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Abstract

Ephemeral logging (EL) is a new technique for man-
aging a log of database activity on disk. It does not re-
quire periodic checkpoints and does not abort lengthy
transactions as frequently as traditional firewall log-
ging for the same amount of disk space. Therefore,
it is well suited for highly concurrent databases and
applications which have a wide distribution of trans-
action lifetimes.

This paper briefly explains EL and then analyzes its
performance. Simulation studies indicate that it can
offer significant savings in disk space, at the expense of
slightly higher bandwidth for logging and more main
memory. The reduced size of the log implies much
faster recovery after a crash as well as cost savings.

EL is the method of choice in some but not all situa-
tions. We assess the limitations of our current knowl-
edge about EL and suggest promising directions for
further research.

1 Introduction

Recent technological developments and new appli-
cation requirements have changed the nature of the
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logging and recovery problem. In particular, two re-
cent developments have highlighted shortcomings of
existing solutions.

First, technology has advanced. The advent of
highly concurrent systems consisting of hundreds or
thousands of processors has offered much greater pro-
cessing power, but has made synchronization much
more difficult. Traditionally, checkpointing has been
a part of all database management system (DBMS)
designs. Although there are numerous variations on
checkpointing, they all rely on some form of synchro-
nization of activity in the entire system. Naive so-
lutions that demand system quiescence are wasteful
of processing resources if many processors are idle for
unnecessarily long periods of time. More efficient so-
lutions are complicated and impose overhead. Large
main memories are another important technological
development. Extrapolation of current trends suggests
that many computer systems will have 64 MBytes or
more per processor within the next several years.

Second, transactions of widely varying lifetimes
may exist simultaneously in a system. Until a transac-
tion commits, some record of its activity must be kept
in the log. Traditionally, the log of database activ-
ity must hold all records which have been written (by
all transactions) since the oldest active transaction’
began; this space in the log cannot be freed up until
the oldest active transaction finishes. There may be
many log records which are no longer needed for recov-
ery purposes. However, their space is unavailable for
re-use as long as the oldest record must be retained.
This “firewall” (FW) approach, originally proposed for
System R [4], poses disk management problems. If
a transaction lives too long, the log may run out of
disk space to hold new records. System R’s solution
is to simply kill off excessively lengthy transactions.

LAn active transaction is one which is still in progress (it has
not requested termination nor been aborted).



This solution is clearly unpalatable in an environment
where applications require transactions of widely vary-
ing lifetimes.

The logging manager (LM) is the component of
a DBMS which is responsible for managing a log of
database activity. Ephemeral logging (EL), a new disk
management technique that avoids the two disadvan-
tages described above, is intended as part of a LM
design. EL manages the log as a chain of queues to
which new records are continuously added. It per-
forms continuous garbage collection and log compres-
sion. Only records which must be retained in the log
are forwarded from the head of one queue to the tail
of the next. In tandem with this activity, EL continu-
ously updates the disk version of the database with the
new values of objects? that have been updated by com-
mitted transactions so that the log records for these
modifications are no longer needed. EL does not re-
quire checkpointing in the traditional sense and it can
accommodate log records from transactions of widely
varying lifetimes. It relies on the ephemeral nature of
log records which must be retained and exploits dif-
ferences between the lifetimes of transactions.

EL relies on large quantities of main memory. It at-
tempts to minimize disk space, processing and commu-
nication requirements at the expense of increased main
memory requirements. It requires more disk band-
width for log information, but we expect this increase
to be small in a well designed system.

Throughout our discussion, we conveniently assume
that transactions never write out uncommitted up-
dates to the disk version of the database; a change
to an object is propagated to disk only after the as-
sociated transaction commits. Hence, log records for
modified objects (physical state logging on the ac-
cess path level [5]) contain only the updated values
(REDO logging [4, 5, 1]). This simplifies our discus-
sion. Nevertheless, the techniques proposed in this
paper can be extended to the more general situation
of UNDO/REDO logging with little difficulty.

The rest of the paper presents an explanation of
EL (Section 2), a description of our simulation envi-
ronment (Section 3), the results of experiments (Sec-
tion 4) and a review of related work (Section 5). We
conclude with a summary of our progress to date and
suggestions for further promising research directions.

2We use the term object broadly to denote any distinct item
of data in a database. It may be a record in a hierarchical or
network database, a tuple in a relational database or an object
in an object-oriented database.

