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A B S T R A C T  

The distributed locking based approaches to 
concurrency control in a distributed database 
system, are prone to occurrence of deadlocks. An 
algor i thm for dead lock  prevention has been 
considered in this proposal. In this algorithm, a 
t ransac t ion  is executed by fo rming  wait  for 
relations with other conflicting transactions. The 
techn ique  for genera t ion  of this kind of 
precedence graph for transaction execution is 
analyzed. This approach is a fully distr ibuted 
approach. The technique is free from deadlocks, 
avoids resubmission of transactions, and hence 
reduces processing delays within the distributed 
environment. 

1 .0  I N T R O D U C T I O N  

The d e a d l o c k  prob lem is Intr insic to a 
d is t r ibuted database system, which employs 
locking as a means of support ing concurrency 
control algorithm. A deadlock occurs when a 
t ransac t ion ,  wa i ts  for locks held by another  
t ransact ion which is also wait ing (d i rect ly 'or  
indirectly) for locks held by the first transaction. 
Locking a lgor i thms can be divided in to two 
classes: static locking and dynamic locking. In 
static locking, all lock requests of a transaction are 
allotted at the same time, and execution does not 
start until all requests are granted. In dynamic 
locking, a lock request is issued whenever a data 
item is needed. In a distributed database system, 
where transmission delay may be substantial, 
static locking schemes are preferable to dynamic 
ones [SHY90]. This is so because static locking 
schemes allow concurrent transmission of lock 
requests, and improve the response time of 
transactions. 

The deadlock detection schemes, proposed 
with the deadlock detection algorithms [CHA82, 

CHA83, GLI80, HAA83, MEN79, OBE82, SIN85] 
call for abortion(restart) of some transactions in 
the deadlock cycle. Deadlock detection is difficult 
in a distnbuted database system, because no site 
has a complete and upto date information about 
the system. Some algorithms detect deadlocks by 
first construct ing and then f inding cycles in a 
t ransact ion-wai t - for-graph (a directed graph 
whose nodes represent transactions and arcs 
represent the wait-for relationships). Solutions 
based on this method, are quite expensive be- 
cause a large amount of information needs to be 
propagated from site to site [OBE82]. In static 
locking, in case of deadlock, the restarted transac- 
tion must release all its locks and then send out 
the access requests again. In a high volume 
transaction processing environment this degrades 
database performance dramatically. The perform- 
ance study [CHO90] indicates that the major 
component  of the cost  of runn ing  the 
algorithms[HAA83, SIN85] occurs when there is 
no deadlock, i.e., the cost of running the algo- 
rithm, dominates the cost of running the algorithm 
when deadlock does exist, in the algorithm pro- 
posed in [SHY90], the deadlocks are resolved by 
reordering the lock requests of the data items, 
such that no transactions need to be aborted. In 
this approach, the algorithm must be run regularly, 
to detect deadlocks. 

In this paper, we have considered a deadlock 
free approach based on formation of precedences 
by site data managers, for accessing data items. A 
lock request of transaction T i, is sent to different 
sites. At each site, it forms the local  access  
graph(LAG). A LAG of T i at site S i contains the 
precedences of all transactions(Ti) such that both 
T i and T: have a confl ict  on sbme data items 
resident At S i. The formation of LAG at different 
sites is based on the transaction identification 
numbers, which are assigned uniquely to each 
transaction at the site of their odgin. After forming 
the LAG, the odd precedences are detected and 
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readjusted,  if necessary  by consu l t ing  the 
respect ive t ransac t ions '  home site. In th is 
algorithm, extra communication is needed, ff and 
only if, odd precedences exist in a respective LAG. 
The approach causes no deadlocks, and hence 
does not lead to an abort  or a rejection of a 
transaction. 

In the next sect ion,  we def ine a system 
model, along with some definitions. In sectibn 3, 
the synchronizat ion technique is described in 
detail. Section 4, gives the algorithm for formation 
of a local access graph at vadous sites. In section 
5, proof of correctness is considered and the last 
section considers the summary and conclusions. 

