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Abstract

Ephemeral logging (EL) is a new technique for man-

aging a log of database activity on disk. It does not re-

quire periodic checkpoints and does not abort lengthy

transactions as frequently as traditional firewall log-

ging for the same amount of disk space. Therefore,

it is well suited for highly concurrent databases and

applications which have a wide distribution of trans-

action lifetimes.

This paper briefly explains EL and then analyzes its

performance. Simulation studies indicate that it can

offer significant savings in disk space, at the expense of

slightly higher bandwidth for logging and more main

memory. The reduced size of the log implies much

faster recovery after a crash as well as cost savings.

EL is the method of choice in some but not all situa-

tions. We assess the limitations of our current knowl-

edge about EL and suggest promising directions for

further research.

1 Introduction

Recent technological developments and new appli-

cation requirements have changed the nature of the
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logging and recovery problem. In particular, two re-

cent developments have highlighted shortcomings of

existing solutions.

First, technology has advanced. The advent of

highly concurrent systems consisting of hundreds or

thousands of processors has offered much greater pro-

cessing power, but has made synchronization much

more difficult. ‘lladitionally, checkpointing has been

a part of all database management system (DBMS)

designs. Although there are numerous variations on

checkpointing, they all rely on some form of synchro-

nization of activity in the entire system. Naive scr-

lutions that demand system quiescence are wasteful

of processing resources if many processors are idle for

unnecessarily long periods of time. More efficient scr-

lutions are complicated and impose overhead. Large

main memories are another important technological

development. Extrapolation of current trends suggests

that many computer systems will have 64 MBytes or

more per processor within the next several years.

Second, transactions of widely varying lifetimes

may exist simultaneously in a system. Until a transac-

tion commits, some record of its activity must be kept

in the log. Traditionally, the log of database activ-

ity must hold all records which have been written (by

all transactions) since the oldest active transaction

began; this space in the log cannot be freed up until

the oldest active transaction finishes. There may be

many log records which are no longer needed for recov-

er y purposes. However, their space is unavailable for

re-use as long as the oldest record must be retained.

This “firewall” (FW) approach, originally proposed for

System R [4], poses disk management problems. If

a transaction lives too long, the log may run out of

disk space to hold new records. System R’s solution

is to simply kill off excessively lengthy transactions,

1An active transaction is one which is still in progress (it has
not requested termination nor been aborted).
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This solution is clearly unpalatable in an environment

where applications require transactions of widely vary-

ing lifetimes.

The logging manager (LM) is the component of

a DBMS which is responsible for managing a log of

database activity. Ephemeral logging (EL), a new disk

management technique that avoids the two disadvan-

tages described above, is intended as part of a LM

design. EL manages the log as a chain of queues to

which new records are continuously added. It per-

forms continuous garbage collection and log compres-

sion. Only records which must be retained in the log

are forwarded from the head of one queue to the tail

of the next. In tandem with this activity, EL continu-

ously updates the disk version of the database with the

new values of objects2 that have been updated by com-

mitted transactions so that the log records for these

modifications are no longer needed, EL does not re-

quire checkpointing in the traditional sense and it can

accommodate log records from transactions of widely

varying lifetimes. It relies on the ephemeral nature of

log records which must be retained and exploits dif-

ferences between the lifetimes oft ransactions.

EL relies on large quantities of main memory. It at-

tempts to minimize disk space, processing and commu-

nication requirements at the expense of increased main

memory requirements. It requires more disk band-

width for log information, but we expect this increase

to be small in a well designed system.

Throughout our discussion, we conveniently assume

that transactions never write out uncommitted up-

dates to the disk version of the database; a change

to an object is propagated to disk only after the as-

sociated transaction commits. Hence, log records for

modified objects (physical state logging on the ac-

cess path level [5]) cent ain only the updated values

(REDO logging [4, 5, 1]). This simplifies our discus-

sion. Nevertheless, the techniques proposed in this

paper can be extended to the more general situation

of UNDO/REDO logging with little difficulty.

The rest of the paper presents an explanation of

EL (Section 2), a description of our simulation envi-

ronment (Section 3), the results of experiments (Sec-

tion 4) and a review of related work (section 5). We

conclude with a summary of our progress to date and

suggestions for further promising research directions.

