
InterBase: A Multidatabase Prototype System*

Omran A. Bukhres, Jiansan Chen, Ahmed K. Elmagarmid,

Xiangning Liu, and James G. Mullen

Department of Computer Sciences, Purdue University

West Lafayette, IN 47907

{bukhres, jchen, ake, xl, jgm}Qcs.purdue.edu

1 Introduction

The computing environments of most organizations

currently consist of distributed, heterogeneous, and

autonomous hardware and software systems. Previ-

ously, these systems ran in isolation, supporting their

individual applications. However, decreasing network

costs made the connection of these distributed systems

feasible, and it soon became evident that more com-

plex applications, involving multiple systems, could be

supported if the systems could cooperate with each

other. The main obstacle to cooperation is local (sys-

tem) autonomy. That is, it is generally not possible

to modify pre-existing systems, and without modifica-

tion, one generally can have only limited control over

the systems.

Several systems that integrate pre-existing systems,

especially database systems, have been developed, see

for example [1]. However, the focus of most of this

work has been on schema integration, and very little

work has been done on transaction management. In

the InterBase Lab at Purdue University, we have de-

veloped a system called InterBase that differs from

most multidatabase systems in that it provides fa-

cilities for transaction management and support for

a flexible transaction model [4] that allows global

transactions to execute over heterogeneous database

and non-database systems. This paper provides an

overview of the InterBase system.

*The InterBase project and system at Purdue University are
unrelated to the InterBase product of Borland.

Permission to copy without fee all or part of tltia material is
grantad provided that the copies are not made or distributed for
diract commercial advantage, the ACM copyright notice and tha
titla of tha publication and ita date appaar, and notice ia givan
that copying ia by parmisaion of the Association for Computing
Machinery. To COPY otharwisa, or to republmh, requires a faa
andlor spacific permission.
SIGMOD /5/93 fWashington, DC, USA
o 1993 ACM 0-89791 -592-5 /93/0005 /0534 . ..$1 .S0

2 The InterBase System Architecture

The InterBase system architecture is shown in Fig-

ure 1, and consists of two main components:

● Distributed Flex Transaction Manager

(D FTM). The DFTM is responsible for man-
aging global transaction executions in InterBase.
Global transactions are specified using the Inter-
Base Parallel Language (IPL) [3].

● Remote System Interface (RSI). RSIS are

agents of the InterBase system that act as an in-

terface between DFTMs and local systems inte-

grated into InterBase.

Currently, InterBase runs on an interconnected net-

work with a variety of hosts, such as UNIX worksta-

tions and IBM mainframes, and supports global appli-

cations accessing many local systems including SAS,

Sybase, Ingres, DBS, and UNIX utilities. The Inter-

Base System represented in Figure 1 shows example

local systems. In general, multiple local systems may

run on a given site, and there may be multiple local

systems of the same type (e.g. Ingres), although each

local system requires its own RSI.

The Distributed Flex Transaction Manager

(DFTM) is at the center of InterBase. The DFTM

functions are to:

● ensure the reliable execution of global transac-

tions l;
● manage the data flow within global transactions;

● provide global concurrency control; and

● recover Int erBase from errors.

The DFTM consists of a set of DFTM images, with

one DFTM image per global transaction.

The general strength of the InterBase architecture

is its decentralized nature, which can be seen in Fig-

I A globaf transaction accessea multiple local systems, it con-
sists of several subtransactions, each of which is executed as a
local transaction at a single local system. A local transaction
accesses only a single local system.

534

Unix Sit. A Unix Site B Unix Site N

1

1

1

Lqvmd

c1

lmterB.se

system

Module

o
Lo..)

Software

system

QT:

G1.abd

Tr.r...ctimt

RSII
Remote

Spi.in

Interface

I

i\ wuser ,
Interface 1

I
I

IPL ,

: l=:-:
I\\4 I
I
lPL

“/

I

I

~ \-Id
,

I I

I . . .

I LrlI~:2-’-’;I“.-.,.11, I-. DFTMn I

c

---- -1 L J

r.m..ctiom M*m.ger (DFTM) -- ---

sit. 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site n

Figure 1: The logical

ure 1. InterBase is designed to avoid direct communi-

cation among DFTM images, allowing DFTM images

to be executed independently, and therefore simplify-

ing the implementation of the DFTM.