2.0 SYSTEM MODEL AND RELATED 
TERMS 

We assume that, a distr ibuted database 
management system consists of a collection of 
sites c o n n e c t e d  by a compu te r  network.  A 
database is a collection of data items. Each site 
has a system wide unique identifier. Further we 
assume that each site suppor ts  a t ransact ion 
manager(TM) and a data manager(DM). The TMs 
supervise execution of the transactions while the 
DMs manage individual databases. The network is 
assumed to detect failures, whenever these occur. 
When a site fails, it simply stops r'.,nning and other 
sites detect this fact. The communication medium 
is assumed to provide the facility of message 
transfer between sites. When a site has to send a 
message to some other site, it hands over the 
message to the communication medium, which 
delivers it to the destination site in finite lime. We 
assume that, for any pair of sites S I and S i, the 
communicat ion  medium always deliver~ the 
messages to S i in the same order in which these 
were handed to'the medium. 

A transaction is modelled as a sequence of 
read and write operations. A transaction consists 
of four steps: reads, local computations, writes 
and t ransac t i on  commit .  The lock request  
messages a r e  sent to the corresponding sites. 
Each site assumed to support both local as well as 
global transactions. The notion of correctness of 
transaction execution in this context, is that of 
serializability[ESW76]. We assume two phase 
static locking is used. After a lock is granted, a 
lock grant message(with the data) is sent to the 
transaction generation site. Local computation 
starts after all lock grants are received. After the 

local computation is performed, the write phase is 
initiated. Updated data items are sent to the data 
sites and are stored in some temporary memory. 
In the commit phase, updated values are written 
into the database. Locks are released at the end of 
the commit phase. For the study, all lock requests 
are considered to be for exclusive access to data 
items. The items to be locked by the transaction 
for the purpose of read/write steps are termed as, 
locking variables(LVs). The transactions T i, T i are 
said to have conflict if, LV(Ti) O LV(T~) ~ ~. Ir~this 
paper, if we say T.i N T,j~ ~, to imply, that conflict 
exists between T i, Tj. 

2.1 Transaction Identification Number 
(TIN) 

Every site Si has a logical clock C i, which 
takes a monotonically nondecreasing integer 
value [LAM78].  A TIN is ass igned  to the 
transaction T,, on its arrival, by a site S i. It is a 

! 

tr iple element value, as (S,I,C). S is the site 
identifier. The I field is the unique t ransact ion 
identifier, which is a value of the local clock (Ci) at 
the instant of T='s arrival to the home site S i. The C 
field Is used to synchronize different clocks. It 
does not cont r ibu te  to the Ident i ty  of the 
transaction. 

For any transaction message, T(S,I,C), about 
to be sent 

C: =C i of the message sender site. 

.f~of the site S~, on receipt of a transaction 
message) 

1. c i) 

C= of the site S;, before d i spa tch  of a 
transaction T(mes..~ge) 
q : = C j + l .  

Let, TINt = ($1,11,C1) and TIN2 = ($2,12,C2) then, 
any pair of TINs can be compared using the 
following criteria. 

Equal to(=) " TIN 1 =TIN 2, if and only if, S 1 =S 2 
and 11 =12; 

Greater than(>) : TIN 1 >TIN2, if and only if, 11 >12, 
or 11 =12 and S 1 >$2; and 
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Less than(<) • TIN 1 <TIN 2, if and only if, 11 <12, 
or 11 =12 and S 1<S 2. 

2.2 Partial Order(< <) 

Consider T, as a set of transactions. A partial 
order L= (T, < <) consist of set T, called the 
domain of the partial order, and an irreflexive 
transitive binary relation < < on T. If Ti< <T j, we 
say that T i precedes T j in execution. 

3.0 SYNCHRONIZATION USING LOCAL 
ACCESS GRAPHS (LAGs) 

Let, T = {T 1, T 2 .... Tn}, be a set of active 
transactions in the aistributed system. A local 
access graph of T t at site S I is a partial graph 
G(V,E), where VeT, ~and E={<T i, Ti>/'T i n Ti~-¢ 
and T| < < Ti}. In this T i N T i ~ '~ denbtes ~oth 
T=, Tt has the conf l ict  on some data item 
r~sid~nt at S i. 

