InterBase: A Multidatabase Prototype System*

Omran A. Bukhres, Jiansan Chen, Ahmed K. Elmagarmid,
Xiangning Liu, and James G. Mullen
Department of Computer Sciences, Purdue University
West Lafayette, IN 47907
{bukhres, jchen, ake, xl, jgm}@cs.purdue.edu

1 Introduction

The computing environments of most organizations
currently consist of distributed, heterogeneous, and
autonomous hardware and software systems. Previ-
ously, these systems ran in isolation, supporting their
individual applications. However, decreasing network
costs made the connection of these distributed systems
feasible, and it soon became evident that more com-
plex applications, involving multiple systems, could be
supported if the systems could cooperate with each
other. The main obstacle to cooperation is local (sys-
tem) autonomy. That is, it is generally not possible
to modify pre-existing systems, and without modifica-
tion, one generally can have only limited contrel over
the systems.

Several systems that integrate pre-existing systems,
especially database systems, have been developed, see
for example [1]. However, the focus of most of this
work has been on schema integration, and very little
work has been done on transaction management. In
the InterBase Lab at Purdue University, we have de-
veloped a system called InterBase that differs from
most multidatabase systems in that it provides fa-
cilities for transaction management and support for
a flexible transaction model [4] that allows global
transactions to execute over heterogeneous database
and non-database systems. This paper provides an
overview of the InterBase system.

*The InterBase project and system at Purdue University are
unrelated to the InterBase product of Borland.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

SIGMOD /5/93/Washington, DC,USA

© 1993 ACM 0-89791-592-5/93/0005/0534...$1.50

534

2 The InterBase System Architecture

The InterBase system architecture is shown in Fig-
ure 1, and consists of two main components:

¢ Distributed Flex Transaction Manager
(DFTM). The DFTM is responsible for man-
aging global transaction executions in InterBase.
Global transactions are specified using the Inter-
Base Parallel Language (IPL) [3].

Remote System Interface (RSI). RSIs are
agents of the InterBase system that act as an in-
terface between DFTMs and local systems inte-
grated into InterBase.

Currently, InterBase runs on an interconnected net-
work with a variety of hosts, such as UNIX worksta-
tions and IBM mainframes, and supports global appli-
cations accessing many local systems including SAS,
Sybase, Ingres, DBS, and UNIX utilities. The Inter-
Base System represented in Figure 1 shows example
local systems. In general, multiple local systems may
run on a given site, and there may be multiple local
systems of the same type (e.g. Ingres), although each
local system requires its own RSI.

The Distributed Flex Transaction Manager
(DFTM) is at the center of InterBase. The DFTM
functions are to:

o ensure the reliable execution of global transac-
tions ;

manage the data flow within global transactions;
provide global concurrency control; and

recover InterBase from errors.
The DFTM consists of a set of DFTM images, with
one DFTM image per global transaction.

The general strength of the InterBase architecture
is its decentralized nature, which can be seen in Fig-

L J

1 A global transaction accesses multiple local systems, it con-
sists of several subtransactions, each of which is executed as a
local transaction at a single local system. A local transaction
accesses only a single local system.

Unix Site A Unix Site B Unix Site N
-————n -
| | [
I { |
I User] 1 User f] User (]
t Interfaces|)] Interfaceq|] Interfaced|
| | | | | {
Legend i I I] | i
1 I t i 1 i
InterBase 1 ' i i 1 t
System])] 1 t]
Module § !) | i YT |
- . 1 1 | 1 | Directory |
oca t t 1 1 1 1
Ssolt:a.re { == } } == | { "_ - _l' 1
ystem GT, GT: GT,
N (Bt 8 ! L (T ! [(Wl !
' V" prrmy, |) ' " prrm, |1 V| prrm, |V
aT L J L e J b == Jd
' Distributed Fle ransaction Manager (DFTM)
Global
Transaction
RSIt I Computer Network J
Remote
System
Interface
RSIg
| |
i |
1Gh/awiD
1 [}

Figure 1: The logical architecture of InterBase

ure 1. InterBase is designed to avoid direct communi-
cation among DFTM images, allowing DFTM images
to be executed independently, and therefore simplify-
ing the implementation of the DFTM.