The DFTM is distributed over all the machines

from which IPL programs are executed; that is,

each global transaction Gi is associated with a single

DFTM image Di. Gi usually consists of subtransac-

tions, each of which must be executed on a local sys-

tem through its associated RSI. In order to provide the

correct concurrent execution of global transaction, Di

must first communicate with relevant RSIS to arrange

the relative execution order of Gi ‘S subhansactions on

corresponding RSIS. The corresponding RSIS then ex-

ecute Gi’s subtransactions in the specified order.

Remote System Interfaces (RSIS) provide a uniform

system-level interface between the DFTM and local

systems and deal with the heterogeneity of the local

systems, including command and data format trans-

formation, thus relieving the DFTM from dealing with

each local system directly. The RSI Directory stores
information such as location and communication pro-

tocols and allowable data transfer methods for differ-

ent RSIS, thus supporting location and distribution

transparency for the system [7].

architecture of InterBase

An RSI consists of an RSI server and RSI services.

The RSI server is designed to accept the execution

requests of concurrent DFTM images for their associ-

ated global transactions and negotiate with the DFTM

images to arrange for the execution order of the sub-

transactions of these global transactions on its asso-

ciated local systems. It then creates RSI services for

these subtransactions according to the specified order.

In this way, InterBase allows several DFTM images to

be executed concurrently as long as their execution is

serializable, thus increasing the throughput of Inter-

Base. An RSI service is responsible for the consistent

and reliable execution of the subtransaction and is co-

incident with its life cycle. The RSI server needs also

to trace the status of running and completed RSI ser-

vices, so as to decide when to schedule the execution

of upcoming and queued subtransactions.

While RSI servers are local-system-independent

since they do not interact directly with local systems,

RSI services are local-system-specific, since they com-

municate directly with local systems, and therefore

must have knowledge of the language and data formats
used by the local system. This allows the RSI server

code to be shared by different RSI servers, whereas,

the code for RSI services needs to be modified for new
local systems. This versatility is an advantage of di-

535

.—

vialing the RSI function between RSI servers and RSI

services. A second advantage of this division is that

concurrent execution of subtransactions in InterBase

is allowed. Another advantage is that all RSI servers

can always run on the same platforms as DFTM im-

ages no matter where their corresponding RSI ser-

vices run. This type of RSI structure not only makes

communication among DFTM images and RSI servers

easy to handle, but also makes it easy for InterBase

component crash detection and recovery.

3 The InterBase Parallel Language

The InterBase Parallel Language (IPL) is the trans-

action specification language of InterBase. IPL al-

lows users to specify all actions associated with a

global transaction, such as the control flow and data

flow among subtransactions. And, InterBase will au-

tomatically execute subtransactions in parallel when

it can do so without violating the specified control

flow or data flow constraints. As in any traditional

transaction processing system, the user is responsible

for ensuring the individual correctness of transaction

programs. InterBase is responsible for ensuring that

transactions execute atomically.

The features of IPL are most effectively illustrated

through an example. Suppose a user wishes to trans-

fer money from either his/her checking or savings ac-

count to his/her Visa account. Prior to initiating

the transfer, the user has not yet determined from

which account to withdraw; this will be decided dur-

ing the transfer. We assume that the bank system is

a distributed multidatabase system which maintains

all checking accounts in a Sybas e database system on

the machine sonata, all savings accounts in an Ingres

database system on the machine ector, and all Visa

accounts in a guru database system on the machine

int erbas e. The IPL program for this application is

shown in Figure 2, and we will refer to it throughout

our explanation of IPL.

An IPL program contains three parts that respec-
tively are used to specify: definition of data types, def-

inition of subtransactions, and dependency relations

among subtransactions.

Definition of Data Types: In IPL programs, a

subtransaction is associated with a data type which

specifies the data structure of the result if the sub-

transaction is successfully executed (i.e., reaching its

ready-to-commit state).

provided are int, real,

The predefine data types

boolean, and charString,

536

and users can define complex types through aggrega-

tion. In the example, the subtransactions checking,
savings,and visa all produce outputs of the complex

type account.