2we ~~e the tem object broadly to denote my distinct item

of data in a database. It may be a record in a hierarchical or

network database, a tuple in a relational database or an object

in an object-oriented database.

2 Data Structures and Algorithms

2.1 Conceptual Design

Ephemeral logging (EL) manages the log as a chain

of fixed-size queues. Each queue is called a genera-

tion. If there are N generations, then generation O is

the youngest generation and generation N – 1 is the

oldest generation. New log records are added to the

tail of generation O. Log records at the head of gen-

eration i, for i < N – 1, are forwarded to the tail of

generation i + 1 if they must be retained in the log;

otherwise, their information is flushed (transferred) to

a permanent version of the database elsewhere on disk

or simply discarded. In the special case of generation

N – 1, log records at its head which must be retained

are recirculated in it by adding them to its tail. The

disk space within each queue is managed as a circular

array [2]; the head and tail pointers rotate through

the positions of the array so that records conceptually

move from tail to head but physically they remain in

the same place on disk.

An example of EL with N=3 generations is shown

in Figure 1. A stable version of the database resides

elsewhere on disk. It does not necessarily incorporate

the most recent changes to the database, but the log

contains sufficient information to restore it to the most

recent consistent state if a crash were to occur. The

garbage pail does not actually exist, but is a conve-

nient concept for explanatory purposes.

generation O generation 1

\ /=
Uwfwe

pal u
legend: disk version

El garbage log record :
of database

•l non-garbage log record

Figure 1: Ephemeral Logging with Three Generations

A non-garbage log record is one which may be

needed for recovery, and hence must be kept in the log.

All remaining log records are garbage records. Every

log record is initially a non-garbage record. After be-

coming a garbage record, a log record cannot switch

back to become non-garbage again.
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The arrows at the head of each generation in Fig-

ure 1 portray the three possible fates for a log record

at the head. If the record is garbage, it is ignored

(conceptually thrown away in the garbage pail). If it

is non-garbage and must be retained in the log because

its transaction is still active, then it is either forwarded

to the tail of the next generation or recirculated in the

last generation. For now, suppose that when a non-

garbage log record for an update to an object by a

committed transaction arrives at the head of a gener-

ation, the LM flushes the updated object’s new value

to the disk version of the database; after this has been

done, the record is garbage and is thrown away.

This segmentation of the log is particularly effective

if a large proportion of transactions finish execution

before their log records reach the head of generation

O; none of their records are forwarded to generation

1 and their disk space can quickly be reclaimed for

more incoming log records. Only a small proportion

of log records, from transactions with longer lives, are

forwarded to subsequent generations.

Recirculation in the last generation means that the

physical order of its records no longer necessarily cor-

responds to the temporal order in which they were

originally generated. We assume that all log records

are timest amped, so that the recovery manager can es-

tablish the temporal order of the records. A recovery

method for EL is described in [9].

A cell exists for every non-garbage record in any

generation of the log. Each cell resides in main mem-

ory and points to the record’s location on disk. The

cells corresponding to each generation are joined in

a doubly linked list. The linked list “wraps around”

in a circular manner; the cells at the head and tail

have right and left pointers to each other, respectively.

For generation i, pointer hi points to the cell for the

non-garbage record nearest the head. There is no tail

pointer for the generation, but the cell for the non-

garbage record nearest to the tail can be found quickly

by following the right pointer of the cell pointed to by

hi.

There are two types of log records. Data log records

chronicle changes to the contents of the database (cre-

ation, modification or deletion of dat a objects). Trans-

action (tx) log records mark important milestones

(e.g., begin, commit or abort) during the lives of trans-

actions. The logged object table (LOT) has an entry for
every data object which has at least one non-garbage

data log record somewhere in the log. Likewise, the

logged transaction table (LTT) has an entry for every

transaction with a non-garbage tx log record. Cells for

an object’s non-garbage data log records are accessible

via its LOT entry. Similarly, cells for a transaction’s

tx log records are associated with its LTT entry. Al-

though cells belong to these two different tables, they

may nonetheless simultaneously belong to the same

doubly linked list.