When a lock request of T i is sent to the 
site (Si), a LAG is constructed at S i. The 
notion of LAGs is described with an example 
given below. 

Example 1 : Consider the transactions T1, 
T~, T s, T 4 and TR as shown below. Let X,Y,Z 
b~ d~.ta items, ~nd w(X) indicates the write 
operation on data item 'X'. Let, transaction 
requests be as: 

+, wwW!  T~ =w2(X) w2(Z) T3 = w3(Z) 
T4 =W4(X) T5 = W5(Y) ws(Z) 

Consider the case, Where X,Y and Z are 
located at one site. The execution of above 
transactions can follow any sequence. The 
not ion of co r rec tness  of t ransact ion 
execut ion is that of serial izabil i ty. So, for 
above transactions many LAGs are possible, 
if we take different serial executions in which, 
transactions may execute operations. If we 
take arrival pattern of t ransact ions in the 
order T1, T2, T3, T4and  T5, then based on 
the arrival pattern, the corresponding LAGs 
of above transactions are shown in figure 1. 

T 1 Ti >T 2 T2------>T 3 

(a)T 1 (b) T 2 (c)T 3 

T ~ ~ T 4  T ~  

(d)T 4 (e)T 5 

Figure 1 

Now consider the case of a distributed 
system where data items X,Y and Z are stored at 
$1, $2 and $3 respectively. The LR of a 
transaction forms LAGs at sites where its 
conflicting data items reside. Now the LAGs of 
each transaction at site is shown in the figure 2. 
The home sites o~ T 1 is S 1 ; T 2, T 5 is $2; and T 3, 
T 4 is S 3. 

T 1 T i >T 2 

T l 

TiT T4 

(a) LAGs at S 1 
(locks are granted to T 1) 

T 1 T I- >T 2 
T S  +5 

(b) LAGs at S 2 
(locks are granted to T 1) 
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T 2 T 2 ~T 3 i T4 
T 2"-,,,,,~ 

T 3 - ./~T5 

m 
~4 

(c) LAGs at S 3 
(locks are granted to T2) 

Figure 2. 

As seen above, in the centralized version 
(figure 1 .) the LAG of T, contains precedences of 
all active transactions w~'fich have any conflict with 
T i. But in distr ibuted version (figure 2.), it is not 
possible to have all precedences included in the 
LAGs formed by an individual site. Inspite of this, 
the use of LAGs Is similar to locking. In the case of 
static locking, the lock requests wait in queues. In 
the proposed approach, LAGs are constructed 
instead of lock queues. 

In f igure 2, edge<T=,T=> denotes that ?j 
requires some data item w~idlh is also used by T. 
After execution of T i the conflicting data tern is 
released, for access by T,. At the beginning, T 1 
accesses  the da tabase  4 of S,. After this, T 2 
accesses the database at S 2, t'hen T 3, T 4 at S 3 
and T5 at S . Thus the equ[-valent serial order, 
obtained is t~us <T 1 ,T2,T3,T4,T 5 >. 

4 ,0  A N  A L G O R I T H M  T O  C O N S T R U C T  
L A G  

For a transact ion T i, at site S i, the locking 
variables of T i are identified. A lock request is 
prepared and is sent to corresponding sites. At the 
concerned sites, the LAGs are formed. 

4.1 D e f i n i t i o n s  

Home site: 
The originating site of transaction T i is called 

as the home site of T i. 

Odd edge, Even edge: 
An edge<Ti,Ti >, such that, Tj>T i, is called 
as odd edge. Otherwise, eddie <T j, Ti> is 
called an even edge. 

Transaction identification number (TIN): 
This is a unique number (S,I,C), assigned to 
the t ransact ion T i on its arrival, by the 
home site. In this paper T i, Tj,.. represents the 
TINs of corresponding transSctions. 