The DFTM is distributed over all the machines
from which IPL programs are executed; that is,
each global transaction Gj is associated with a single
DFTM image D;. G; usually consists of subtransac-
tions, each of which must be executed on a local sys-
tem through its associated RSI. In order to provide the
correct concurrent execution of global transaction, D;
must first communicate with relevant RSIs to arrange
the relative execution order of G;’s subtransactions on
corresponding RSIs. The corresponding RSIs then ex-
ecute G;’s subtransactions in the specified order.

Remote System Interfaces (RSIs) provide a uniform
system-level interface between the DFTM and local
systems and deal with the heterogeneity of the local
systems, including command and data format trans-
formation, thus relieving the DFTM from dealing with
each local system directly. The RSI Directory stores
information such as location and communication pro-
tocols and allowable data transfer methods for differ-
ent RSIs, thus supporting location and distribution
transparency for the system [7].

535

An RSI consists of an RSI server and RSI services.
The RSI server is designed to accept the execution
requests of concurrent DFTM images for their associ-
ated global transactions and negotiate with the DFTM
images to arrange for the execution order of the sub-
transactions of these global transactions on its asso-
ciated local systems. It then creates RSI services for
these subtransactions according to the specified order.
In this way, InterBase allows several DFTM images to
be executed concurrently as long as their execution is
serializable, thus increasing the throughput of Inter-
Base. An RSI service is responsible for the consistent
and reliable execution of the subtransaction and is co-
incident with its life cycle. The RSI server needs also
to trace the status of running and completed RSI ser-
vices, so as to decide when to schedule the execution
of upcoming and queued subtransactions.

While RSI servers are local-system-independent
since they do not interact directly with local systems,
RSI services are local-system-specific, since they com-
municate directly with local systems, and therefore
must have knowledge of the language and data formats
used by the local system. This allows the RSI server
code to be shared by different RSI servers, whereas,
the code for RSI services needs to be modified for new
local systems. This versatility is an advantage of di-

viding the RSI function between RSI servers and RSI
services. A second advantage of this division is that
concurrent execution of subtransactions in InterBase
is allowed. Another advantage is that all RSI servers
can always run on the same platforms as DFTM im-
ages no matter where their corresponding RSI ser-
vices run. This type of RSI structure not only makes
communication among DFTM images and RSI servers
easy to handle, but also makes it easy for InterBase
component crash detection and recovery.

3 The InterBase Parallel Language

The InterBase Parallel Language (IPL) is the trans-
action specification language of InterBase. IPL al-
lows users to specify all actions associated with a
global transaction, such as the control flow and data
flow among subtransactions. And, InterBase will au-
tomatically execute subtransactions in parallel when
it can do so without violating the specified control
flow or data flow constraints. As in any traditional
transaction processing system, the user is responsible
for ensuring the individual correctness of transaction
programs. InterBase is responsible for ensuring that
transactions execute atornically.

The features of IPL are most effectively illustrated
through an example. Suppose a user wishes to trans-
fer money from either his/her checking or savings ac-
count to his/her Visa account. Prior to initiating
the transfer, the user has not yet determined from
which account to withdraw; this will be decided dur-
ing the transfer. We assume that the bank system is
a distributed multidatabase system which maintains
all checking accounts in a Sybase database system on
the machine sonata, all savings accounts in an Ingres
database system on the machine ector, and all Visa
accounts in a guru database system on the machine
interbase. The IPL program for this application is
shown in Figure 2, and we will refer to it throughout
our explanation of IPL.

An IPL program contains three parts that respec-
tively are used to specify: definition of data types, def-
inition of subtransactions, and dependency relations
among subtransactions.

Definition of Data Types: In IPL programs, a
subtransaction is associated with a data type which
specifies the data structure of the result if the sub-
transaction is successfully executed (i.e., reaching its
ready-to-commit state). The predefined data types
provided are int, real, boolean, and charString,

536

and users can define complex types through aggrega-
tion. In the example, the subtransactions checking,
savings, and visa all produce outputs of the complex
type account.