Figure 2 illustrates the most important aspects of

the data structures for EL. The LOT and LTT, with

their constituent cells, reside in RAM. Other internal

details of the LOT and LTT have been omitted; the

circular doubly linked lists of cells are the important

aspect of the LOT and LTT in this figure.

h hl h2

“*J
g+we
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legend:
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\ ❑ garbage log remd ~
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Figure 2: Data Structures for Ephemeral Logging

The log is managed as write-only disk storage. At

any given time, the LM can determine whether the

record at the head of generation i is non-garbage by

checking if hi points to its head; if not, the LM can

safely conclude that the record is garbage. When a

record must be forwarded to the tail of generation i+l,

the LM writes its contents to disk at the tail of gen-

eration i+l. Its cell, c, is updated to point to its new

position in the log and is transferred from the circu-

lar linked list for generation i to the circular linked

list for generation i+l. Pointer hi is updated to point

to the cell previously to the left of c, if such a cell
exists for generation i; otherwise, hi is set to NULL.

If hi+l was NULL immediately before the record was

forwarded, then it is updated to point to c (and c’s

left and right pointers point to itself). Recirculation

in the last generation is handled similarly, although it
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may occasionally be necessary to kill a transaction if

one of its log records cannot be recirculated because

of an absence of space in the last generation.

After addition of new records to the tail of a gen-

eration, the LM advances the head (by forwarding,

flushing or discarding records) so that there is always

some gap between the head and tail in the circular ar-

ray of disk space, This unused disk space is available

to hold incoming records at the tail.

2.2 Pragmatic Details

Two characteristics of current disk technology ex-

ert an important influence on the implementation

of EL. Information is written to disk in fixed sized

blocks (with each block typically some multiple of 1024

bytes). Sequential disk 1/0 is faster than random

disk 1/0. The technique introduced above must ac-

commodate the constraint of fixed sized disk blocks,

and ought to take advantage of the performance ben-

efits of sequential 1/0.

Suppose that each disk block is of size B bytes. The

LM has a pool of buffers, each of size B bytes. At any

given time, there is a current buffer for generation O.

New log records are added to this buffer until it is

full, at which time it is written to disk and a differ-

ent buffer becomes the current buffer3. The collection

of disk block locations for a particular generation are

continually written in the same cyclic order. The head

and tail pointers for a generation indicate only block

locations; they do not point to more precise locations

within a block. Similarly, a cell indicates merely the

block to which its record belongs. This coarse resolu-

tion for pointers suffices for implementation of EL.

The movement of head and tail pointers in block

sized quanta has implications. When the head of a

generation is advanced to a new block, the LM must

deal with all log records in this block. Some are for-

warded, some flushed, and others discarded. Suppose

that several log records are forwarded from genera-

tion i to generation i+l. These records are added to

an empty buffer and are generally insufficient to fill

the buffer but the LM must ensure that the forwarded

records are immediately written to disk, Therefore,

it attempts to fill the buffer as full as possible before

writing it. After forwarding records from the block

at the head of generation i, the LM works backward

from the head to gather enough other non-garbage log

3 seve,~ b~ers we ~eceSSWy because a disk write generallY

requires a significant amount of time, such as 10 ms, during

which many other log records may arrive. While one buffer is

being written to disk, new records can be added to a different

buffer without risk of interference.

records to fill the buffer that is destined for the tail

of generation i+l. In summary, the requirements of

generation i dictate that records be removed from its

head in quanta of size at least a block. The require-

ments associated with forwarding records to the tail

of generation i+l imply that records are forwarded as

a group from the first several blocks at the head of

generation i.

Recirculation is not as complicated. The LM can

remove records from only the block at the head of

the last generation and place them in a buffer without

immediately writing it to disk. The existing copies of

these records will not be overwritten until after the tail

has advanced, but the recirculated records will belong

to the disk block written at the tail.

The introductory explanation of EL in section 2.1

suggested that committed updates are flushed to the

stable version of the database kept elsewhere on disk

when their log records next reach the head of a gen-

eration. In general, there is negligible locality of ac-

cess between the updates of independent transactions.

