40

DEADLOCK PREVENTION IN A DISTRIBUTED DATABASE SYSTEM

P.KRISHNA REDDY and SUBHASH BHALLA

School of Computer and Systems Sciences
Jawaharial Nehru University
New Delhi-110 067(INDIA)
{E-mail: bhalla@jnuniv.emnet.in)

ABSTRACT

The distributed locking based approaches to
concurrency control in a distributed database
system, are prone to occurrence of deadlocks. An
algorithm for deadlock prevention has been
considered in this proposal. In this algorithm, a
transaction is executed by forming wait for
relations with other conflicting transactions. The
technique for generation of this kind of
precedence graph for transaction execution is
analyzed. This approach is a fully distributed
approach. The technique is free from deadlocks,
avoids resubmission of transactions, and hence
reduces processing delays within the distributed
environment.

1.0 INTRODUCTION

The deadlock problem is intrinsic to a
distributed database system, which employs
locking as a means of supporting concurrency
control algorithm. A deadlock occurs when a
transaction, waits for locks held by another
transaction which is also waiting (directly’or
indirectly) for locks held by the first transaction.
Locking algorithms can be divided in to two
classes: static iocking and dynamic locking. In
static locking, all lock requests of a transaction are
allotted at the same time, and execution does not
start until ali requests are granted. In dynamic
locking, a lock request is issued whenever a data
item is needed. In a distributed database system,
where transmission delay may be substantial,
static locking schemes are preferable to dynamic
ones [SHY90]. This is so because static locking
schemes allow concurrent transmission of lock
requests, and improve the response time of
transactions.

The deadiock detection schemes, proposed
with the deadlock detection algorithms [CHAS2,

CHAB83, GLI80, HAA83, MEN79, OBES82, SIN85]
call for abortion(restart) of some transactions in
the deadlock cycle. Deadlock detection is difficult
in a distributed database system, because no site
has a complete and upto date information about
the system. Some algorithms detect deadlocks by
first constructing and then finding cycles in a
transaction-wait-for-graph (a directed graph
whose nodes represent transactions and arcs
represent the wait-for relationships).  Solutions
based on this method, are quite expensive be-
cause a large amount of information needs to be
propagated from site to site [OBEB82]. In static
locking, in case of deadlock, the restarted transac-
tion must release all its locks and then send out
the access requests again. In a high volume
transaction processing environment this degrades
database performance dramatically. The perform-
ance study [CHO90] indicates that the major
component of the cost of running the
algorithms[HAAB83, SIN85] occurs when there is
no deadlock, l.e., the cost of running the algo-
rithm, dominates the cost of running the algorithm
when deadlock does exist. in the algorithm pro-
posed in [SHYQ0], the deadlocks are resolved by
reordering the lock requests of the data items,
such that no transactions need to be aborted. In
this approach, the algorithm must be run regularly,
to detect deadlocks.

In this paper, we have considered a deadlock
free approach based on formation of precedences
by site data managers, for accessing data items. A
lock request of transaction T,, is sent to different
sites. At each site, it forms the local access
graph(LAG). A LAG of T; at site S, contains the
precedences of all transactions(T;) such that both
Ti and T. have a conflict on s$me data items
resident ﬁt S;- The formation of LAG at different
sites is based on the transaction identification
numbers, which are assigned uniquely to each
transaction at the site of their origin. After forming
the LAG, the odd precedences are detected and

SIGMOD RECORD, Vol. 22, No. 3, September 1993



readjusted, it necessary by consulting the
respective transactions’ home site. In this
algorithm, extra communication is needed, if and
only if, odd precedences exist in a respective LAG.
The approach causes no deadlocks, and hence
does not lead to an abort or a rejection of a
transaction.

In the next section, we define a system
model, along with some definitions. In section 3,
the synchronization technique is described in
detail. Section 4, gives the algorithm for formation
of a local access graph at various sites. In section
5, proof of correctness is considered and the last
section considers the summary and conclusions.

