
D E A D L O C K P R E V E N T I O N IN A D I S T R I B U T E D D A T A B A S E S Y S T E M

P.KRISHNA REDDY and S U B H A S H B H A L L A

School of Computer and Systems Sciences
Jawaharlal Nehru University
New Delhi-t 10 067(INDIA)

(E-maih bhalla@jnuniv.emet.in)

A B S T R A C T

The distributed locking based approaches to
concurrency control in a distributed database
system, are prone to occurrence of deadlocks. An
algor i thm for dead lock prevention has been
considered in this proposal. In this algorithm, a
t ransac t ion is executed by fo rming wait for
relations with other conflicting transactions. The
techn ique for genera t ion of this kind of
precedence graph for transaction execution is
analyzed. This approach is a fully distr ibuted
approach. The technique is free from deadlocks,
avoids resubmission of transactions, and hence
reduces processing delays within the distributed
environment.

1 .0 I N T R O D U C T I O N

The d e a d l o c k prob lem is Intr insic to a
d is t r ibuted database system, which employs
locking as a means of support ing concurrency
control algorithm. A deadlock occurs when a
t ransac t ion , wa i ts for locks held by another
t ransact ion which is also wait ing (d i rect ly 'or
indirectly) for locks held by the first transaction.
Locking a lgor i thms can be divided in to two
classes: static locking and dynamic locking. In
static locking, all lock requests of a transaction are
allotted at the same time, and execution does not
start until all requests are granted. In dynamic
locking, a lock request is issued whenever a data
item is needed. In a distributed database system,
where transmission delay may be substantial,
static locking schemes are preferable to dynamic
ones [SHY90]. This is so because static locking
schemes allow concurrent transmission of lock
requests, and improve the response time of
transactions.

The deadlock detection schemes, proposed
with the deadlock detection algorithms [CHA82,

CHA83, GLI80, HAA83, MEN79, OBE82, SIN85]
call for abortion(restart) of some transactions in
the deadlock cycle. Deadlock detection is difficult
in a distnbuted database system, because no site
has a complete and upto date information about
the system. Some algorithms detect deadlocks by
first construct ing and then f inding cycles in a
t ransact ion-wai t - for-graph (a directed graph
whose nodes represent transactions and arcs
represent the wait-for relationships). Solutions
based on this method, are quite expensive be-
cause a large amount of information needs to be
propagated from site to site [OBE82]. In static
locking, in case of deadlock, the restarted transac-
tion must release all its locks and then send out
the access requests again. In a high volume
transaction processing environment this degrades
database performance dramatically. The perform-
ance study [CHO90] indicates that the major
component of the cost of runn ing the
algorithms[HAA83, SIN85] occurs when there is
no deadlock, i.e., the cost of running the algo-
rithm, dominates the cost of running the algorithm
when deadlock does exist, in the algorithm pro-
posed in [SHY90], the deadlocks are resolved by
reordering the lock requests of the data items,
such that no transactions need to be aborted. In
this approach, the algorithm must be run regularly,
to detect deadlocks.

In this paper, we have considered a deadlock
free approach based on formation of precedences
by site data managers, for accessing data items. A
lock request of transaction T i, is sent to different
sites. At each site, it forms the local access
graph(LAG). A LAG of T i at site S i contains the
precedences of all transactions(Ti) such that both
T i and T: have a confl ict on sbme data items
resident At S i. The formation of LAG at different
sites is based on the transaction identification
numbers, which are assigned uniquely to each
transaction at the site of their odgin. After forming
the LAG, the odd precedences are detected and

40 SIGMOD RECORD, Vol. 22, No. 3, September 1993

readjusted, if necessary by consu l t ing the
respect ive t ransac t ions ' home site. In th is
algorithm, extra communication is needed, ff and
only if, odd precedences exist in a respective LAG.
The approach causes no deadlocks, and hence
does not lead to an abort or a rejection of a
transaction.

In the next sect ion, we def ine a system
model, along with some definitions. In sectibn 3,
the synchronizat ion technique is described in
detail. Section 4, gives the algorithm for formation
of a local access graph at vadous sites. In section
5, proof of correctness is considered and the last
section considers the summary and conclusions.