Flushing updates in the order that they are written to

the log would lead to random disk 1/0. Instead, the

LM attempts to schedule flushes so that it can take ad-

vantage of locality in the disk version of the database

and thus improve 1/0 performance. At any given time,

there should be a significantly large number of com-

mitted updates from which the LM can choose the

next object to be flushed; too small a “pool” of up-

dates leads to random 1/0. The LM can flush a data

log record’s update to disk any time after its trans-

action has committed. Flushing can proceed contin-

uously at as high a rate as possible; it is no longer

triggered by the arrival of a new block at the head of

a generation. After the LM flushes an update from a

data log record, the record becomes garbage. Ideally,

every committed update is flushed before it arrives

at the head of its generation so that records at the

head of any generation are either forwarded (or recir-

culated) or thrown away. In practice, a few may reach

the head of a generation and require flushing; there

will be a small amount of random 1/0, but much less
than for the naive approach originally described. Al-

ternatively, we can keep an unflushed update’s record

in the log by forwarding or recirculating it until the

update is eventually flushed.

As before, the LM continues to ensure that there

is always enough of a gap between the head and the

tail of every generation. Now, this gap is measured in

terms of available disk blocks.

The circular linked list of cells for generation i is still

managed according to the description in section 2.1.
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The hi pointer keeps track of the non-garbage log

record nearest thehead of generation i. The hi pointer

points to a cell; it does not (directly) point to the

block nearest the head which contains at least one non-

garbage record.

2.3 Management of the LOT and LTT

The LOT and LTT keep track of all non-garbage log

records. The LM updates them on a cent inual basis

as records enter the log and progress through it.

When the DBMS initiates a new transaction, it

sends a BEGIN record to the log. In response, the LM

adds the BEGIN record to a buffer which will be writ-

ten to the tail of generation O, creates a cell to point

to the record and creates a new entry in the LTT.

Even though the LM has not yet written the buffer to

disk, it knows the position of the disk block to which

it will eventually be written. The cell’s pointer to the

record’s position in the log consists of the address of

this disk block. The LTT entry for the transaction

points to the cell. Additionally, each LTT holds a set

of object identifiers ( oids) to keep track of which ob-

jects were updated by the transaction; this set is ini-

tially empty and grows as the transaction progresses

and performs work. Entries in the LTT are associa-

tively accessed using transaction identifiers (fids) as

keys. A hash table implementation is therefore appro-

priate. The dynamic nature of the LTT strongly sug-

gests that chaining [2] (rather than open addressing)

is the most suitable technique for collision resolution.

We assume that only the most recent tx log record

is ever required for any transaction; all earlier tx log

records are garbage. Throughout the time that a

transaction has an LTT entry, there is one cell which

points to its most recent tx log record. Whenever

a transaction writes another tx log record (such as

COMMIT), the LM adds it to the log (at the tail of gen-

eration O) and updates the cell for the transaction’s

previous tx log record to point to the disk block of

this newest record4.

The LOT is accessed associatively by object identi-

fiers ( oids). Like the LTT, it is implemented as a hash

table with chaining. An object’s LOT entry has one or

more cells, each of which points to the disk block of a

non-garbage data log record for the object. An object

has a cell for the most recently committed update (if

any) if this update has not yet been flushed; it may
have several cells for uncommitted updates.

Whenever a transaction modifies an object in the

database, it sends a data log record to the log. If an

4The cell is also transferred from its previous doubly linked

list of cells to the tail of the doubly linked list for generation O.

entry does not already exist for the object in the LOT,

the LM creates one. The LM creates a cell to point to

the data log record’s block in the log, adds it to the set

of cells maintained in the object’s LOT entry, inserts

the cell in the doubly linked list for generation O and

adds the object’s oid to the set of oids in the LTT

entry of the transaction which performed the update.

Every transaction eventually commits or aborts.

An abort is easy to handle. All data and tx log

records from an aborted transaction immediately be-

come garbage; the cells which pointed to these records

are disposed, The transaction’s LTT entry is deleted.

When a transaction commits, the LM updates its tx

log record cell to point to the COMMIT record in the log

and processes the set of oids in its LTT entry. For each

oid, the LM retrieves the object’s LOT entry, If a data

log record for an earlier committed update existed, it

is now garbage; its cell is removed from the object’s

LOT entry and disposed. The current transaction’s

most recent update now becomes the most recently

committed update for the object.

After the LM flushes an update to the disk ver-

sion of the database, the associated data log record is

garbage, The LM removes the cell for this record from

the object’s LOT entry and disposes it. If the set of

remaining cells is empty (i.e., the object no longer has

any non-garbage data log records in the log), the LM

deletes the object’s entry from the LOT.

Whenever a data log record becomes garbage and

its cell is disposed, the oid is removed from the LTT

of the transaction which originally wrote the record.