2.0 SYSTEM MODEL AND RELATED
TERMS

We assume that, a distributed database
management system consists of a collection of
sites connected by a computer network. A
database is a collection of data items. Each site
has a system wide unique identifier. Further we
assume that each site supports a transaction
manager(TM) and a data manager(DM). The TMs
supervise execution of the transactions while the
DMs manage individual databases. The network is
assumed to detect fallures, whenever these occur.
When a site fails, It simply stops r:inning and other
sites detect this fact. The communication medium
Is assumed to provide the facility of message
transfer between sites. When a site hasto send a
message to some other site, it hands over the
message to the communication medium, which
delivers it to the destination site in finite time. We
assume that, for any pair of sites S;and §;, the
communication medium always dellveri the
messages to S; in the same order in which these
were handed to‘ the medium.

A transaction is modelled as a sequence of
read and write operations. A transaction consists
of four steps: reads, local computations, writes
and transaction commit. The lock request
messages are sent to the corresponding sites.
Each site assumed to support both local as well as
global transactions. The notion of correctness of
transaction execution in this context, is that of
serializability[ESW76]. We assume two phase
static locking is used. After a lock is granted, a
lock grant message(with the data) is sent to the
transaction generation site. Local computation
starts after all lock grants are received. After the

SIGMOD RECORD, Vol. 22, No. 3, September 1993

local computation is performed, the write phase is
initiated. Updated data items are sent to the data
sites and are stored in some temporary memory.
In the commit phase, updated values are written
into the database. Locks are released at the end of
the commit phase. For the study, all lock requests
are considered to be for exclusive access to data
items. The items to be locked by the transaction
for the purpose of read/write steps are termed as,
locking variables(LVs). The transactions T ,T. are
said to have conflict if, LV(T) N LV(T)) £ &. " i this
paper, fwesay T, N T, 7é ¢ to lmplgl that conflict

exists between T TJ

2.1 Transaction ldentification Number

(TIN)

Every site S; has a logical clock C;, which
takes a monotonically nondecreasing mteger
value [LAM78]. A TIN is assigned to the
transaction T, on its arrival, by a site S;. It is a
triple element value, as (S,1,C). S is the site
identitier. The | tield is the unique transaction
identifier, which is a value of the local clock (C;) at
the instant of T.'s arrival to the home site S;. The C
field is used to synchronize different clocks. It
does not contribute to the identity of the
transaction.

For any transaction message, T(S,[,C), about
to be sent

C:=C; of the message sender site.

of the site S, on receipt of a transaction

Tfmessage) {
CJ max(C+1,CJ).
of the site S;, before dispatch of a
trénsactuon T(mesgage)
q‘ CJ“'

Let, TIN1 = (S d4.Cq)and TIN2 = (S I C )then
any pair of TINs can be compared usmg the
following criteria.

Equal to(=)

:TIN, =TIN2, ifand only if, $; =S,
and I‘=l2;

Greater than(>) : TIN1 >TIN2, if and only if, | >12,
orl -Izand S1>82. and

4]



Less than(<) :TIN <TIN2 it and only i, I, <,

2.2 Partial Order(< <)

Consider T, as a set of transactions. A partial
order L=(T, < <) consist of set T, called the
domain of the partial order, and an irreflexive
transitive binary relation << on T. f T,<<T;, we

say that T, precedes TJ in execution. J

3.0 SYNCHRONIZATION USING LOCAL
ACCESS GRAPHS (LAGS)

Let, T = {T,, T7,,...T.}. be a set of active
transactions in the élstnguted system. A local
access graph of T, at site S, is a partial graph
G(V,E), where V€T, and E= {<T’ T>/Mn Tite
and j<<ThInthisTiN T f ¢ denbtes both

has {he confﬁct on some data item
résudent at §;.

When a lock request of T; is sent to the
site (S;), a LAG is constructed at ;. The
notion of LAGs is described with an example
given below.

Example 1: Consider the transactions T
To, Ta, T4 and Tg as shown below. LetXY1Z
be data items, and w(X) indicates the write
operation on data item ‘X'. Let, transaction
requests be as:

T Zwh00 w) % @
w W w.
'I'2 wi(x) wi(Z) &) wg(Z)

Consider the case, Where X,Y and Z are
located at one site. The execution of above
transactions can follow any sequence. The
notion of correctness of transaction
execution is that of serializability. So, for
above transactions many LAGs are possible,
if we take different serial executions in which,
transactions may execute operations. If we
take arrival pattern of transactions in the
order T4, Tp, Tq, T4 and Tg, then based on
the arnval pattern 4he correspondmg LAGs
of above transactions are shown in figure 1.

