB), and the objects that make up each member. Each
member has one cursor object which contains the member
control block (MCB) in the associated space of the cursor and
all of the data mapping specifications in the functional object.
A member has one data space per cursor where the data space
contains a definition of the record format, the default record
and the actual dam records. Optionally, there is a data space
index per cursor where the data space index holds the access
path description and the access path. The logical file has
similar" makeup except that the logical member does not have
a data space associated with it. It is built over the data spaces
of physical members. Also, the cursor object of a logical file
is typically much more complex than that of the physical file
since is can map fields, join records, and specify selection.

The majority of the database function related to data retrieval
(mapping, selection, join, grouping) and data insertion is im-
plemented via the cursor machine object. This object type is
one of the main reasons for the great flexibility of the AS/400.
All files on the system, whether they are created using CL
commands, created using SQL/400 or created through seine
alternate interface like IDDU, have a cursor associated with
them. The cursor is also the mechanism through which a
query is defined. Since data retrieval through queries and files
is implemented with the same object, it becomes easy to inter-
change relational and file access methods for the same data.
Below the Machine Interface, all accesses are viewed in the
same way. There is little distinction between relational and
file accesses. The only real difference is the disposition of the
cursors. Files use permanent cursors and queries create tem-
porary cursors.

4. Summary

The AS/400 is a general purpose computer that has been
designed for database applications. The functionality of the
relational DBMS has been integrated throughout the system
architecture. The resulting machine is one that does not pre-
cisely agree with the definition of a database machine, but in-
corporates many of the features attributed to database
machines.

Acknowledgements

We would like to thank Gary Stroebel of IBM in Rochester,
MN for his helpful suggestions on this manuscript.

References

[And90a] D.H. Andrews et al., The ASI400 Alternative, 1990,
ADM, Inc.

[Andg0b] D.H. Andrews et al., Why Replace a Perfectly Good
S/36 with as ASI400? 1990, ADM, Inc.

[Bane88] F. Bancilhon, "Object Oriented Database Systems,"
Proceedings of the ACM Conference on the Principles of Da-
tabase Systems. 1988, pp. 152-162.

[HenrS0] G.G. Henry et al., IBM Systera138 Technical
Developments, ISBN 0-933186-03-7, IBM Corporation, 1980.

[HUMP89] A. Hurson, L. Miller and S. Pakzad, Tutorial:
Parallel Architectures for Database Systems, IEEE Computer
Society Press, 1989.

[HMPE89] A. Hurson, L. Miller, S. Pakzad, M. Eich and B.
Shirazi, "Parallel Architectures for Database Systems," in Ad-
vances in Computers, Vol. 28, Academic Press, Inc., 1989.

[Levy84] H.M. Levy, Capability-Based Computer Systems,
1984 Digital Press, pp. 136-157.

[ScTa89] D.L. Schleicher and R.L. Taylor, "System Overview
of the Application System/400," IBM Systems Journal, 1989,
Vol.28, No. 3, pp. 360-375.

10 S I G M O D R E C O R D , Vol. 22, No. 4, D e c e m b e r 1993