When the set of oids in a committed transaction’s LTT

entry is empty, the LM disposes the cell for the trans-

action’s most recent tx log record (because the record

is garbage) and removes the transaction’s entry from

the LTT.

To summarize, every object with non-garbage data

log records in the log has an entry in the LOT. An

object’s LOT entry keeps track of the positions within

the log of its non-garbage dat a log records. There is an

LTT entry for every transaction currently in progress

and every committed transaction which still has non-

garbage data log records. A transaction’s LTT entry

keeps track of all objects which it updated and the

position within the log of its most recent tx log record.
The LM continually updates the LOT and LTT to

reflect the current state of the system ss transactions

and log records come and go. At any given time, the

cells associated with the LOT and LTT entries point

to all non-garbage records in the log.
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3 Simulation Environment

We have implemented an event-driven simulator to

study EL. The simulator is written in C and runs on

SPARCstations. The user can specify the following

input parameters:

pdfi

arrival rate:

flush rate:

generations:

recirculate ion:

runt ime:

statistical mix of transactions

rate of transaction initiation

for flushing committed updates

the number and size of generations

flag to turn circulation on or off

duration of simulated time span

The user specifies an arbitrary number of differ-

ent transaction types and their probability distribu-

tion function (pdf). For each type of transaction, the

user states the probability of occurrence, the duration

of execution, the number of data log records written

and the size of each data log record. This transac-

tion model is graphically represented in Figure 3 for a

transaction that generates two data log records.

choose write first write last
tx typ data log data log

record record

t t
write BEGIN write COMMIT
log record log record

I
tx cornr&s

Figure 3: Simulation Transaction Model

Whenever a new transaction must be initiated, the

simulator randomly (according to the pdf ) selects its

type. After choosing its type, the simulator schedules

when its log records will be written. The BEGIN tx log

record is written immediately after it is initiated (at

time to). The data log records are written at equally

spaced intervals, with the last being written only some
short time c (equal to ts—tz) prior to completion. Sup-

pose that the transaction’s lifetime (specified as part

of its type) is T. It will finish execution and write a

COlfMIT tx log record (at time t3) T seconds after it

started. Its last data log record is written (at time tz)

T – t before it finishes, and each data log record is
written (T – e)/N after the preceding one, where N

is the number of data log records written by a trans-

action of this type. After writing the COM41T record,

the transaction waits for acknowledgement (at time

t4) from the LM before it actually commits; this delay

occurs because the LM waits until a buffer is almost

full before writing it to disk at the tail of generation

0, and then there is some delay (typically 10 to 20 ms)

for transferring the contents to disk.

Transactions are initiated at regular intervals, ac-

cording to the specified arrival rate (transactions per

second). We believe that this simple, deterministic ar-

rival pattern is sufficient for a first order evaluation of

EL. More complicated probabilistic models (such as

Markov arrivals) may be investigated in future work.

We do not model feedback in the transaction

scheduling. In reality, the performance of the database

system may affect the rate at which new transactions

are submitted for execution, the times at which they

write records to the log and their duration. The de-

tails of this arrival mechanism are beyond the scope

of this paper.

Whenever a transaction writes a data log record, we

randomly pick some integer for the oid, subject to the

constraint that the number has not already been cho-

sen for an update by a transaction which is still active.

The set of integers from which an oid can be chosen

consists of all integers from O up to NUM.OBJECTS-

1, where NUM-OBJECTS is the total number of ob-

jects (a fixed value).

To control the rate at which updates are flushed,

the user specifies some number of disk drives and the

time required to write a block to any of these drives.

We assume that there can be at most one request

at a time for any particular drive. The user can in-

crease the maximum rate at which updates are fiushed

by increasing the number of drives or decreasing the

time to write a block to any drive. The objects are

range partitioned [3] evenly over these drives. That

is, for NUM.OBJECTS objects and D drives, the first

NUM-.OBJECTS/D objects5 reside on drive O, and so

on. We assume that each updated object requires a

separate disk write (i.e., there is negligible Iocalit y of

updates within a disk block). Each disk drive attempts

to service pending flush requests in a manner that min-

imizes access time. In our simulator, we assume that

the difference between two objects’ oids corresponds
to their locality on disk. When calculating the differ-

ence between two oids, we assume that the range of

integers assigned to their disk drive wraps around.