(Q)T, (e) T

Figure 1

Now consider the case of a distributed
system where data items X,Y and Z are stored at
S1, S2 and S3 respectively. The LR of a
transaction forms LAGs at sites where its
conflicting data items reside. Now the LAGs of
each transaction at site is shown in the figure 2.
The home sites of T,i8 84Ty, T5 is Sz. and T3.
Tyls 83

Ty
Ty Tr—>7T; T4
T2
(a) LAGsat S,
(locks are granted to T )
Ty,

(b) LAGsatsS,
(locks are granted to T, )

SIGMOD RECORD, Vol. 22, No. 3, September 1993



T, Typ——>T;,

(c) LAGSs at S,
(locks are granted to T2)

Figure 2.

As seen above, in the centralized version
(figure 1.) the LAG of T, contains precedences of
alt active transactions which have any conflict with
Ti' But in distributed version (figure 2.), it is not
possible to have all precedences included in the
LAGs formed by an individual site. Inspite of this,
the use of LAGs is similar to locking. In the case of
static locking, the lock requests wait in queues. In
the proposed approach, LAGs are constructed
instead of lock queues.

In figure 2, edge<T.,T.> denotes that T,
requires some data item whidjh is also used by Ti‘!
After execution of T; the conflicting data item is
released, for access by Tj. At the beginning, T,
accesses the database of S;. After this, T
accesses the database at S,, t\'\en Ty T4ats
and T at S,. Thus the equivalent serial order,

obtained is thus <T1,T2.T3,T4,T5>.

4.0 AN ALGORITHM TO CONSTRUCT
LAG

For a transaction T,, at site S;. the locking
variables of Ti are identified. A lock request is
prepared and is sent to corresponding sites. At the
concerned sites, the LAGs are formed.

4.1 Definitions

Home site:
The originating site of transaction Ti is called

SIGMOD RECORD, Vol. 22, No. 3, September 1993

as the home site of Ti'

Odd edge, Even edge:
An edge<T.,Ti>, such that, T->Ti, is called
as odd edde. Otherwise, edée <T,j' Ti> is
called an even edge.

Transaction identification number (TIN):
This is a unique number (8,1.C), assigned to
the transaction T. onits arrival, by the
home site. In this paper T, T.... represents the
TINs of corresponding transictions.

Locking variables(LVs):
For a transaction T;, the items read, or to be
written by T, constitute the locking variables.

Lock request(LR):
1t consist of TIN, LVs. Itis prepared by home
site, on arrival of each transaction.

Data table(DT):
This table is maintained at the home site of
each transaction. The DT of T; contains the
lock grants (with values). Whenever §;
receives the lock grant of T;, from other sit\e. it
stores in the Ti.DT.

Transaction status(TS):
TS supports two values, 0 or 1. After getting
all required lock grants, transaction T;
changes the T.TS to 1, then starts execution.
Otherwise, T,.TS = 0. The value of T, TS is
maintained at the home site(the requesting
™).

Access status(AS):
It has values, 0 or 1. After access to the
required data items at some site S., by T, the
T;-AS becomes 1. Otherwise Il" is 0. 'This
parameter is maintained by the site Si'

Active transaction list(ATL):
The ATL is maintained by each site. ATL is
divided in to two tables ATL.T and ATL.G.

ATL.T of §; = {T;(TVs,TS,AS)|T; has
requested data items resident at S;}. Where
T, may be a local or global transaction.

ATL.G of §; = {LAG(T))| T, has requested
data items resident at Sii.

43



4.2 Algorithm

The following notations are used to describe
the algorithm.

T;. T....represents the TINs of corresponding
transactions.

T;.home-->home site of T;.

T;TS ->TSof T;

T,AS ~>AS of T,

S;LAG.T,->LAG of T; at S,.

