
Persistence Software: Bridging Object-Oriented Programming
and Relational Databases

Arthur M. Keller2 Richard Jensen3 Shailesh Agarwa14

Stanford University Persistence Software Persistence Software

and

Persistence Software

Abstract. Building object-oriented applications which
access relational data introduces a number of technical
issues for developers who are making the transition to
C++. We describe these issues and discuss how we have
addressed them in Persistence, an application development
tool that uses an automatic code generator to merge C++
applications with relational data. We use client-side
caching to provide the application program with efficient
access to the data.

1. INTERFACING C++ CLASSES WITH
RELATIONAL DATA

Object orientation promises dramatic benefits in software
productivity, quality and reusability. Yet as with most
technology innovations, it requires a significant break from
the development practices of the past. Specifically, the
difficulty of integrating objects with relational databases
has emerged as a major barrier to adoption of object
technology by developers who have a significant existing
base of hierarchical or relational data.

To&y, C++ developem have to hand code an interface

between their objects and their existing relational databases.
For many projects, this task alone accounts for 20 to 30%

of the total programming effort. Using a code generator to
automate this work can provide improvements in
productivity and quality of C++ applications. This
approach also provides away for companies to transition to

1 For further information on Persistence Software, please
write to 1650 South Amphlett Blvd., Suite 100, San
Mateo, CA 94402 or info@ persistence. com

2 Author’s address: Stanford University, Computer Science
Dept., Stanford, CA 94305-2140,
ark~db. Stanford. edu

3 Author’s address: Persistence Software (see above),
rjensen~persistence .com

4 Author’s address: Persistence Sofhvare (see above),
sagarwal@pers istence. com

Permission to oopy without fee all or part of this material is
granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM oopyright notice and the
title of the publication and its date appear, and notica is given
that copying ie by permission of the Association for Computing
Machinary. To copy otherwise, or to republieh, requiree a fee
sndlor epeoific permission.
SIGMOD lW931Washington, DC, USA
e 1993 ACM O-8979 j.592-5J93jO005 J0523...~j -50

C++ applications while leveraging existing investments in
relational data.

2. ALTERNATE APPROACHES

One approach for interfacing C++ classes to a relational
database is through a C++ class library, containing classes
that model relational entities such as tables, tuples and
fields. To build an application, the developer customizes
these building blocks by specifying a mapping between a
generic tuple instance and a specific class instance.
Inheritance, associations and runtime behaviors must be
handuxied.

In contras~ a code generator produces C++ classes directly
from the application object model information. The
developer can concentrate on the correcmess of the model
while the code generator automatically creates the database
interface portion of the application. The code generator can
also create a table schema based on the object model, or
map the object model into an existing table schema.

The application object model supplies the information
about inheritance, attributes and associations; the code
generator translates these inputs into appropriate table
structures and C++ class definitions. Classes may be related
via a generalization-specialization hierarchy or binary
associations. (Persistence does not currently support
aggregation of classes or higher-order associations.)

3. BENEFITS OF DATABASE INTERFACE
GENERATOR FOR C++/RDB ACCESS

Manually interfacing C++ classes to relational tables is
feasible, but becomes tedious and prone to error when many
classes exist. It is also hard to ensure that the semantics of
the model are enforced. A Database Interface Generator
(Regenerators) automates this repetitive task and provides a
uniform interface for each class in the mo&l. By providing
consistency checks at the model level, the generator can
increase the confidence in the quality of the database access
portion of the application.

Description of Database Interface Generator
Approach

Using the application object model to drive the code
generation preserves the semantics of the model. The code
generator takes care of

% Encapsulating database access for classes and attributes.

% Inheriting atrnbutes and methods from parent classes.

523



myEmployee->getPhoneo;

Table:
EmDlovee &,. w

name phone attr...

Fred 523-4321

Ginger

Figure 1. Classdefinitionand mapping.

% Associating classes with one another.

The generator then emits code that enforces these semantics
for each class.

Encapsulating Database Access

C++ developers expect to be able to work with persistent
objects which encapsulate the details of data access.The
generator performs this encapsulation by mapping classes
and attributes in the application object model to tables or
views in the database.