Definition of Subtransactions: This part pro-

vides mechanisms for specifying subtransactions

within an IPL program. In the example, checking

takes data of the type inparams from the input task

in as its input parameter. The local software sys-

tem involved is the sybas e system, which runs on the

machine sonata. Its execution step, optional con-

firm step, and optional undo step2 are defined be-

tween IPL keyword pairs beginexec and endexec,

beginconfirm and endconfi?m, and beginundo and

endundo, respectively. These steps, consisting of unin-

terpreted blocks of statements, are passed through the

IPL interpreter to the appropriate RSI. The RSI will

translate these statements to statements compatible

with its associated local systems, if necessary, before

their execution. These statements can be in SQL, the

native query language of the local system, or a mix-

ture of the two. If these statements are in SQL, a

syntax check will be performed before the execution

of the IPL program.

IPL variables are quoted by $$. Before the execu-

tion of a subtransaction, the IPL variables must be re-

placed by corresponding values. In the example, both

$$in. arnount$$ and $$in. accNura$$ will be replaced
by the corresponding data obtained from the input

task in. The select statement in checking is used to

produce the needed output. Since IPL keyword out-

put is defined for checking, its output then becomes a

part of the output of the IPL program.

Dependency Description: The dependency de-

scription provides users with a mechanism for spec-

ifying the execution order among the subtransactions

of a global transaction. In the example, the execution

order among subtransactions checking, savings, and

visa can be described as:

● checking and savings can be executed without any

precondition;

● visa can be executed only after either checking or

savings succeeds;

● if visa succeeds, the global transaction succeeds.

The dependency description supports functionally

equivalent subtransaction alternatives for the goals of

~The execution Step ~f a subtransaction is executed fist. Its

confirm step or undo step, if defined, will be executed when the

execution of the IPL program is committed or aborted from its

prepare-tc-commit state, respectively.

program

record inparems of /* the inputs to the program from the customer */

accHum : charString; /* account number */
amount : integer; I* the amount of money to be transferred +/

endrecord;

record account of /* the schema of bank accounts such as savings */

name, acclum, suffix : charString;

balance , preBalanace, amount : integer;

endrecord;

/* input task “in” to obtain the inputs of type inparams from the customer */

input in : inparems endinput;

subtrans checking (in) : account use sybase at sonata output

beginexec /* execution step, in SQL format */

begin trsn sybasebank;

update bank set amount = -$$in. smount$$ where accEum = $$in. acc~um$$;

update bank set preBalance = balance where acclhm = $$in. acc~um$$;

update bank set balance = balance - $$in. amount$$ where accBum = $$in. accBum$$;
select name, accIum, suffix, balance, pre Balanace, amount

from bank where accHum = $$in. acclum$$;

endexec

beginconfirm /* confirm step, in SQL format, tso-phase commit */

commit tran sybasebank;

endconfirm

lx?ginundo/. undostep, in SQL format, two-phase commit */

rollback tran sybasebank;

endundo

endsubtrans;

subtrans savings (in) : account use ingres at interbase8 output

beginexec /* execution step, in SQL format */

update bank set preBalance = balance where accmum = $$in. acclum$$;

update bank set amount = -$$in. amount$$ where acclium = $$in. acclum$$;
update bank set balance = balance - $$in. emount$$ where acc~um = $$in. accHum$$;

select name, accHum, suffix, balance, preBalanace, amount
from bank shere accEum = $$in. acclium$$;

endexec

beginundo /* undo step, in SQL format, compensation */

update bank set balance = balance + $$in. amount$$ where acc~um = $$in. accBum$$;

endundo

endsubtrane;

subtrans visa (in) : account use guru at interbase output

beginexec /* execution step, in SQL format e/
update bank set preBalance = balance uhere acclum = $$in. acclum$$;
update bank set amount = -$Sin. emount$$ where acclhm = $$in. acclum$$;

update bank set balance = balance - $$in. emount$$ where acc~um = $$in. acchm$$;

select name, accIlum, suffix, balance, preBalanace, amount

from bank where accIium = $$in. acclhm$$;
endexec

beginundo /* undo step, in SQL format, compensation */

update bank set balance = balance + $$in. emount$$ ehere acclium = $$in. accHum$$;

endundo

endsubtrans;

dependency

checking or savings : visa;

visa : accept ;

enddep;

endprogrsm

Figure 2: Example IPL Program

537

transactions. This flexibility allows an increased toler-

ance of individual subtransaction failures. In the ex-

ample, since two subtransaction alternatives (check-

ing, visa) and (savings, visa) can be deduced, the

global transaction can therefore tolerate the failure of

either checking or savings.