2.0 SYSTEM MODEL AND RELATED
TERMS

We assume that, a distr ibuted database
management system consists of a collection of
sites c o n n e c t e d by a compu te r network. A
database is a collection of data items. Each site
has a system wide unique identifier. Further we
assume that each site suppor ts a t ransact ion
manager(TM) and a data manager(DM). The TMs
supervise execution of the transactions while the
DMs manage individual databases. The network is
assumed to detect failures, whenever these occur.
When a site fails, it simply stops r'.,nning and other
sites detect this fact. The communication medium
is assumed to provide the facility of message
transfer between sites. When a site has to send a
message to some other site, it hands over the
message to the communication medium, which
delivers it to the destination site in finite lime. We
assume that, for any pair of sites S I and S i, the
communicat ion medium always deliver~ the
messages to S i in the same order in which these
were handed to'the medium.

A transaction is modelled as a sequence of
read and write operations. A transaction consists
of four steps: reads, local computations, writes
and t ransac t i on commit . The lock request
messages a r e sent to the corresponding sites.
Each site assumed to support both local as well as
global transactions. The notion of correctness of
transaction execution in this context, is that of
serializability[ESW76]. We assume two phase
static locking is used. After a lock is granted, a
lock grant message(with the data) is sent to the
transaction generation site. Local computation
starts after all lock grants are received. After the

local computation is performed, the write phase is
initiated. Updated data items are sent to the data
sites and are stored in some temporary memory.
In the commit phase, updated values are written
into the database. Locks are released at the end of
the commit phase. For the study, all lock requests
are considered to be for exclusive access to data
items. The items to be locked by the transaction
for the purpose of read/write steps are termed as,
locking variables(LVs). The transactions T i, T i are
said to have conflict if, LV(Ti) O LV(T~) ~ ~. Ir~this
paper, if we say T.i N T,j~ ~, to imply, that conflict
exists between T i, Tj.

2.1 Transaction Identification Number
(TIN)

Every site Si has a logical clock C i, which
takes a monotonically nondecreasing integer
value [LAM78]. A TIN is ass igned to the
transaction T,, on its arrival, by a site S i. It is a

!

tr iple element value, as (S,I,C). S is the site
identifier. The I field is the unique t ransact ion
identifier, which is a value of the local clock (Ci) at
the instant of T='s arrival to the home site S i. The C
field Is used to synchronize different clocks. It
does not cont r ibu te to the Ident i ty of the
transaction.

For any transaction message, T(S,I,C), about
to be sent

C: =C i of the message sender site.

.f~of the site S~, on receipt of a transaction
message)

1. c i)

C= of the site S;, before d i spa tch of a
transaction T(mes..~ge)
q : = C j + l .

Let, TINt = ($1,11,C1) and TIN2 = ($2,12,C2) then,
any pair of TINs can be compared using the
following criteria.

Equal to(=) " TIN 1 =TIN 2, if and only if, S 1 =S 2
and 11 =12;

Greater than(>) : TIN 1 >TIN2, if and only if, 11 >12,
or 11 =12 and S 1 >$2; and

SIGMOD RECORD, Vo]. 22, No. 3, September 1993 41

Less than(<) • TIN 1 <TIN 2, if and only if, 11 <12,
or 11 =12 and S 1<S 2.

2.2 Partial Order(< <)

Consider T, as a set of transactions. A partial
order L= (T, < <) consist of set T, called the
domain of the partial order, and an irreflexive
transitive binary relation < < on T. If Ti< <T j, we
say that T i precedes T j in execution.

3.0 SYNCHRONIZATION USING LOCAL
ACCESS GRAPHS (LAGs)

Let, T = {T 1, T 2 Tn}, be a set of active
transactions in the aistributed system. A local
access graph of T t at site S I is a partial graph
G(V,E), where VeT, ~and E={<T i, Ti>/'T i n Ti~-¢
and T| < < Ti}. In this T i N T i ~ '~ denbtes ~oth
T=, Tt has the conf l ict on some data item
r~sid~nt at S i.

When a lock request of T i is sent to the
site (Si), a LAG is constructed at S i. The
notion of LAGs is described with an example
given below.

Example 1 : Consider the transactions T1,
T~, T s, T 4 and TR as shown below. Let X,Y,Z
b~ d~.ta items, ~nd w(X) indicates the write
operation on data item 'X'. Let, transaction
requests be as:

+, wwW! T~ =w2(X) w2(Z) T3 = w3(Z)
T4 =W4(X) T5 = W5(Y) ws(Z)

Consider the case, Where X,Y and Z are
located at one site. The execution of above
transactions can follow any sequence. The
not ion of co r rec tness of t ransact ion
execut ion is that of serial izabil i ty. So, for
above transactions many LAGs are possible,
if we take different serial executions in which,
transactions may execute operations. If we
take arrival pattern of t ransact ions in the
order T1, T2, T3, T4and T5, then based on
the arrival pattern, the corresponding LAGs
of above transactions are shown in figure 1.