188

2 Data Structures and Algorithms
2.1 Conceptual Design

Ephemeral logging (EL) manages the log as a chain
of fixed-size queues. Each queue is called a genera-
tion. If there are N generations, then generation 0 is
the youngest generation and generation N — 1 is the
oldest generation. New log records are added to the
tail of generation 0. Log records at the head of gen-
eration i, for i < N — 1, are forwarded to the tail of
generation ¢ + 1 if they must be retained in the log;
otherwise, their information is flushed (transferred) to
a permanent version of the database elsewhere on disk
or simply discarded. In the special case of generation
N — 1, log records at its head which must be retained
are recirculated in it by adding them to its tail. The
disk space within each queue is managed as a circular
array [2]; the head and tail pointers rotate through
the positions of the array so that records conceptually
move from tail to head but physically they remain in
the same place on disk.

An example of EL with N=3 generations is shown
in Figure 1. A stable version of the database resides
elsewhere on disk. It does not necessarily incorporate
the most recent changes to the database, but the log
contains sufficient information to restore it to the most
recent consistent state if a crash were to occur. The
garbage pail does not actually exist, but is a conve-
nient concept for explanatory purposes.

generation 0 generation 1
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records
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garbage log record
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Figure 1: Ephemeral Logging with Three Generations

A non-garbage log record is one which may be
needed for recovery, and hence must be kept in the log.
All remaining log records are garbage records. Every
log record is initially a non-garbage record. After be-
coming a garbage record, a log record cannot switch
back to become non-garbage again.



The arrows at the head of each generation in Fig-
ure 1 portray the three possible fates for a log record
at the head. If the record is garbage, it is ignored
(conceptually thrown away in the garbage pail). If it
is non-garbage and must be retained in the log because
its transaction is still active, then it is either forwarded
to the tail of the next generation or recirculated in the
last generation. For now, suppose that when a non-
garbage log record for an update to an object by a
committed transaction arrives at the head of a gener-
ation, the LM flushes the updated object’s new value
to the disk version of the database; after this has been
done, the record is garbage and is thrown away.

This segmentation of the log is particularly effective
if a large proportion of transactions finish execution
before their log records reach the head of generation
0; none of their records are forwarded to generation
1 and their disk space can quickly be reclaimed for
more incoming log records. Only a small proportion
of log records, from transactions with longer lives, are
forwarded to subsequent generations.

Recirculation in the last generation means that the
physical order of its records no longer necessarily cor-
responds to the temporal order in which they were
originally generated. We assume that all log records
are timestamped, so that the recovery manager can es-
tablish the temporal order of the records. A recovery
method for EL is described in [9].

A cell exists for every non-garbage record in any
generation of the log. Each cell resides in main mem-
ory and points to the record’s location on disk. The
cells corresponding to each generation are joined in
a doubly linked list. The linked list “wraps around”
in a circular manner; the cells at the head and tail
have right and left pointers to each other, respectively.
For generation i, pointer h; points to the cell for the
non-garbage record nearest the head. There is no tail
pointer for the generation, but the cell for the non-
garbage record nearest to the tail can be found quickly
by following the right pointer of the cell pointed to by
h;.

There are two types of log records. Data log records
chronicle changes to the contents of the database (cre-
ation, modification or deletion of data objects). Trans-
action (iz) log records mark important milestones
(e.g., begin, commit or abort) during the lives of trans-
actions. The logged object table (LOT) has an entry for
every data object which has at least one non-garbage
data log record somewhere in the log. Likewise, the
logged transaction table (LTT) has an entry for every
transaction with a non-garbage tx log record. Cells for
an object’s non-garbage data log records are accessible
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via its LOT entry. Similarly, cells for a transaction’s
tx log records are associated with its LTT entry. Al-
though cells belong to these two different tables, they
may nonetheless simultaneously belong to the same
doubly linked list.