Definition of Subtransactions: This part pro-
vides mechanisms for specifying subtransactions
within an IPL program. In the example, checking
takes data of the type inparams from the input task
in as its input parameter. The local software sys-
tem involved is the sybase system, which runs on the
machine sonata. Its execution step, optional con-
firm step, and optional undo step? are defined be-
tween IPL keyword pairs beginexec and endexec,
beginconfirm and endconfirm, and beginundo and
endundo, respectively. These steps, consisting of unin-
terpreted blocks of statements, are passed through the
IPL interpreter to the appropriate RSI. The RSI will
translate these statements to statements compatible
with its associated local systems, if necessary, before
their execution. These statements can be in SQL, the
native query language of the local system, or a mix-
ture of the two. If these statements are in SQL, a
syntax check will be performed before the execution
of the IPL program.

IPL variables are quoted by $$. Before the execu-
tion of a subtransaction, the IPL variables must be re-
placed by corresponding values. In the example, both
$$in.amount$$ and $$in.accNum$$ will be replaced
by the corresponding data obtained from the input
task in. The select statement in checking is used to
produce the needed output. Since IPL keyword out-
put is defined for checking, its output then becomes a
part of the output of the IPL program.

Dependency Description: The dependency de-
scription provides users with a mechanism for spec-
ifying the execution order among the subtransactions
of a global transaction. In the example, the execution
order among subtransactions checking, savings, and
visa can be described as:

o checking and savings can be executed without any
precondition;

e visa can be executed only after either checking or
savings succeeds;
o if visa succeeds, the global transaction succeeds.

The dependency description supports functionally
equivalent subtransaction alternatives for the goals of

2The execution step of a subtransaction is executed first. Its
confirm step or undo step, if defined, will be executed when the
execution of the IPL program is committed or aborted from its
prepare-to-commit state, respectively.

program
record inparams of /¢ the inputs to the program from the customer */

accBum : charString; /* account number */
amount : integer; /* the amount of money to be transferred */
endrecord;

record account of /¢ the schema of bank accounts such as savings %/

name, acclum, suffix : charString;
balance, preBalanace, amount : integer;
endrecord;

/#* input task "in" to obtain the inputs of type inparams from the customer */
input in : inparams endinput;

subtrans checking (in) : account use sybase at sonata output
beginexec /#* execution step, in SQL format »/
begin tran sybasebank;
update bank set amount = -$$in.amount$$ where accBum = $$in.accNumss$;
update bank set preBalance = balance where accBum = $$in.accBum$$;
update bank set balance = balance - $$in.amount$$ where acclum = $$in.accBum$$;
select name, acclum, suffix, balance, preBalanace, amount
from bank where accHum = $$in.accNum$$;
endexec
beginconfirm /* confirm step, in SQL format, two-phase commit */
commit tran sybasebank;
endconfirm
beginundo /* undo step, in SQL format, two-phase commit */
rollback tran sybasebank;
endundo
endsubtrans;

subtrans savings (in) : account use ingres at interbase8 output
beginexec /* execution step, in SQL format %/
update bank set preBalance = balance where accHum = $$in.accNum$$;
update bank set amount = -$$in.amount$$ where accEum = $$in.accHum$$;
update bank set balance = balance - $$in.amount$$ vhere accHum = $$in.accHums;
select name, accNum, suffix, balance, preBalanace, amount
from bank where accHum = $$in.accFum$$;
endexec
beginundo /* undo step, in SQL format, compensation %/
update bank set balance = balance + $$in.amount$$ where accRum = $$in.accNum$$;
endundo
endsubtrans;

subtrans visa (in) : account use guru at interbase output
beginexec /* execution step, in SQL format =/
update bank set preBalance = balance where acclum = $$in.accNum$$;
update bank set amount = -$$in.amount$$ where accNum = $$in.acclum$$;
update bank set balance = balance - $$in.amount$$ vhere accBum = $$in.accRum$$;
select name, accNum, suffix, balance, preBalanace, amount
from bank where accNum = $$in.accNum$$;
endexec
beginundo /#% undo step, in SQL format, compensation %/
update bank set balance = balance + $3in.amount$$ where accBum = $$in.accHum$$;
endundo
endsubtrans;

dependency
checking or savings : visa;
visa : accept;

enddep;

endprogram

Figure 2: Example IPL Program

537

transactions. This flexibility allows an increased toler-
ance of individual subtransaction failures. In the ex-
ample, since two subtransaction alternatives (check-
ing, visa) and (savings, visa) can be deduced, the
global transaction can therefore tolerate the failure of
either checking or savings.