T 1 Ti >T 2 T2------>T 3

(a)T 1 (b) T 2 (c)T 3

T ~ ~ T 4 T ~

(d)T 4 (e)T 5

Figure 1

Now consider the case of a distributed
system where data items X,Y and Z are stored at
$1, $2 and $3 respectively. The LR of a
transaction forms LAGs at sites where its
conflicting data items reside. Now the LAGs of
each transaction at site is shown in the figure 2.
The home sites o~ T 1 is S 1 ; T 2, T 5 is $2; and T 3,
T 4 is S 3.

T 1 T i >T 2

T l

TiT T4

(a) LAGs at S 1
(locks are granted to T 1)

T 1 T I- >T 2
T S +5

(b) LAGs at S 2
(locks are granted to T 1)

42 SIGMOD RECORD, Vol. 22, No. 3, September 1993

T 2 T 2 ~T 3 i T4
T 2"-,,,,,~

T 3 - ./~T5

m
~4

(c) LAGs at S 3
(locks are granted to T2)

Figure 2.

As seen above, in the centralized version
(figure 1 .) the LAG of T, contains precedences of
all active transactions w~'fich have any conflict with
T i. But in distr ibuted version (figure 2.), it is not
possible to have all precedences included in the
LAGs formed by an individual site. Inspite of this,
the use of LAGs Is similar to locking. In the case of
static locking, the lock requests wait in queues. In
the proposed approach, LAGs are constructed
instead of lock queues.

In f igure 2, edge<T=,T=> denotes that ?j
requires some data item w~idlh is also used by T.
After execution of T i the conflicting data tern is
released, for access by T,. At the beginning, T 1
accesses the da tabase 4 of S,. After this, T 2
accesses the database at S 2, t'hen T 3, T 4 at S 3
and T5 at S . Thus the equ[-valent serial order,
obtained is t~us <T 1 ,T2,T3,T4,T 5 >.

4 ,0 A N A L G O R I T H M T O C O N S T R U C T
L A G

For a transact ion T i, at site S i, the locking
variables of T i are identified. A lock request is
prepared and is sent to corresponding sites. At the
concerned sites, the LAGs are formed.

4.1 D e f i n i t i o n s

Home site:
The originating site of transaction T i is called

as the home site of T i.

Odd edge, Even edge:
An edge<Ti,Ti >, such that, Tj>T i, is called
as odd edge. Otherwise, eddie <T j, Ti> is
called an even edge.

Transaction identification number (TIN):
This is a unique number (S,I,C), assigned to
the t ransact ion T i on its arrival, by the
home site. In this paper T i, Tj,.. represents the
TINs of corresponding transSctions.

Locking variables(LVs):
For a transaction T i, the items read, or to be
written by T i constitute the locking variables.

Lock request(LR):
It consist of TIN, LVs. It is prepared by home
site, on arrival of each transaction.

Data table(DT):
This table is maintained at the home site of
each transaction. The DT of T i contains the
lock grants (with values). Whenever S i
receives the lock grant of T i, from other site, it
stores in the Ti.DT.

Transaction status(TS):
TS supports two values, 0 or 1. After getting
all requi red lock grants , t ransac t ion T i
changes the Ti.TS to 1, then starts execution.
Otherwise, Ti.TS = 0. The value of Ti.TS is
maintained at the home site(the requesting
TM).

Access status(AS):
It has values, 0 or 1. After access to the
required data items at some site Sj, by Ti, the
Ti.AS becomes 1. Otherwise if' is 0. This
parameter is maintained by the site Sj.

Active transaction list(ATL):
The ATL is maintained by each site. ATL is
divided in to two tables ATLT and ATLG.

ATL.T of S i = {T i (TVs,TS,AS) IT i has
requested data items resident at Si}. Where
T i may be a local or global transaction.

ATL.G of S i = {LAG(Ti) I T i has requested
data items resident at Si}.

SIGMOD RECORD, Vol. 22, No. 3, September 1993 43

4.2 A l g o r i t h m

The following notations are used to describe
the algorithm.