The user specifies the number and size (number of

disk blocks) of each generation. The size of each disk
block is fixed in the simulator.

In some experiments, we examine the behavior of

EL without recirculation in the ls.st generation, just so

5For simplicity, we ignore the case where NUM_OBJECTS

is not a multiple of D.
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that we can see the effect of simply segmenting the log.

There is an input flag to specify whether recirculation

in the last generation is turned on or off. If recircu-

lation is disabled and a transaction’s non-garbage log

record reaches the head of the last generation while it

is still executing, the LM kills the transaction.

Several parameters are fixed. The delay c between
the writes for the last data log record and the COMMIT

tx log record for a transaction is fixed at 1 ms, The ca-

pacity of each disk block is 2000 bytes6. At any given

time, at least k blocks must be available to hold new

log records. This threshold distance is currently fixed

at k=2 blocks. Four disk block buffers (2048 bytes

each) are provided for each generation. The BEGIN

and COMMIT tx log records are assumed to both re-

quire 8 bytes. We conservatively assume a fixed delay

– 15 ms to transfer a buffer’s contents toof TD~*k-write—

disk when writing out records to the tail of the log.

The simulator uses the growp commit technique [1];

a log record is not written to disk until its buffer is

as full as possible. Therefore, the delay between the

time a record is added to a buffer and the time it is
. .

writ ten to disk 1s generally longer than 7Di~ ~-writ ~.

The number of objects in the database is fixed at

NUM_OBJECTS=107.

4 Experimental Results

We ran several experiments to observe the behavior

of EL and understand the effects of varying different

parameters. We also simulated the traditional FW

technique by using a single log with no recirculation

and compared the results of EL to those of FW. We did

not implement a checkpoint facility for the FW tech-

nique; the firewall was always the oldest non-garbage

log record from the oldest active transaction. This

omission favors FW because it ignores the overhead

(in terms of disk space and bandwidth) associated with

checkpointing.

We consider several evaluation criteria. Disk space,

disk bandwidth (in terms of block writes per second)

and RAM requirements (for the LOT and LTT) are

the main criteria we examine. We also try to estimate

the degree to which disk 1/0 is random or sequential.

Another important consideration is how fast recovery

time is after a crash. We do not simulate recovery so
we cannot cite any quantitative results. However, it

is generally true that recovery time is proportional to

6A block size of 2048 is typical, but we assume 48 bytes are

reserved for bookkeeping purposes and so only the remaining

2000 bytes are available to hold log records.

the amount of log information and so less disk space

means faster recovery.

For all experiments, we considered two transaction

types. The first is of 1 s duration and writes 2 data log

records, each of size 100 bytes. The second lasts 10 s,

in which time it writes 4 data log records of size 100

bytes each. These are characteristic of transactions for

many common interactive applications. Most trans-

actions are relatively short and modify only a small

amount of the database. Other transactions are more

complex and so they take longer to execute; they may

also update more objects in the database. We vary

the relative frequencies with which these two types of

transactions occur.

The arrival rate was 100 TPS (transactions per sec-

ond) and the simulation time was 500 s for all experi-

ments. All tests of EL used two generations.

As the fraction of 10 s transactions increases from

5% to 40%, the average number of updates per second

rises from 210 to 280. To provide sufficient bandwidth

for flushing updates, we specified 10 disk drives with

a transfer time of 25 ms (net bandwidth is 400 flushes

per second). The conservative 25 ms time allows for

some read operations to be interspersed with writes.

We estimate that the FW method requires 22 bytes

for each transaction (including a pointer to the po-

sition within the log of its oldest log record) in the

system. The EL method requires 40 bytes for each

transaction and 40 bytes for each updated (but un-

flushed) object.

Figure 4 plots the disk space requirements (number

of blocks) versus the transaction mix for both FW and

EL. Recirculation in the last generation is disabled for

EL, so that we can assess the effect of simply segment-

ing the log. For both F W and EL, we continued to

run simulations and reduce the disk space until we ob-

served transactions being killed. Hence, these results

reflect the minimum disk space requirements to sup-

port 500 s of logging activity in which no transaction

is killed. The corresponding graphs of disk bandwidth

(to only the log) and main memory requirements for

these tests are shown in Figures 5 and 6, respectively.