A mixed commit approach is used by IPL to facili-
tate atomicity control of IPL programs. In this exam-
ple, two-phase commitment is used for checking, while
compensation is used for both savings and wvisa.

The first step of the execution is to check the syn-
tax and semantics of the IPL program. If, for exam-
ple, there is a syntax error, or a cyclic or recursive
dependency?, or an undefined input to a subtransac-
tion, the execution of the IPL program will be denied.

After the syntax and semantic checks of G;, a sim-
ple execution graph (its nodes represent the subtrans-
actions of G; and its edges reflects the dependency
relations among the subtransactions) is built for G;.
DFTM; first interacts with the relevant RSIs to ar-
range the relative execution order for its subtransac-
tions using an algorithm combining the feature of two-
phase locking and linear ordering of resource locks®.
DFTM; then sends subtransactions whose execution
conditions are satisfied to the relevant RSIs for execu-
tion. In this example, input task in is executed first,
then checking and savings, then visa. Relevant RSIs
execute the subtransactions in the pre-specified order
in their associated sites. The subtransactions are ex-
ecuted until their ready-to-commit states are reached
or their executions have failed. The DFTM; then
modifies the execution graph. This process continues
until G; reaches its prepare-to-commit state or fails.
In this example, the prepare-to-commit state is sig-
naled by one of the subtransaction alternatives (check-
ing, visa) or (savings, visa) containing only ready-to-
commit subtransactions. The failure is signaled by
both subtransaction alternatives (checking, visa) and
(savings, visa) containing a failed subtransaction.

At the prepare-to-commit state, the user is
prompted to choose a subtransaction alternative to

3Cyclic or recursive dependencies are not allowed, in order
to prevent deadlock.

4This method begins by numbering all RSIs in an order O
with each RSI server maintaining a site-lock. Prior to executing
G,, DFTM, must first request all necessary site-locks from the
relevant RSI servers in an order consistent with O. The relative
execution order (REQO) of G, is determined at all relevant sites
only when DFTM, has acquired the necessary site-locks. After
the REO of G, is determined, DFT M, releases all held site-
locks. This method is dead-lock free and totally distributed,
while ensuring correct synchronization of concurrent site-lock
requests,

538

commit, from a list of alternatives consisting of ready-
to-commit subtransactions, DFTM; then commits
those subtransactions selected by the user and un-
does those that the user does not want. In the ex-
ample, if all the three subtransactions are ready-to-
commit, both subtransaction alternatives (checking,
visa) and (savings, visa) will be listed for the user to
choose. If the user chooses (checking, visa), check-
ing and visa will be committed, while savings will be
compensated (semantically rolled back). Upon fail-
ure, DFT M; aborts subtransactions at their ready-to-
commit state. Throughout, DFTM; consults the RSI
Directory to determine the interface and data transfer
protocols for the individual RSIs.

The major advantage of using IPL is its seman-
tic power and suitability. Through dependency de-
scription, programmers in IPL can specify control flow
among subtransactions, which gives IPL the flexibil-
ity to support parallel execution and synchronization
among subtransactions. Asshown in the example, IPL
provides a method for specifying data flow within a
global transaction. IPL permits the construction of
mixed global transactions by allowing the extent of
compensatability to be specified in the declarations
of subtransactions. Commit and abort operations of
subtransactions are deferred until their global trans-
actions commit or abort, if they are defined, and thus
support atomic transactions. IPL also allows the spec-
ification of transactions that may include subtransac-
tions that access nondatabase systems, and database
systems with complex data models, because state-
ments in the native language can be incorporated into
IPL programs.

4 The InterBaseView Graphical User
Interface

InterBaseView [5] is our graphical user interface for
InterBase and was designed to provide the following
features:

loose coupling to InterBase;

system environment customization;

application oriented window generation;
graphical display of subtransaction dependencies;
monitoring of transaction execution status;
intelligent editing facilities;

database schema display; and

guidance for new users.