T, IOT->bT of T,

In this algorithm, whenever a transaction
arrives at S, it is assigned a TIN value. Let Ti be
the TIN. its LR is prepared and is sent to all sites
where the data items reside. The LAG is prepared
at concerned sites. At any site S, if S,.LAG.T,
contains odd edge<T Tl> then it tg conflrmed by
checking the locally existing S;.LAG.T;, or by
consulting the T..home. That léJ either&he lock
request has not ﬂeen granted and the odd edge
can be reversed locally. Or, if the lock request has
been granted, the transaction may be in execution
or it may not be in execution. That is, at the
T;.home, it T is under execution, then the odd
e‘lige<T T > is not deleted from the S;.LAG. T
Otherwcie the even edge<T,T;> Is lnse‘hed Into
the S,.LAG.T;, and odd edge <JTJ T,> is deleted
from'S;.LA T In this way all odd edges are
confirfhed, resulting in a deadlock free
environment. The algorithm is described below.

| FORMATION OF LAGS.
(1) Processing at home site

On arrival of a transaction at site S,,, the site
S, assigns it a T|(T IN). It also identifies the LVs.
The S}, prepares the LR for T; as: (T pLVs). The LR
is sent to different sites.

(2) Processing at any site

A LR of T, is received by S,. The following
steps are carried out at the site.

Initialize the §; LAG.T;(V,E) as: V= {T;} and
E=¢. Insert the edge <T:.T:.> mto the
S$;-LAG.T; for all conflicting l’ransactlons(T
from the ATL.T of S;. If T, home? S: theh
insert the T.(LV, AS) into the ATL. 'lI with
T;-AS=0. lg T;-home=S§;, then insert

Ti(LV,TS,AS) into the ATL.T with Ti.TS=0 and
T1.AS=0. Store Si.LAG.Ti into ATL.G. Go to

(3).

It CONFIRMATION OF ODD EDGES
AND LOCK GRANT

(3) For each odd edge<T,.T;> from S, LAG.T,
go to (3.1). After completing all odd edges go
to (3.3).

(3.1) 4 T,.AS=0, then insert the edge <T T > into
the‘% LAG.T, . Delete the edge<Tk T, > from
S, LAGT, Ika AS=1then go to (3.2).

3.2)If T,.AS=1 then send the message
Ty ATE' to T,-home. in return to this
message, receuves the message
Ty EXECUleN' then do nothing. If S'
recelves the message T,. NOEXECUTION
then insert the edge <T;, T, > into the
S;-LAG.T,.. Delete the edge< k1> from
S;LAG.T;. Goto (3).

(3.3) It T; receives the commits of all transactions

) such that, <T .T;> belongs to S.LAG.T,,

en change the T, Aé to 1; and send the loc
grants(wnh the values) to T.home.

il COMMIT PROCESSING OF TRAN-
SACTION AT THE HOME SITE

(4) T waits until it gets all the requested locks. All
lock grants are stored in the T..DT. After
getting the all lock grants, the site assigns
status T;.TS as 1 in the ATL.T and starts
execution of T.. After completion of
execution, the wupdated values are
committed.

(5) Whenever S, receives the message
‘Ty-STATE' from §;, if T .TS=1, then the
message ‘T, EXECdTION is returned to S..
If T,.TS=0, then the lock grants entry of T
from S; are deleted from Tk DT, and the
messade T, NOEXECUTION'is sent to §;
Thus, the requesting site can revoke IockJs
already granted, to avoid a deadiock.

SIGMOD RECORD, Vol. 22, No. 3, September 1993



5.0 PROOF OF CORRECTNESS

Theoremt: According to above algorithm, the
execution of transactions follows some partial
order(< <).

Proof: We prove the following

(i) every pair of conflicting transactions forms a
precedence.
(i) deadlocks do not occur.

(@) if Ty, T, are conflicting type, then both will
make a request to the site where conflicting
data items are available. Therefore, a
precedence is formed between T1 and T2.

(i) Consider the deadlock situation as:

w w w w
C=T1--->Ty-==>...===>T ===>T,;

w

where, n>1. In this, T—>T;: indicates T, is waiting

for data item ‘X', which is I(’lcked by transaction Ti'

Among the given edges, for any odd edge<T;i.Ti>.