The advantages of EL are most apparent for the 5%

mix. It reduces disk space by a factor of 3.6 with only

an 1170 increase in bandwidth; memory requirements

are modest. As the proportion of 10 s transactions

increases, EL’s relative advantage over F W diminishes.
The reduction in disk space is not as large, but the

increase in bandwidth is greater.

We enabled recirculation in EL’s last generation

and progressively decreased its size until we observed

transactions being killed. For all tests, we used the

193



0 . . . ...0 FireWall

A- - -A EL
..0

. . . 0“””””””

0’”””””. . . . . .

@
,. .0””

.~
o

Percentage of txs of 10s duration

Figure 4: Disk Space Requirements vs. Tx Mix

:L_LL
o 10 20 20 40

Percentage of bra of 10s duration

Figure 5: Disk Bandwidth vs. Tx Mix

same mix of 5% 10 s transactions. The size of the

first generation remained fixed at 18 blocks (for which

the minimum space was obtained in the case of no

recirculation). Figure 7 plots the bandwidth to the

last generation and the total overall logging band-

width (both generations) as the size of the last gener-

ation is varied, The amount of space required for EL

decreases from 34 to 28 blocks, while bandwidth in-

creases from 12.87 to 12.99 writes/see (main memory

consumption is unchanged since the number of non-

garbage log records is the same). Compared to the

F W case of 123 blocks and 11.63 writes/see, these re-

sults for EL constitute a factor of 4.4 reduction in disk

space and a 1270 increase in bandwidth.

We point out that 28 blocks of 2 KBytes each can

7The first generation has the same bandwidth as before.

Only the second generation experiences increaaed bandwidth,

because of the recirculated records.
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all fit in the main memory of many workstations with

lots of room to spare. The traditional two pass (undo,

redo) recovery method [1] that was appropriate for

databases with large logs and small main memories is

no longer appropriate. Now, we can read the entire log

into memory and perform recovery with a single pass
[9]. Recovery in less than a second maybe feasible.

To see how EL performs when bandwidth for flush-

ing is scarce, we increased the flush transfer time

to 45 ms so that the 10 disk drives together pro-

vide a maximum bandwidth of 222 writes per sec.

For a transaction mix with 5% 10 s transactions, the

database is updated at an average rate of 210 objects

per second. Familiarity y with queueing theory suggests

that a backlog of unserviced flush requests will ac-

cumulate as the flushing service rate approaches the

rate of new arrivals. Under these circumstances, EL

with recirculation requires 31 disk blocks (20 and 11
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in generations O and 1, respectively) and a bandwidth Hagmann and Garcia-Molina [71 propose recirculw
of 13.96 writes per sec. Unflushed committed updates tion of log records from long lived transactions within
are recirculated in generation 1 until they are eventu- an unsegmented (i.e., single generation) log. Records
ally flushed, but the extra disk space and bandwidth to be recirculated must be read from disk. Their
are not prohibitive. The average dist ante between oids method still relies on checkpoints.
of successively flushed objects is now 109,000. Com-

pared to the average of 235,000 which we observed for

previous tests when the transfer time was 25 ms, this
6 Concluding Remarks

indicates a significant increase in locality. As a back-

log accumulates, disk 1/0 for flushing becomes less

random and more sequential. This negative feedback
This paper has presented a quantitative evalua-

provides some stability. We conclude that EL is suit-
tion of ephemeral logging and demonstrated that it

able when flushing bandwidth is scarce.
has clear advantages over the established firewall tech-

nique for some applications. EL can significantly re-

duce the amount of disk space required to retain log

information when a small proportion of transactions
5 Related Work have relatively long lifetimes. The smaller this pro-

EL essentially performs log compression as it passes

records from one generation to the next. It filters out

records which are no longer needed and keeps only

those records that would be required if a crash were

to suddenly happen. The continuous nature of EL dis-

tinguishes it from previous log compression methods

[8, 6]. These earlier methods are intended for “batch

mode” log compression; records cannot be added to

the existing log while it is being compressed. EL em-

ploys very different techniques to perform log compres-

sion.

The idea of segmenting a fixed amount of storage

space into several temporal generations for the pur-

poses of garbage collection is not new. Lieberman

and Hewitt [1O] adopt such a strategy when there are

more general reference patterns amongst a dynami-

cally varying collection of objects held in main mem-

ory. However, a review of the literature reveals no

prior pursuit of a similar strategy for the management

of disk space for a database system’s log.