Figure 2 illustrates the most important aspects of
the data structures for EL. The LOT and LTT, with
their constituent cells, reside in RAM. Other internal
details of the LOT and LTT have been omitted; the
circular doubly linked lists of cells are the important
aspect of the LOT and LTT in this figure.
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Figure 2: Data Structures for Ephemeral Logging

The log is managed as write-only disk storage. At
any given time, the LM can determine whether the
record at the head of generation i is non-garbage by
checking if h; points to its head; if not, the LM can
safely conclude that the record is garbage. When a
record must be forwarded to the tail of generation i+1,
the LM writes its contents to disk at the tail of gen-
eration i+1. Its cell, ¢, is updated to point to its new
position in the log and is transferred from the circu-
lar linked list for generation ¢ to the circular linked
list for generation i+1. Pointer h; is updated to point
to the cell previously to the left of ¢, if such a cell
exists for generation ¢; otherwise, h; is set to NULL.
If h;4; was NULL immediately before the record was
forwarded, then it is updated to point to ¢ (and ¢’s
left and right pointers point to itself). Recirculation
in the last generation is handled similarly, although it



may occasionally be necessary to kill a transaction if
one of its log records cannot be recirculated because
of an absence of space in the last generation.

After addition of new records to the tail of a gen-
eration, the LM advances the head (by forwarding,
flushing or discarding records) so that there is always
some gap between the head and tail in the circular ar-
ray of disk space. This unused disk space is available
to hold incoming records at the tail.

2.2 Pragmatic Details

Two characteristics of current disk technology ex-
ert an important influence on the implementation
of EL. Information is written to disk in fixed sized
blocks (with each block typically some multiple of 1024
bytes). Sequential disk I/O is faster than random
disk I/O. The technique introduced above must ac-
commodate the constraint of fixed sized disk blocks,
and ought to take advantage of the performance ben-
efits of sequential I/0.

Suppose that each disk block is of size B bytes. The
LM has a pool of buffers, each of size B bytes. At any
given time, there is a current buffer for generation 0.
New log records are added to this buffer until it is
full, at which time it is written to disk and a differ-
ent buffer becomes the current buffer3. The collection
of disk block locations for a particular generation are
continually written in the same cyclic order. The head
and tail pointers for a generation indicate only block
locations; they do not point to more precise locations
within a block. Similarly, a cell indicates merely the
block to which its record belongs. This coarse resolu-
tion for pointers suffices for implementation of EL.

The movement of head and tail pointers in block
sized quanta has implications. When the head of a
generation is advanced to a new block, the LM must
deal with all log records in this block. Some are for-
warded, some flushed, and others discarded. Suppose
that several log records are forwarded from genera-
tion i to generation i+I. These records are added to
an empty buffer and are generally insufficient to fill
the buffer but the LM must ensure that the forwarded
records are immediately written to disk. Therefore,
it attempts to fill the buffer as full as possible before
writing it. After forwarding records from the block
at the head of generation z, the LM works backward
from the head to gather enough other non-garbage log

3Several buffers are necessary because a disk write generally
requires a significant amount of time, such as 10 ms, during
which many other log records may arrive. While one buffer is
being written to disk, new records can be added to a different
buffer without risk of interference.
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records to fill the buffer that is destined for the tail
of generation i+1. In summary, the requirements of
generation i dictate that records be removed from its
head in quanta of size at least a block. The require-
ments associated with forwarding records to the tail
of generation i+1 imply that records are forwarded as
a group from the first several blocks at the head of
generation .

Recirculation is not as complicated. The LM can
remove records from only the block at the head of
the last generation and place them in a buffer without
immediately writing it to disk. The existing copies of
these records will not be overwritten until after the tail
has advanced, but the recirculated records will belong
to the disk block written at the tail.

The introductory explanation of EL in section 2.1
suggested that committed updates are flushed to the
stable version of the database kept elsewhere on disk
when their log records next reach the head of a gen-
eration. In general, there is negligible locality of ac-
cess between the updates of independent transactions.
Flushing updates in the order that they are written to
the log would lead to random disk I/O. Instead, the
LM attempts to schedule flushes so that it can take ad-
vantage of locality in the disk version of the database
and thus improve I/O performance. At any given time,
there should be a significantly large number of com-
mitted updates from which the LM can choose the
next object to be flushed; toc small a “pool” of up-
dates leads to random I/O. The LM can flush a data
log record’s update to disk any time after its trans-
action has committed. Flushing can proceed contin-
uously at as high a rate as possible; it is no longer
triggered by the arrival of a new block at the head of
a generation. After the LM flushes an update from a
data log record, the record becomes garbage. Ideally,
every committed update is flushed before it arrives
at the head of its generation so that records at the
head of any generation are either forwarded (or recir-
culated) or thrown away. In practice, a few may reach
the head of a generation and require flushing; there
will be a small amount of random I/0O, but much less
than for the naive approach originally described. Al-
ternatively, we can keep an unflushed update’s record
in the log by forwarding or recirculating it until the
update 1s eventually flushed.