(@) If T, is under execution, then the cycle
bredks.

(b) H T, is not under execution, then the edge
<1:]'Ti> is deleted(odd edge).

From (a) and (b), it is proved that C is acyclic.

From (i), every pair of conflicting transactions
form precedence and from (ji), cycles do not exist.
Hence the execution of transactions Is as per the
partial order(< <).

6.0 SUMMARY AND CONCLUSIONS

In the existing locking based approaches, if
transactions from different sites, are in
serializability conflict, then some of the submitted
transactions are rejected. In these systems
deadlock removal requires extra messages, and
processing time. Also, the transactions are
resubmitted for execution, and by this, incur
additional processing delays and overheads. In
the proposed technique, a local access graph is
constructed at every site, which results in
prevention of deadlocks. Given an ideal situation,
if each data access request is made as per the TIN

SIGMOD RECORD, Vol. 22, No. 3, September 1993

ordering, the chances of a deadlock are extremely
low. In the case of confirmation of odd edge. in
many cases, the confirmation is done locally.

In the proposed algorithm, transaction
rejection, or abort does not occur. The proposed
technique is ideally suited for a distributed
environment, where a dominant factor of cost of
processing is, number of messages. The proposal
can be implemented with slight changes to
existing locking based mechanisms. No separate
deadlock handling mechanism, needs to be
implemented in such systems.

REFERENCES

[CHAB2] Chandy.K.M and Misra, J. A Distributed
algorithm For Detecting Resource Deadlocks
in Distributed Systems. Proc. of ACM
SIGACT-SIGOPS Symp. on Principles of
Distributed Computing, Ottawa, Canada,
Aug. 1982.

[CHA83] Chandy, K.M., Misra, J. and Hass, L.M.
Distributed Deadlock Detection. ACM Trans.
on Computer Systems. Vol.1, pp. 144-156,
May 1983.

{CHO90] Choudhary, A,N. Cost of Deadlock
Detection: A Performance Study. IEEE
Conterence on Data Engineering, 1990.

[ELM86] Elmagarmid, V.D. A Survey of
Distributed Deadlock Detection Algorithms.
SIGMOD RECORD, 15(3), pp.37-45, Sept.
1986.

[ESW76] Eswaran, KR., Gray, J.N., Lorie, R.A and
Traiger, T.L. The Notions of Consistency and
Predicate Locks in a Database System.
Communications of ACM, Novem. 1976.

[GLI80] Gligor, V and Shattuck, S.H. On Deadlock
Detection in Distributed Database Systems.
IEEE Transactions on Software Engineering,
VOL. SE-6, Sept. 1980.

[HAAB83] Haas, L.M and Mohan, C. A Distributed
Deadlock Detection Algorithm For Resource
Based Systems. IBM Research Report,
RJ3765, Jan 1983.

45



46

[KNA8B7] Knapp, E. Deadiock Detection in a
Distributed Databases. ACM Computing
Surveys, 19(4), pp.303-328, Decem. 1987.

[LAM78] Lamport, L Time Clocks and Ordering of
Events in a Distributed System. Communi-
cations of ACM, 21(7), pp.558-569, July 1978.

[MEN79] Menasce, D.A. and Muntz, R.R. Locking
and Deadlock Detection in Distributed
Databases. IEEE Transactions on Software
Engineering, Vol. SE-5, May 1979.

[OBE82] Obermark, R. Distributed Deadlock
Detection Algorithm. ACM Transactions on
Database Systems, Vol. 7, pp.187-208, June
1982.

[SHY90] Shyu, S.C., Ui, V.O.K and Weng, C.P. An
abortion free Distributed Deadlock Detection/
Resolution Algorithm. Proc.lEEE 10th
International Conference on Distributed
Computing Systems, June 1990.

[SIN85] Sinha, M.K and Natarajan, N. A Priority
Based Distributed Deadlock Detection
Algorithm. IEEE Transactions on Software
Engineering, Vol. SE-11,pp. 67-80, Jan 1985.

SIGMOD RECORD, Vol. 22, No. 3, September 1993