® & & o ¢ o ¢ O

InterBaseView consists of two parts, an ezecution
interface and an IPL program editor. The execution
interface can load an IPL program and invoke it as

a global transaction. The execution history of the
transaction is displayed to track its execution status.
The execution interface supports Flex transactions by
graphically displaying the dependence relations among
subtransactions and providing intermediate results, al-
lowing users to select among acceptable alternative
subtransactions in committing the transaction. If the
user decides to commit the transaction, the final result
will be displayed.

The TPL program editor allows a user to conve-
niently construct IPL programs. After a keyword but-
ton is clicked, the keyword is automatically inserted
into the edited IPL program at the appropriate posi-
tion, and help information is simultaneously displayed
in the help area leading the user through the process
with pop-up menus and dialog windows. Users can
always easily undo their last action. The RSI direc-
tory is referenced to provide users with the available
software system names and the corresponding machine
names. All user defined record types and subtransac-
tion names are kept for use in the program. A window
displays a sample IPL program, providing an example
as an aid to learning. To assist in the writing of appli-
cations that presuppose a structural knowledge of the
component database systems, InterBaseView provides
facilities for users to access these database schemas.
After editing an IPL program, a user can check its
syntax in the working area before execution.

InterBaseView was implemented using
OSF/MOTIF widgets on top of the X window sys-
tem [6]. The original implementation was on Sun
SPARC workstations. Currently, InterBaseView and
InterBase are also running on HP 9000/300 worksta-
tions at Bell Northern Research Inc., allowing users to
develop applications involving the analysis and manip-
ulation of data collected from various databases.

5 Conclusions and Future Work

This paper has described the InterBase multi-
database system which supports global applications
in an environment consisting of distributed, heteroge-
neous, and autonomous software systems. We have
presented an overview of the architecture of Inter-
Base, its transaction specification language IPL, and
its graphical user interface InterBaseView. A more
complete description of the InterBase system will ap-
pear in [2].

Although InterBase is far from perfect, we believe
that it has the potential to offer an innovative and ef-
fective solution to the problems of heterogeneous ap-
plication program integration. This has been demon-

539

strated through a trial implementation at Bell North-
ern Research Inc.

We plan to extend InterBase to incorporate more
machines and operating system platforms, thus serv-
ing a larger community of users. The performance
evaluation of InterBase is also being undertaken.

We plan to complete an improved language in-
terface (called InterSQL) for what will be the next-
generation InterBase system. The InterSQL inter-
face will provide support for multiple global schema
views, an object-oriented common query language,
and high level-support for a unified commitment pro-
tocol that supports additional multidatabase atomic
commitment approaches. We also plan to extend In-
terBaseView to support the InterSQL interface.

References

(1] M. W. Bright, A. R. Hurson, and S. H. Pakzad.
A taxonomy and current issues in multidatabase

systems. Computer, 25(3):50-60, March 1992.

[2] O. Bukhres, J. Chen, W. Du, A. Elmagarmid,
and R. Pezzoli. InterBase : An Execution Envi-
ronment for Global Applications over Distributed,
Heterogeneous, and Autonomous Software Sys-
tems. IEEE Computer, 1993. (to appear).

(3] J. Chen, O. A. Bukhres, and A. K. Elmagarmid.
IPL: A Multidatabase Transaction Specification
Language. In Proc. of the 13th International Con-
ference on Distributed Compuling Systems, 1993.
(to appear).

[4] A. Elmagarmid, Y. Leu, W. Litwin, and
M. Rusinkiewicz. A Multidatabase Transaction
Model for InterBase. In Proceedings of the 16th In-
ternational Conference on Very Large Dala Bases,
pages 507-581, Brisbane, Australia, Aug. 1990.

[5] X. Liu, J. Chen, and R. Pezolli. The InterBa-
seView Graphical User Interface. Technical Re-
port SERC-TR-126-P, Department of Computer
Sciences, Purdue University, Nov. 1992.

6] J. G. R. W. Scheifler. The X Window System.
ACM Transactions on Graphics, 5(2), 1986.

[7] M. Rusinkiewicz, S. Ostermann, A. Elmagarmid,
and K. Loa. The Distributed Operation Language
for Specifying Multi-System Applications. In Pro-
ceedings of the First International Conference on
System Integration, pages 337-345, Apr. 1990.