The developer has a choice of specifying the primary key
attributes for each table or asking the generator to create and
maintain a unique OID for each instance. Within the class,
the generator provides a create and remove method for
instances and a set and get method for each attribute, fully
encapsulating the details of data accesswithin the methods
of each class (see Figure 1),

Inheriting Methods and Attributes

Inheritance in the application object model maps to single
inheritance in the C++ classes. (Persistence currently does
not support multiple inheritance), Only leaf classes are
mapped to tables in the database (horizontal partitioning),
Attributes and associations from parent classes are

Parent Class

Subclasses

t Iaa
Table: Employee Table: Customer

Figure2, Inheritance,

automaticallyy propagated down to column definitions in the
leaf class table (see Figure 2),

Horizontal partitioning of tables for inheritance minimizes
the total number of tables and speeds accessfor single
instances (e,g., fetch Employee where name = RSmithS). It
has the disadvantage, however, of slowing accessfor queries
across parent classes (e.g., fetch Person where name =
RSmithS) becausethe query must be replicated across each
subclass table,

An alternate technique for inheritance would be to map each
class to a table (vertical partitioning). This approach speeds
queries across parent classes but slows retrieval for single
instances, which are forced to accessseveral tables to
RrebuildS themselves each time they are accessed(e.g., fwst
read the Parent table, then the Employee table to retrieve
the object where name = RSrnithS).

Associating Classes

Associations in the object model are implemented by
foreign keys in the database. For associations, the code
generator creates get and set methods in each class to access
instances of the other class through the association. For
example, suppose we have two classes, Depanment and
Employee, Each Department employs zero to many
Employees, and each Employee works in one and only one.
Department (see Figure 3).

524



Object Model

Database Structure Table:

Table: Employee Department

mKe attr... FKe
9

8

. mKey attr...

8

9

A

L!!w!a3
Figure3, Association.

For this object model, the generator would create a
getEmployso method in the Department class to get all the
Employees associated with a particular Department by
performing a foreign key lookup in the Employee table.
This allows direct support of navigational queries in the
developer’s C++ application. Similarly, addToEmployso
and rmvFromEmployso would add artd remove instances
from the set of Employees related to a particular
Department.

The cardinality of binary asswiations are enforced via
column constraints in the database and code in the C++
classes. For example, an Employee must work in one and
only one Department. Therefore the constructor for the
Employee class created by the generator will take a
Department as a required attribute,

The generator maintains the semantics of the association
during deletion via code in the C++ classes. The developer
specifies a delete constrairm block, propagate, or remove
(and set foreign key to NULL) for each class in each
relationship, For example, on deletion of a Departmen4
the delete action “block would block the deletion if there
are any Employees associated with this Department, while
the delete action “propagate” would propagate the deletion
through to all associated Employees.

Violations of the delete constraints are reported to the user
via art error mechanism P regardless of whether the error
was detected by the databaseor by the generated C++
classes.

Benefits of Database Interface Generator
Approach

A DatabaseInterface Generator (Regenerators)can encapsulate
database accessfor C++ classes, providing productivity,
quality and reuse benefits over other approaches.

Increasing Productivity

The most significant benefit from a generator is the
productivity it provides for applications which access
relational data. By automating the creation of database
interface methods for each class, a code generator can reduce
the total development time for such an application by 20 to
3096.

A generator also reduces the impact of changes in the
model. This can be especially true during a prototyping
phase for a project, Significant changes to the application
object model can be implemented in minutes rather than
weeks, enabling an iterative approach to building the
application,

As the class hierarchy is changet or new attributes or
associations are neede~ the databaseaccesscode is quickly
modified with the developers devoting their time to
changing their use of the interfaces for the regenerated
classesP work that would have been necessary anyway, but
a much smaller fraction of the application needs to be
changed.

Improving Code Quality

The generator produces code according to a set of rules,
Over time, these rules will be more thoroughly tested than
databaseinterfaces written from scratch. As the rules are
modified to produce more correct and efficient code, the
benefits that have been incorporated into the generator can
be applied retroactively to existing applications P thereby
improving their quality and performance with little or no
productivity impact.