T i, T i,..represents the TINs of corresponding
tran.~,actions.
Ti.home-> home site of T i-
Ti.TS ->TS of T=.
Ti.AS - > AS of 1Ji .
Si.LAG.T=-> LAG of T= at S i-
Ti .DT->~T of T i. 'J

In this algorithm, whenever a transaction
arrives at S,, it is assigned a TIN value. Let Ti be
the TIN. Its ~R is prepared and is sent to all sites
where the data items reside. The LAG is prepared
at concerned sites. At any site S i, if Si.LAG.T i
contains odd edge<T.i,Ti>, then it i~ confirmed by
checking the Iocall~exist ing S i.LAG.T i, or by
consulting the T j.home. That i~', either'the lock
request has not 13een granted and the odd edge
can be reversed locally. Or, if the lock request has
been granted, the transaction may be in execution
or it may not be in execution. That is, at the

• home, if T i is under execution, then the odd
ge<T i Ti:~ is not deleted from the S i LAG T. i • - | .

OtherwiSe, the even edge<Ti,Ti> is Ins~lr'ted Into
the S.i.LAG.T.i, and odd edge~'Tj,Tl> is deleted
from'Si.LAG'~T i. In this way al l 'odd edges are
confiri 'hed, resul t ing In a deadlock free
environment. The algorithm Is described below.

I F O R M A T I O N O F LAGs.

(1) Processing at home site

On arrival of a transaction at site S h, the site
S h assigns it a Ti(TIN). It also identifies the LVs.
The S h prepares the LR for T i as: (Ti,LVs). The LR
is sent to different sites.

(2) Processing at any site

A LR of T i is received by S i. The following
steps are carried out at the site.

Initialize the Si.LAG.Ti(V,E) as: V={Ti} and
E = ~ . Insert the edge <Tj ,T i> into the
Si.LAG.T i for all conflicting fransactions(Ti)
from the'ATL.T of S i, If Ti.home -~ S= thegn
insert the Ti(LV,AS) into the ATL.'~ with
T i .AS=0. If T i . home=S i, then insert

Ti(LV,TS,AS) into the ATLT with Ti.TS =0 and
Ti.AS=0. Store Si.LAG.Ti into ATL.G. Go to
(3).

II C O N F I R M A T I O N OF ODD E D G E S
A N D L O C K G R A N T

(3) For each odd edge<Tk, T,> from Si.LAG.T i
go to (3.1). After completing all odd edges go
to (3.3).

(3.1) If Tk.AS=0, then insert the edge <Ti,Tk > into
theSi.LAG.T k. Delete the edge<Tk,Ti> from
Si.LAG.T i. If Tk.AS = 1 then go to (3.2).

(3.2) If Tk .AS=I then send the message
'Tk.STATE' to Tk.home. In return to this
message, S i receives the message
'Tk.EXECUTION', then do nothing. If S;
receives the message 'T k. NOEXECUTION I
then insert the edge <T i ,Tk > into the
Si.LAG.T k. Delete the edge<Tk,T.>a from
Si.LAG.T i. Go to (3).

(3.3) If T i receives the commits of all transactions
(Ti), such that, <Tj,Ti> belongs to Si.LAG.T i,
tht~n change the Ti.'AS to 1 ; and send the lock
grants(with the values) to Ti.home.

III

(4)

(s)

C O M M I T P R O C E S S I N G O F T R A N -
S A C T I O N A T T H E H O M E SITE

T i waits until it gets all the requested locks. All
lock grants are stored in the Tj.DT. After
getting the all lock grants, the site assigns
status Ti.TS as 1 in the ATL.T and starts
execut ion of T i. After comple t ion of
execut ion, the updated values are
committed.

Whenever S h receives the message
'Tk.STATE' from S=,j if T,..TS = 1, then the
message 'Tk.EXECI3TION~is returned to S,.
If Tk.TS=0, then the lock grants entry of T~
from S, are deleted from T,..DT, and the
message 'Tk.NOEXECUTION F is sent to S i.
Thus, the requesting site can revoke lock's
already granted, to avoid a deadlock.

44 SIGMOD RECORD, Vol. 22, No. 3, September 1993

5,0 P R O O F O F C O R R E C T N E S S

Theorem1: According to above algorithm, the
execution of transactions follows some partial
order(< <).

Proof: We prove the following

(i) every pair of conflicting transactions forms a
precedence.

(ii) deadlocks do not occur.

(i) if TI0 T 2 are conflicting type, then both will
make a request to the site where conflicting
data i tems are avai lable. Therefore, a
precedence is formed between T 1 and T 2.