A mixed commit approach is used by IPL to facili-
tate atomicity control of IPL programs. In this exam-

ple, two-phase commitment is used for checking, while

compensation is used for both savings and visa.

The first step of the execution is to check the syn-

tax and semantics of the IPL program. If, for exam-

ple, there is a syntax error, or a cyclic or recursive

dependency, or an undefined input to a subtransac-

tion, the execution of the IPL program will be denied.

After the syntax and semantic checks of Gi, a sim-

ple execution graph (its nodes represent the subtrans-

actions of Gi and its edges reflects the dependency

relations among the subtransactions) is built for Gi.

DFTMi first interacts with the relevant RSIS to ar-

range the relative execution order for its subtransac-

tions using an algorithm combining the feature of two-

phase locking and linear ordering of resource locks4.

DFTMi then sends subtransactions whose execution

conditions are satisfied to the relevant RSIS for execu-

tion. In this example, input task in is executed first,

then checking and savings, then visa. Relevant RSIS

execute the subtransactions in the pre-specified order

in their associated sites. The subtransactions are ex-

ecuted until their ready-to-commit states are reached

or their executions have failed. The DFTMi then

modifies the execution graph. This process continues

until Gi reaches its prepare-to-commit state or fails.

In this example, the prepare-to-commit state is sig-

naled by one of the sub transaction alternatives (check-

ing, visa) or (savings, visa) containing only ready-to-

commit subtransactions. The failure is signaled by

both subtransaction alternatives (checking, visa) and

(savings, visa) containing a failed subtransaction.

At the prepare-to-commit state, the user is

prompted to choose a subtransaction alternative to

3 Cyclic or recursive dependencies are not allowed, in order

to prevent deadlock.

4This method begins by numbering all RSIS in an order O

with each RSI server maintaining a site-lock. Prior to executing

G,, DFTM, must first request all necessary site-locks from the

relevant RSI servers in an order consistent with O. The relative

execution order (REO) of G, is determined at all relevant sites

only when DFTM, has acquired the necessary site-locks. After

the REO of G, is determined, DFTM, releases all held site-

locks. This method is dead-lock free and totally distributed,

while ensuring correct synchronization of concurrent site-lock

requests.

commit, from a list of alternatives consisting of ready-

to-commit subtransactions, DFTMi then commits

those subtransactions selected by the user and un-

does those that the user does not want. In the ex-

ample, if all the three subtransactions are ready-to-

commit, both subtransaction alternatives (checking,

visa) and (savings, visa) will be listed for the user to
choose. If the user chooses (checking, visa), check-

ing and visa will be committed, while savings will be

compensated (semantically rolled back). Upon fail-

ure, DFTMi aborts subtransactions at their ready-to-

commit stat e. Throughout, DFTMi consults the RSI

Directory to determine the interface and data transfer

protocols for the individual RSIS.

The major advantage of using IPL is its seman-

tic power and suitability. Through dependency de-

scription, programmers in IPL can specify control flow

among sub transactions, which gives IPL the flexibil-

ity to support parallel execution and synchronization

among subtransactions. As shown in the example, IPL

provides a method for specifying data flow within a

global transaction. IPL permits the construction of

mixed global transactions by allowing the extent of

compensatability to be specified in the declarations

of subtransactions. Commit and abort operations of

subtransactions are deferred until their global trans-

actions commit or abort, if they are defined, and thus

support atomic transactions. IPL also allows the spec-

ification of transactions that may include subtransac-

tions that access nondatabase systems, and database

systems with complex data models, because state-

ments in the native language can be incorporated into

IPL programs.

4 The InterBaseView Graphical User

Interface

InterBaseView [5] is our graphical user interface for

InterBase and was designed to provide the following

features:

● loose coupling to InterBase;

● system environment customization;

● application oriented window generation;

● graphical display of subtransaction dependencies;
● monitoring of transaction execution status;

● intelligent editing facilities;

● database schema display; and

● guidance for new users.