If the generator is careful to preserve the interfaces to the
generated classes, this will cost very little. If there are
interface changes, the cost of making the necessary
adaptations is still small relative to the cost of a team
making similar improvements to an existing application.

Reusing Classes

A generator can also increase the reusability of classes. One
barrier to reuse is learning the interface for classes created
by different developers. With a generator, each class shares
a core set of capabilities and a uniform interface. Once
developers have learned the basic methods for manipulating
one class, they can easily work with other classes,

A second barrier to reuse is that the original developer
usually only implements the methods they need to
complete a particular task, With a generator, each class
contains a complete set of methods for working with the
database.The developer is assuredof having Recompletes
classes to work with.

525



myEmp->getPhoneo;

i

L
1

Figure4, Smartwinter.

4, CONSIDERATIONS FOR RUNTIME
OBJECT MANAGEMENT

There are a number of important runtime issues in merging
C++ classes with relational databases, Specifically:

% Navigating objects structures which have been read from
the database.

% Providing concurrent access to multiple users.

% Ensuring consistency between cached objects and tuples in
the database.

Here again, a code generator can be used to produce
specialized classes that resolve these issues. In addition, a
Runtime Object Management System (Rruntime systemS)
provides databaseaccessand object caching for applications
generated by tie code generator.

The runtime system enables rapid object accessand
navigation by semanlic key swizzling, that is, mapping
foreign key to primary key references into in-memory
pointers. It also provides data consistency and concurrency
by invoking the transaction and locking mechanisms of the
underlying databases.

The Runtime Object Model

The methods created by the Database Interface Generator
never return a direct pointer to the data, InsteaL they return
a smart pointer to the data. This smart pointer keeps a
reference count and can be shared by several variables. For
example, if two queries return the same tuple, both query

results would point to the same smart pointer.

The smart pointer in turn contains a pointer to the data for
an instance and the primary key value for an instance. To
ensure consistency between the object cache and the
database, it is necessary to flush the data in the cache each
time a transaction is comrnited. When this happens, the
primary key value is used to tmmsparently re-read the data
from the &tabase (see Figure 4).

Navigating Object Structures

C++ instances can refer directly to other instances through
pointers. Using pointers, C++ developers can build
complex in-memory stntctures which can be quickly
navigated by following the pointer links between objects.
Relational tuples, however, can only refer indirectly to
other tuples through foreign key Rpointers.S Navigating
relational structures, such as a bill of materials, requires a
separate query to traverse each link of the structure in each
direction,

The runtime system performs the task of semantic key
swizzling of primary and foreign key values into in-
memory pointers, This technique has the effect of speeding
performance for navigational queries once the object
instances have been read in from the database.

The runtime system supports key-based queries over objects
in the cache. For arty class, given the primary key values,
if the corresponding object has already been registered then
the runtime system returns its smart pointer. This feature
enables applications to selectively cache certain sets of
objects which can then be rapidly accessedvia the object
cache.

In our previous example, each Department employs zero to
many Employees. The method, getEmployso performs a
foreign key lookup in the Employee table to retrieve all the
Employee instances which are associated with a particular
Department. The runtime system creates pointers between
the cached Department instance and its associated Employee
instances, The next time this association is navigated P
either from the Department or the Employee side P tie
information will be returned immediately from the object
cache,

Enabling Concurrent Data Access

The developer uses transactions to control the level of
locking performed in the database. The three basic types of
transactions currently supported are: dirty read (no locks),
consistent read, and readhvrite. As data is accessedor
updated by the application, depending on the type of
transaction, the runtime system places the appropriate locks
on the corresponding tuples in the underlying database
using the databaseUs locking mechanism.

In addition to these transactions, the developer can specify
either shared or exclusive locks on entire tables in the
database. In caseswhere the application does not specify
any transaction, an implicit read-write transaction is started.
When the application explicitly invokes a transaction, the
implicit transaction is committed and the new transaction is
started.

526



Enforcing Data Consistency

As objects are retrieved, tuples corresponding to these
objects are locked in the underlying databasefor the
duration of the transaction. When the transaction is
committed these locks are released and the data in the cache
must be flushed.