Locking variables(LVs): 
For a transaction T i, the items read, or to be 
written by T i constitute the locking variables. 

Lock request(LR): 
It consist of TIN, LVs. It is prepared by home 
site, on arrival of each transaction. 

Data table(DT): 
This table is maintained at the home site of 
each transaction. The DT of T i contains the 
lock grants  (with values).  Whenever  S i 
receives the lock grant of T i, from other site, it 
stores in the Ti.DT. 

Transaction status(TS): 
TS supports two values, 0 or 1. After getting 
all requi red lock grants ,  t ransac t ion  T i 
changes the Ti.TS to 1, then starts execution. 
Otherwise, Ti.TS = 0. The value of Ti.TS is 
maintained at the home site(the requesting 
TM). 

Access status(AS): 
It has values, 0 or 1. After access to the 
required data items at some site Sj, by Ti, the 
Ti.AS becomes 1. Otherwise if' is 0. This 
parameter is maintained by the site Sj. 

Active transaction list(ATL): 
The ATL is maintained by each site. ATL is 
divided in to two tables ATLT and ATLG. 

ATL.T of S i = {T i (TVs,TS,AS)  IT i has 
requested data items resident at Si}. Where 
T i may be a local or global transaction. 

ATL.G of S i = {LAG(Ti) I T i has requested 
data items resident at Si}. 
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4.2 A l g o r i t h m  

The following notations are used to describe 
the algorithm. 

T i, T i,..represents the TINs of corresponding 
tran.~,actions. 
Ti.home-> home site of T i- 
Ti.TS ->TS of T=. 
Ti.AS - > AS of 1Ji . 
Si.LAG.T=-> LAG of T= at S i- 
Ti .DT->~T of T i. 'J 

In this algorithm, whenever a transaction 
arrives at S,, it is assigned a TIN value. Let Ti be 
the TIN. Its ~R is prepared and is sent to all sites 
where the data items reside. The LAG is prepared 
at concerned sites. At any site S i, if Si.LAG.T i 
contains odd edge<T.i,Ti>, then it i~ confirmed by 
checking the Iocall~exist ing S i.LAG.T i, or by 
consulting the T j.home. That i~', either'the lock 
request has not 13een granted and the odd edge 
can be reversed locally. Or, if the lock request has 
been granted, the transaction may be in execution 
or it may not be in execution. That is, at the 

• home, if T i is under execution, then the odd 
ge<T i Ti:~ is not deleted from the S i LAG T. i • - | .  

OtherwiSe, the even edge<Ti,Ti> is Ins~lr'ted Into 
the S.i.LAG.T.i, and odd edge~'Tj,Tl> is deleted 
from'Si.LAG'~T i. In this way al l 'odd edges are 
confiri 'hed, resul t ing In a deadlock free 
environment. The algorithm Is described below. 

I F O R M A T I O N  O F  LAGs.  

(1) Processing at home site 

On arrival of a transaction at site S h, the site 
S h assigns it a Ti(TIN ). It also identifies the LVs. 
The S h prepares the LR for T i as: (Ti,LVs). The LR 
is sent to different sites. 

(2) Processing at any site 

A LR of T i is received by S i. The following 
steps are carried out at the site. 

Initialize the Si.LAG.Ti(V,E ) as: V={Ti}  and 
E = ~ .  Insert the edge <Tj ,T i>  into the 
Si.LAG.T i for all conflicting fransactions(Ti) 
from the'ATL.T of S i, If Ti.home -~ S= thegn 
insert the Ti(LV,AS ) into the ATL.'~ with 
T i .AS=0.  If T i . home=S i, then insert 

Ti(LV,TS,AS ) into the ATLT with Ti.TS =0 and 
Ti.AS=0. Store Si.LAG.Ti into ATL.G. Go to 
(3). 

II C O N F I R M A T I O N  OF ODD E D G E S  
A N D  L O C K  G R A N T  

(3) For each odd edge<Tk, T,> from Si.LAG.T i 
go to (3.1). After completing all odd edges go 
to (3.3). 