InterBaseView consists of two parts, an execution

interface and an IPL program editor. The execution

interface can load an IPL program and invoke it as

538

a global transaction. The execution history of the

transaction is displayed to track its execution status.

The execution interface supports Flex transactions by

graphically displaying the dependence relations among

subtransactions and providing intermediate results, al-

lowing users to select among acceptable alternative

sub transactions in committing the transaction. If the

user decides to commit the transaction, the final result

will be displayed.

The IPL program editor allows a user to conve-

niently construct IPL programs. After a keyword but-

ton is clicked, the keyword is automatically inserted

into the edited IPL program at the appropriate posi-

tion, and help information is simultaneously displayed

in the help area leading the user through the process

with pop-up menus and dialog windows. Users can

always easily undo their last action. The RSI direc-

tory is referenced to provide users with the available

software system names and the corresponding machine

names. All user defined record types and subtransac-

tion names are kept for use in the program. A window

displays a sample IPL program, providing an example

as an aid to learning. To assist in the writing of appli-

cations that presuppose a structural knowledge of the

component database systems, InterBaseView provides

facilities for users to access these database schemas.

After editing an IPL program, a user can check its

syntax in the working area before execution.

InterBaseView was implemented using

OSF/MOTIF widgets on top of the X window sys-

tem [6]. The original implementation was on Sun

SPARC workstations. Currently, InterBaseView and

InterBase are also running on HP 9000/300 worksta-

tions at Bell Northern Research Inc., allowing users to

develop applications involving the analysis and manip-

ulation of data collected from various databases.

5 Conclusions and Future Work

This paper haa described the InterBase multi-

database system which supports global applications

in an environment consisting of distributed, heteroge-

neous, and autonomous software systems. We have
presented an overview of the architecture of Inter-

Base, its transaction specification language IPL, and

its graphical user interface InterBaseView. A more

complete description of the InterBase system will ap-
pear in [2].

Although InterBase is far from perfect, we believe

that it has the potential to offer an innovative and ef-

fective solution to the problems of heterogeneous ap-

plication program integration. This haa been demon-

strated through a trial implementation at Bell North-

ern Research Inc.

We plan to extend InterBase to incorporate more

machines and operating system platforms, thus serv-

ing a larger community of users. The performance

evaluation of InterBase is also being undertaken.

We plan to complete an improved language in-

terface (called InterSQL) for what will be the next-

generation InterBase system. The InterSQL inter-

face will provide support for multiple global schema

views, an object-oriented common query language,

and high level-support for a unified commitment pro-

tocol that supports additional multidatabase atomic

commitment approaches. We also plan to extend In-

terBaseView to support the InterSQL interface.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

M. W. Bright, A. R. Hurson, and S. H. Pakzad.
A taxonomy and current issues in multidatabase
systems. Computer-, 25(3):50–60, March 1992.

0. Bukhres, J. Chen, W. Du, A. Elmagarmid,
and R. Pezzoli. InterBase : An Execution Envi-
ronment for Global Applications over Distributed,
Heterogeneous, and Autonomous Software Sys-
tems. IEEE Computer, 1993. (to appear).

J. Chen, O. A. Bukhres, and A. K. Elmagarmid.

IPL: A Multidatabaae Transaction Specification

Language. In Proc. of the 13th International Con-

ference on Distributed Computing Systems, 1993.

(to appear).

A. Elmagarmid, Y. Leu, W. Litwin, and

M. Rusinkiewicz. A Multidatabase Transaction

Model for InterBase. In Proceedings of the 16ih in-

ternational Conference on Very Large Data Bases,

pages 507-581, Brisbane, Australia, Aug. 1990.

X. Liu, J. Chen, and R. Pezolli. The InterBa-

seView Graphical User Interface. Technical Re-

port SERC-TR-126-P, Department of Computer

Sciences, Purdue University, Nov. 1992.

J. G. R. W. Scheifler. The X Window System,

ACM Transactions on Graphics, 5(2), 1986.

M. Rusinkiewicz, S. Ostermann, A. Elmagarmid,

and K. Loa. The Distributed Operation Language

for Specifying Multi-System Applications. In Pro-

ceedings of the First International Conference on

System Integration, pages 337-345, Apr. 1990.

539