(ii) Consider the deadlock situation as:

W W W W

C=Ti--->T 2---> ... --->Tn--->T I ;

w
where n> l . In this T-->T," indicates T= is waiting
for data item 'X', whi'c~i is Idcked by tran~saction Tj.
Among the given edges, for any odd edge<Td,Ti>,

(a) If T i is under execut ion, then the cycle
breaks.

(b)
<I~,Ti> is deleted(odd edge).
If T= is not under execution, then the edge

From (a) and (b), it Is proved that C is acyclic.

From (i), every pair of conflicting transactions
form precedence and from (ii), cycles do not exist.
Hence the execution of transactions is as per the
partial order(< <).

6.0 S U M M A R Y AND CONCLUSIONS

In the existing locking based approaches, if
t ransact ions f rom di f ferent sites, are in
serializability conflict, then some of the submitted
t ransact ions are rejected. In these systems
deadlock removal requires extra messages, and
processing t ime. Also, the t ransact ions are
resubmitted for execution, and by this, incur
additional processing delays and overheads. In
the proposed technique, a local access graph is
const ructed at every site, which results in
prevention of deadlocks. Given an ideal situation,
if each data access request is made as per the TIN

ordering, the chances of a deadlock are extremely
low. In the case of confirmation of odd edge, in
many cases, the confirmation is done locally.

In the proposed algor i thm, t ransact ion
rejection, or abort does not occur. The proposed
technique is ideal ly suited for a d is t r ibuted
environment, where a dominant factor of cost of
processing is, number of messages. The proposal
can be implemented with sl ight changes to
existing locking based mechanisms. No separate
deadlock handling mechanism, needs to be
implemented in such systems.

REFERENCES

[CHA82] Chandy, K.M and Misra, J. A Distributed
algorithm For Detecting Resource Deadlocks
in Distr ibuted Systems. Proc. of ACM
SIGACT-SIGOPS Symp. on Principles of
Distributed Computing, Ottawa, Canada,
Aug. 1982.

[CHA83] Chandy, K.M., Misra, J. and Hass, L.M.
Distributed Deadlock Detection. ACM Trans.
on Computer Systems. Vol.1, pp. 144-156,
May 1983.

[CHO90] Choudhary, A,N. Cost of Deadlock
Detect ion: A Performance Study. IEEE
Conference on Data Engineering, 1990.

|ELM86] Elmagarmid, V.D. A Survey of
Distributed Deadlock Detection Algorithms.
SIGMOD RECORD, 15(3), pp.37-45, Sept.
1986.

[ESW76] Eswaran, K.R., Gray, J.N., Lode, R.A and
Traiger, T.L The Notions of Consistency and
Predicate Locks in a Database System.
Communications of ACM, Novem. 1976.

[GLI80] Gligor, V and Shattuck, S.H. On Deadlock
Detection in Distributed Database Systems.
IEEE Transactions on Software Engineering,
VOL SE-6, Sept. 1980.

[HAAS3] Haas, L.M and Mohan, C. A Distnbuted
Deadlock Detection Algorithm For Resource
Based Systems. IBM Research Report,
RJ3765, Jan 1983.

SIGMOD RECORD, Vol. 22, No. 3, September 1993 45

[KNA87] Knapp, E. Deadlock Detection in a
Distributed Databases. ACM Computing
Surveys, 19(4), pp.303-328, Decem. 1987.

[LAM78] Lamport, L Time Clocks and Ordering of
Events in a Distributed System. Communi-
cations of ACM, 21 (7), pp.558-569, July 1978.

[MEN79] Menasce, D.A. and Muntz,R.R. Locking
and Deadlock Detection in Distributed
Databases. IEEE Transactions on Software
Engineering, Vol. SE-5, May 1979.

[OBE82] Obermark, R. Distributed Deadlock
Detection Algorithm. ACM Transactions on
Database Systems, Vol. 7, pp.187-208, June
1982.

[SHY90] Shyu, S.C., U, V.O.K and Weng, C.P. An
abortion free Distributed Deadlock Detection/
Resolution Algorithm. Proc.IEEE 10th
International Conference on Distributed
Computing Systems, June 1990.

[SIN85] Sinha, M.K and Natarajan, N. A Priority
Based Distributed Deadlock Detection
Algorithm. IEEE Transactions on Software
Engineering, Vol. SE-11 ,pp. 67-80, Jan 1985.

46 SIGMOD RECORD, Vol. 22, No. 3, September 1993