As before, the LM continues to ensure that there
is always enough of a gap between the head and the
tail of every generation. Now, this gap is measured in
terms of available disk blocks.

The circular linked list of cells for generation 1 is still
managed according to the description in section 2.1.



The h; pointer keeps track of the non-garbage log
record nearest the head of generation i. The h; pointer
points to a cell; it does not (directly) point to the
block nearest the head which contains at least one non-
garbage record.

2.3 Management of the LOT and LTT

The LOT and LTT keep track of all non-garbage log
records. The LM updates them on a continual basis
as records enter the log and progress through it.

When the DBMS initiates a new transaction, it
sends a BEGIN record to the log. In response, the LM
adds the BEGIN record to a buffer which will be writ-
ten to the tail of generation 0, creates a cell to point
to the record and creates a new entry in the LTT.
Even though the LM has not yet written the buffer to
disk, it knows the position of the disk block to which
it will eventually be written. The cell’s pointer to the
record’s position in the log consists of the address of
this disk block. The LTT entry for the transaction
points to the cell. Additionally, each LTT holds a set
of object identifiers (oids) to keep track of which ob-
jects were updated by the transaction; this set is ini-
tially empty and grows as the transaction progresses
and performs work. Entries in the LTT are associa-
tively accessed using transaction identifiers (#ids) as
keys. A hash table implementation is therefore appro-
priate. The dynamic nature of the LTT strongly sug-
gests that chaining [2] (rather than open addressing)
is the most suitable technique for collision resolution.

We assume that only the most recent tx log record
is ever required for any transaction; all earlier tx log
records are garbage. Throughout the time that a
transaction has an LTT entry, there is one cell which
points to its most recent tx log record. Whenever
a transaction writes another tx log record (such as
COMMIT), the LM adds it to the log (at the tail of gen-
eration 0) and updates the cell for the transaction’s
previous tx log record to point to the disk block of
this newest record?.

The LOT is accessed associatively by object identi-
fiers (oids). Like the LTT, it is implemented as a hash
table with chaining. An object’s LOT entry has one or
more cells, each of which points to the disk block of a
non-garbage data log record for the object. An object
has a cell for the most recently committed update (if
any) if this update has not yet been flushed; it may
have several cells for uncommitted updates.

Whenever a transaction modifies an object in the
database, it sends a data log record to the log. If an

4The cell is also transferred from its previous doubly linked
list of cells to the tail of the doubly linked list for generation 0.
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entry does not already exist for the object in the LOT,
the LM creates one. The LM creates a cell to point to
the data log record’s block in the log, adds it to the set
of cells maintained in the object’s LOT entry, inserts
the cell in the doubly linked list for generation 0 and
adds the object’s oid to the set of oids in the LTT
entry of the transaction which performed the update.

Every transaction eventually commits or aborts.
An abort is easy to handle. All data and tx log
records from an aborted transaction immediately be-
come garbage; the cells which pointed to these records
are disposed. The transaction’s LTT entry is deleted.

When a transaction commits, the LM updates its tx
log record cell to point to the COMMIT record in the log
and processes the set of oids in its LTT entry. For each
oid, the LM retrieves the object’s LOT entry. If a data
log record for an earlier committed update existed, it
is now garbage; its cell is removed from the object’s
LOT entry and disposed. The current transaction’s
most recent update now becomes the most recently
committed update for the object.

After the LM flushes an update to the disk ver-
sion of the database, the associated data log record is
garbage. The LM removes the cell for this record from
the object’s LOT entry and disposes it. If the set of
remaining cells is empty (i.e., the object no longer has
any non-garbage data log records in the log), the LM
deletes the object’s entry from the LOT.

Whenever a data log record becomes garbage and
its cell is disposed, the oid is removed from the LTT
of the transaction which originally wrote the record.
When the set of oids in a committed transaction’s LTT
entry is empty, the LM disposes the cell for the trans-
action’s most recent tx log record (because the record
is garbage) and removes the transaction’s entry from
the LTT.