When the transaction commits, only the data for the objects
is flushed; the smart pointers are retained in the cache. So,
the next time data corresponding to any of these objects is
reques@ the appropriate locks am automatically re-acquired
and data is ~ad fmm the databaseand cached.

The cache maintains a single copy of the data for the entire
application. This avoids duplication of data if different parts
of the application have to accessdata associated with a
given object. Maintaining a single copy of data ensures that
the data remains consistent. Different parts of the
application have accessto the latest version of the data and
changes in one part of the application are visible
throughout the application.

Providing Database Independence

The runtime system manages the database connections,
responds to &tabase queries and implements the transaction
mechanism. It provides a databaseindependent interface
which enables applications to transparently accessdatabases
from different vendors.

5. BUILDING APPLICATIONS WITH
PERSISTENCE

Persistence is an application development tool which
consists of a Database Interface Generator, to convert an
application object model into C++ classes and relational
tables, and a Runtime Object Management SystenL to
speeddata accessandprovi& dataconcunency and
consistency.

Building an application with persistence follows a four-step
process: (i) enter an object model for the application, (ii)
generatethe &tabase interface classes,(iii) add custom code
to the generated classes, (iv) compile and link to the
appropriate runtime system.

i. Entering the Object Model

The application in this example will have two classes,

Department and Employee. The two classes have a single
association: a Department employs zero to many
Employees, and an Employee works in one and only one
Department.

The developer enters class and attribute information into the
Persistence interface. For each class, the developer speciiles
inheritance and idem.iiles the primary key attributes for the

corresponding table.

Next the developer creates the associations between the
classes and for each association identifies the foreign key
attributes which store that association in the database.

ii. Generating Database Interface Classes

Once the object model is entere~ the developer pressesthe
generate button in Persistence to create the corresponding
classes.For each object in the model, persistence generates
a corresponding class. For example, the files,
Department.H and Department.C will be generated for the
Department object in the model. Persistence generates a
strongly typed ordered collection class, Department_Cltn,
to stem query and association results.

Since the class files generated by Persistence will be
ovenvritten each time the application object model changes,
Persistence provides a set of include fdes,
Department_stubs.H and Departrnent_stubs.C to store
custom methods for the class. The stubs fdes are not
overwritten when the object model schema changes,
allowing the developer to preserve their changes as the
object model evolves.

To handle runtime caching, Persistence also generates a
smart pointer, key, and data class for each object - in this
example, Department_rep, Department_keyObj and
Department Data. These runtime classes are used to provide
object cachi;g and consistency; they are not used by the
&veloper.

iii. Adding Custom Code

Once the code is generated, the developer can add custom
methods to the classes and incorporate Persistence-generated
classes into other classes and projects. Figure 5 shows a
code sample for a simple application that logs in to the
database,createsnew Deparunent and Employee instances,
and sets the association between a Department and an
Employee.

iv. Linking To Runtime System

All code generated by Persistence is databaseindependent.
At link step, the developer links to the runtime object
management system and to the appropriate databaselibrary
to create a complete application.

6. CONCLUSIONS

We have demonstrated an approach to bridging object-
oriented programming to relational databases. Our approach
allows new applications to be written in C++ using legacy
relational databaseswhile operating concurrently with
legacy applications. Our approach obtains good
performance by using queries to efficiently pre-fetch desired
data from the database to take advantage of associative

search and by caching the &ta to permit in-memory
navigation. Thus, data is loaded into memory based on
app~cation needs instead of its physical orgfiization in the
&tabase.

527



// Sample method with Persistence generated
// methods shown in bold

void demon stratePersistenceMethodso

{
// Logintothe database
ROMS“. :connect (Rscott S, Stiger S) ;

// Create new persistent department
Department * currDept = new

Department (’’Sales’’, ’’Building 1“);

// Create new employee, assign todepartment
Employee * emp =

new Exnployee (’’Jensen”, currDept) ;

// Read departmentwith key = “systems”

Department * existingDept =

Department ::queryXey (’’Systems” ) ;

// Read allemployeeswhoworkin Systems dept
Employee Cltn * systemsEmpSet =

exis;ingDept->getEmployees () ;

// Update employee relationship
// (also maintains ref integrity)
emp–>setWorksIn (existingDept) ;

// Delete Sales deptfrom database
// (also checks delete constraints)
currDept->remove () ;

Figure 5.Application code example.