(3.1) If Tk.AS=0, then insert the edge <Ti,Tk > into 
theSi.LAG.T k. Delete the edge<Tk,Ti> from 
Si.LAG.T i. If Tk.AS = 1 then go to (3.2). 

(3.2) If Tk .AS=I  then send the message 
'Tk.STATE' to Tk.home. In return to this 
message, S i receives the message 
'Tk.EXECUTION', then do nothing. If S; 
receives the message 'T k. NOEXECUTION I 
then insert the edge <T i ,Tk  > into the 
Si.LAG.T k. Delete the edge<Tk,T.>a from 
Si.LAG.T i. Go to (3). 

(3.3) If T i receives the commits of all transactions 
(Ti), such that, <Tj,Ti> belongs to Si.LAG.T i, 
tht~n change the Ti.'AS to 1 ; and send the lock 
grants(with the values) to Ti.home. 

III 

(4) 

(s) 

C O M M I T  P R O C E S S I N G  O F  T R A N -  
S A C T I O N  A T  T H E  H O M E  SITE 

T i waits until it gets all the requested locks. All 
lock grants are stored in the Tj.DT. After 
getting the all lock grants, the site assigns 
status Ti.TS as 1 in the ATL.T and starts 
execut ion of T i. After comple t ion  of 
execut ion, the updated values are 
committed. 

Whenever S h receives the message 
'Tk.STATE' from S=,j if T,..TS = 1, then the 
message 'Tk.EXECI3TION~is returned to S,. 
If Tk.TS=0, then the lock grants entry of T~ 
from S, are deleted from T,..DT, and the 
message 'Tk.NOEXECUTION F is sent to S i. 
Thus, the requesting site can revoke lock's 
already granted, to avoid a deadlock. 
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5,0 P R O O F  O F  C O R R E C T N E S S  

Theorem1: According to above algorithm, the 
execution of transactions follows some partial 
order(< <). 

Proof: We prove the following 

(i) every pair of conflicting transactions forms a 
precedence. 

(ii) deadlocks do not occur. 

(i) if TI0 T 2 are conflicting type, then both will 
make a request to the site where conflicting 
data i tems are avai lable. Therefore, a 
precedence is formed between T 1 and T 2. 

(ii) Consider the deadlock situation as: 

W W W W 

C=Ti--->T 2---> ... --->Tn--->T I ; 

w 
where n> l .  In this T-->T," indicates T= is waiting 
for data item 'X', whi'c~i is Idcked by tran~saction Tj. 
Among the given edges, for any odd edge<Td,Ti>, 

(a) If T i is under  execut ion,  then the cycle 
breaks. 

(b) 
<I~,Ti> is deleted(odd edge). 
If T= is not under execution, then the edge 

From (a) and (b), it Is proved that C is acyclic. 

From (i), every pair of conflicting transactions 
form precedence and from (ii), cycles do not exist. 
Hence the execution of transactions is as per the 
partial order(< <). 

6.0 S U M M A R Y  AND CONCLUSIONS 

In the existing locking based approaches, if 
t ransact ions f rom di f ferent  sites, are in 
serializability conflict, then some of the submitted 
t ransact ions are rejected. In these systems 
deadlock removal requires extra messages, and 
processing t ime. Also, the t ransact ions are 
resubmitted for execution, and by this, incur 
additional processing delays and overheads. In 
the proposed technique, a local access graph is 
const ructed at every site, which results in 
prevention of deadlocks. Given an ideal situation, 
if each data access request is made as per the TIN 

ordering, the chances of a deadlock are extremely 
low. In the case of confirmation of odd edge, in 
many cases, the confirmation is done locally. 

In the proposed algor i thm, t ransact ion 
rejection, or abort does not occur. The proposed 
technique is ideal ly suited for a d is t r ibuted 
environment, where a dominant factor of cost of 
processing is, number of messages. The proposal 
can be implemented with sl ight changes to 
existing locking based mechanisms. No separate 
deadlock handling mechanism, needs to be 
implemented in such systems. 
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