To summarize, every object with non-garbage data
log records in the log has an entry in the LOT. An
object’s LOT entry keeps track of the positions within
the log of its non-garbage data log records. There is an
LTT entry for every transaction currently in progress
and every committed transaction which still has non-
garbage data log records. A transaction’s LTT entry
keeps track of all objects which it updated and the
position within the log of its most recent tx log record.
The LM continually updates the LOT and LTT to
reflect the current state of the system as transactions
and log records come and go. At any given time, the
cells associated with the LOT and LTT entries point
to all non-garbage records in the log.



3 Simulation Environment

We have implemented an event-driven simulator to
study EL. The simulator is written in C and runs on
SPARCstations. The user can specify the following
input parameters:

pdf:
arrival rate:
flush rate:

statistical mix of transactions
rate of transaction initiation
for flushing committed updates

generations:  the number and size of generations
recirculation: flag to turn circulation on or off
runtime: duration of simulated time span

The user specifies an arbitrary number of differ-
ent transaction types and their probability distribu-
tion function (pdf). For each type of transaction, the
user states the probability of occurrence, the duration
of execution, the number of data log records written
and the size of each data log record. This transac-
tion model is graphically represented in Figure 3 for a
transaction that generates two data log records.

choose write first write last
tx type data log data log
l rcc([rd record
fo Y ty 13 1, time
write BEGIN write COMMIT
log record log record
tx commits

Figure 3: Simulation Transaction Model

Whenever a new transaction must be initiated, the
simulator randomly (according to the pdf) selects its
type. After choosing its type, the simulator schedules
when its log records will be written. The BEGIN tx log
record is written immediately after it is initiated (at
time ?9). The data log records are written at equally
spaced intervals, with the last being written only some
short time € (equal to t3—t3) prior to completion. Sup-
pose that the transaction’s lifetime (specified as part
of its type) is T'. It will finish execution and write a
COMMIT tx log record (at time t3) 7" seconds after it
started. Its last data log record is written (at time t3)
T — € before it finishes, and each data log record is
written (T — €)/N after the preceding one, where N
is the number of data log records written by a trans-
action of this type. After writing the COMMIT record,
the tranmsaction waits for acknowledgement (at time
t4) from the LM before it actually commits; this delay
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occurs because the LM waits until a buffer is almost
full before writing it to disk at the tail of generation
0, and then there is some delay (typically 10 to 20 ms)
for transferring the contents to disk.

Transactions are initiated at regular intervals, ac-
cording to the specified arrival rate (transactions per
second). We believe that this simple, deterministic ar-
rival pattern is sufficient for a first order evaluation of
EL. More complicated probabilistic models (such as
Markov arrivals) may be investigated in future work.

We do not model feedback in the transaction
scheduling. In reality, the performance of the database
system may affect the rate at which new transactions
are submitted for execution, the times at which they
write records to the log and their duration. The de-
tails of this arrival mechanism are beyond the scope
of this paper.

Whenever a transaction writes a data log record, we
randomly pick some integer for the oid, subject to the
constraint that the number has not already been cho-
sen for an update by a transaction which is still active.
The set of integers from which an oid can be chosen
consists of all integers from 0 up to NUM_OBJECTS-
1, where NUM_OBJECTS is the total number of ob-
jects (a fixed value).

To control the rate at which updates are flushed,
the user specifies some number of disk drives and the
time required to write a block to any of these drives.
We assume that there can be at most one request
at a time for any particular drive. The user can in-
crease the maximum rate at which updates are flushed
by increasing the number of drives or decreasing the
time to write a block to any drive. The objects are
range partitioned [3] evenly over these drives. That
1s, for NUM_OBJECTS objects and D drives, the first
NUM.OBJECTS/D objects® reside on drive 0, and so
on. We assume that each updated object requires a
separate disk write (i.e., there is negligible locality of
updates within a disk block). Each disk drive attempts
to service pending flush requests in a manner that min-
imizes access time. In our simulator, we assume that
the difference between two objects’ oids corresponds
to their locality on disk. When calculating the differ-
ence between two oids, we assume that the range of
integers assigned to their disk drive wraps around.

The user specifies the number and size (number of
disk blocks) of each generation. The size of each disk
block is fixed in the simulator.

In some experiments, we examine the behavior of
EL without recirculation in the last generation, just so

5For simplicity, we ignore the case where NUM_OBJECTS
is not a multiple of D.



that we can see the effect of simply segmenting the log.
There is an input flag to specify whether recirculation
in the last generation is turned on or off. If recircu-
lation is disabled and a transaction’s non-garbage log
record reaches the head of the last generation while it
is still executing, the LM kills the transaction.