We use the client-server services of the relational DBMS,
butweprovide acacheofobjectson theclientside. This
approach of caching on the client side is typically used by
object-oriented DBMS. However, wealsotake advantage
of the relational DBMS server side caching as well as its
efficient associative search capabilities. In this way, our
customers retain their investment in application software,
relational DBMS, and their data while obtaining the
benefits of writing new software using the object paradigm.

7. ACKNOWLEDGEMENTS

Chris Keene helped improve the presentation of this
material, Derek Henninger assisted in the design of this
system. Some of the ideas presented in this work were
based on experience of the Penguin project at Stanford
University.

8. BIBLIOGRAPHY
[Barsalou 90a] Thierry Barsalou, “View Objects for Relational

Databases,” Ph.D. dissertation, Stanford University,

March 1990, available as technical report STAN-CS-90-
1310.

[Barsalou 90b] Thierry Barsalou and Gio Wiederhold

“Complex Objects For Relational Databases,” Computer
Aided Design, Vol. 22 No.8, Buttersworth, Great Britain,
October 1990.

[Cattell 91] Rick Cattell, Object Data Management: Object

Oriented and Extended Relational Systems, Addison-
Wesley, 1991.

[Barsalou 91] Thierry Barsalou, Niki Siambela, Arthur M.

Keller, and Gio Wiederhold, “Updating Relational
Databases through Object-Based Views; ACM SIGMOD,

Denver, CO, May 1991.

[Keller 85] Arthur M. Keller, “Updating Relational Databases
Through Views;’ Ph.D. dissertation, Stanford University,

February 1985, available as technical report STAN-CS-85-

1040.
[Keller 86a] Arthur M. Keller, “The Role of Semantics in

Translating View Updates,” IEEE Computer, 19:1,

January 1986.
~eller 86b] Arthur M. Keller, “Choosing a View Update

Translator by Dialog at View Definition Time,” 12th Int.

Conf. on Very Large Data Bases, Kyoto, Japan, August
1986.

[Keller 86c] Arthur M. Keller, “Unifying Database and

Programming Language Concepts Using the Object
Model” (extended abstract), Int.1 Workshop on Object-

Oriented Database Systems, IEEE Computer Society,

Pacific Grove, CA, September 1986.
Keller 87] Arthur M. Keller and Laurel Harvey, “A Prototype

View Update Translation Facility,” Report TR-87-45,

Dept. of Computer Sciences, Univ. of Texas at Austin,
December 1987,

[Law 90] Kincho H. Law, Gio Wiederhold, Thierry Barsalou,
Niki Sambela, Walter Sujansky, and David Zingmond,
“Managing Design Objects in a Sharable Relational
Frameworlq” CIFE, Stanford University, March 1990,

ASME meeting, Boston, August 1990.
[Lee 90a] Byung Suk Lee and Gio Wiederhold, “Outer Joins and

Filters for Instantiating Objects from Relational

Databases through Views,” Center for Integrated Facilities
Engineering (CIFE), Stanford University, Technical

Report 30, May 1990.
[Lee 90b] Byung Suk Lee, “Efficiency in Instantiating Objects

from Relational Databases Through Views;’ Ph.D.
dissertation, Stanford University, December 1990,
available as technical report STAN-CS-90-1346.

[Wiederhold 86] Gio Wiederhold, “Views, Objects, and

Databases,” IEEE Computer, 19:12, December 1986.
~iederhold 89] Gio Wiederhold, Thierry Barwtlou, and Surajit

Chaudhti “Managing Objects in a Relational
Framework,” Stanford Technical report CS-89-1245,
January 1989, Stanford University.

~iederhold 91] Gio Wiederhold, Thierry Barsalou, Byung Suk
Lee, Niki Siambel~ and Walter Sujansky, “Use of
Relational Storage and a Semantic Model to Generate
Objects: The PENGUIN Projecg” Database ’91: Merging
Policy, Standards and Technology, The Armed Forces

Communications and Electronics Association, Fairfax
VA, June 1991, pages 503-515.

528