Rosenblum and Ousterhout [11] use some similar

ideaa in the log-structured file system (LFS). The LFS

adds all changes to data, directories and metadata to

the end of an append-only log so that it can take ad-

vantage of sequential disk 1/0. The log consists of sev-

eral large segments. A segment is written and garbage

collected (“cleaned)) ) all at once. To reclaim disk

space, the LFS merges non-garbage pieces from several

segments into a new segment; it must read the con-

tents of a segment from disk to decide what is garbage
and what isn’t. There is a separate checkpoint area

and the LFS performs periodic checkpoints. The LFS

takes advantage of the known hierarchical reference

patterns amongst the blocks of the file system during

logging and recovery.

portion and the longer the lifetimes, relative to other

transactions, the greater is the reduction in disk space.

The benefits of reduced disk space for the log are

twofold. First, it reduces the cost for a system. Sec-

ond, recovery time after a crash is expected to be much

shorter because there is less log information to process.

The cost of EL is higher disk bandwidth for manag-

ing log information and greater main memory require-

ments. The amount of extra bandwidth required by

EL decreases as the fraction of long-lived transactions

decreases.
.

We originally formulated EL for a database which

retains a version number timestamp with each object.

For the more general case of no timestamps in the

database, a broader definition of non-garbage records

is required to ensure correct recovery; some log records

may need to wait longer before becoming garbage.

EL challenges the conventional wisdom that check-

points are an inherent necessity for any logging al-

gorithm. By offering continuous logging service, EL is

particularly well suited for highly concurrent database

systems, in which checkpointing is expected to be

much more awkward than for sequential systems.

There are some situations in which the FW tech-

nique is better than EL. When all transactions are

approximately the same duration and checkpoints do

not impose significant overhead, the FW technique re-

quires no more disk space than EL, but it consumes

less bandwidth and main memory. Therefore, EL and

FW should be regarded as two alternative design tech-

niques available to database system designers.

EL provides fault tolerance to system failures [1],

in which the contents of main memory are lost. We

assume that main memory is large enough to buffer the

original and updated values for all objects which an

active transaction has modified, and so a transaction
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failure can easily be handled without needing to read

anything from disk. Previously known techniques [4,

5, 1] for archiving continue to provide fault tolerance

to media failures in which some information on disk is

irretrievably lost.

Implementation of EL requires significant control

over the management of information on disk. The

DBMS must have control over a set of disk blocks

which are dedicated for the log. The DBMS chooses

when new contents are written to any of these blocks.

Not all operating systems provide such a high degree of

control over “low level” 1/0. Stonebraker [12] wrote an

excellent critique of the shortcomings of existing oper-

ating systems and file systems, from the viewpoint of a

DBMS designer. We add our support to Stonebraker’s

criticisms, and we encourage operating system design-

ers to heed the needs of DBMS designers.

The optimal number of generations and their sizes

depends on the application. We cannot offer any prov-

ably correct analytical methods as tools to a database

administrator (DBA) who must specify these parame-

ters when a system is configured. Ideally, we would like

an adaptable version of EL that dynamically chooses

the number and sizes of generations itself,

Another promising avenue of investigation is a pos-

sible EL-FW hybrid scheme. Like EL, the log is seg-

mented into a chain of FIFO queues. Like FW, a fire-

wall is maintained for each queue; The oldest non-

garbage record in a queue is its firewall. Now, the

LM retains a pointer to only the oldest log record

from each transaction. This can drastically reduce

main memory consumption if each transaction updates

many objects, but at a price of higher bandwidth.

When a transaction’s oldest non-garbage log record

reaches the head of one queue, all of its log records

must be regenerated and added to the tail of the next

queue because the LM does not have pointers to know

their whereabouts in the current queue.

Suppose the transaction manager can estimate the

expected lifetime of a transaction when it begins (for

example, the type of the transaction may indicate its

expected duration). The LM might exploit this in-

formation to reduce bandwidth. Rather than letting

the transaction’s records progress through successively

older generations, it directly adds the transaction’s log

records to the tail of a generation in which the records

are unlikely to reach the head before the transaction

finishes. This technique would be particularly benefi-

cial in conjunction with the hybrid EL-FW approach

described in the previous paragraph.
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