Several parameters are fixed. The delay ¢ between
the writes for the last data log record and the COMMIT
tx log record for a transaction is fixed at 1 ms. The ca-
pacity of each disk block is 2000 bytes®. At any given
time, at least k& blocks must be available to hold new
log records. This threshold distance is currently fixed
at k=2 blocks. Four disk block buffers (2048 bytes
each) are provided for each generation. The BEGIN
and COMMIT tx log records are assumed to both re-
quire 8 bytes. We conservatively assume a fixed delay
of Tpisk_write=15 ms to transfer a buffer’s contents to
disk when writing out records to the tail of the log.
The simulator uses the group commit technique [1];
a log record is not written to disk until its buffer is
as full as possible. Therefore, the delay between the
time a record is added to a buffer and the time it is
written to disk is generally longer than Tpisk_write.
The number of objects in the database is fixed at
NUM.OBJECTS=10".

4 Experimental Results

We ran several experiments to observe the behavior
of EL and understand the effects of varying different
parameters. We also simulated the traditional FW
technique by using a single log with no recirculation
and compared the results of EL to those of FW. We did
not implement a checkpoint facility for the FW tech-
nique; the firewall was always the oldest non-garbage
log record from the oldest active transaction. This
omission favors FW because it ignores the overhead
(in terms of disk space and bandwidth) associated with
checkpointing.

We consider several evaluation criteria. Disk space,
disk bandwidth (in terms of block writes per second)
and RAM requirements (for the LOT and LTT) are
the main criteria we examine. We also try to estimate
the degree to which disk I/O is random or sequential.
Another important consideration is how fast recovery
time is after a crash. We do not simulate recovery so
we cannot cite any quantitative results. However, it
is generally true that recovery time is proportional to

6 A block size of 2048 is typical, but we assume 48 bytes are
reserved for bookkeeping purposes and so only the remaining
2000 bytes are available to hold log records.
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the amount of log information and so less disk space
means faster recovery.

For all experiments, we considered two transaction
types. The first is of 1 s duration and writes 2 data log
records, each of size 100 bytes. The second lasts 10 s,
in which time it writes 4 data log records of size 100
bytes each. These are characteristic of transactions for
many common interactive applications. Most trans-
actions are relatively short and modify only a small
amount of the database. Other transactions are more
complex and so they take longer to execute; they may
also update more objects in the database. We vary
the relative frequencies with which these two types of
transactions occur.

The arrival rate was 100 TPS (transactions per sec-
ond) and the simulation time was 500 s for all experi-
ments. All tests of EL used two generations.

As the fraction of 10 s transactions increases from
5% to 40%, the average number of updates per second
rises from 210 to 280. To provide sufficient bandwidth
for flushing updates, we specified 10 disk drives with
a transfer time of 25 ms (net bandwidth is 400 flushes
per second). The conservative 25 ms time allows for
some read operations to be interspersed with writes.

We estimate that the FW method requires 22 bytes
for each transaction (including a pointer to the po-
sition within the log of its oldest log record) in the
system. The EL method requires 40 bytes for each
transaction and 40 bytes for each updated (but un-
flushed) object.

Figure 4 plots the disk space requirements (number
of blocks) versus the transaction mix for both FW and
EL. Recirculation in the last generation is disabled for
EL, so that we can assess the effect of simply segment-
ing the log. For both FW and EL, we continued to
run simulations and reduce the disk space until we ob-
served transactions being killed. Hence, these results
reflect the minimum disk space requirements to sup-
port 500 s of logging activity in which no transaction
1s killed. The corresponding graphs of disk bandwidth
(to only the log) and main memory requirements for
these tests are shown in Figures 5 and 6, respectively.

The advantages of EL are most apparent for the 5%
mix. It reduces disk space by a factor of 3.6 with only
an 11% increase in bandwidth; memory requirements
are modest. As the proportion of 10 s transactions
increases, EL’s relative advantage over FW diminishes.
The reduction in disk space is not as large, but the
increase in bandwidth is greater.

We enabled recirculation in EL’s last generation
and progressively decreased its size until we observed
transactions being killed. For all tests, we used the
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same mix of 5% 10 s transactions. The size of the
first generation remained fixed at 18 blocks (for which
the minimum space was obtained in the case of no
recirculation). Figure 7 plots the bandwidth to the
last generation” and the total overall logging band-
width (both generations) as the size of the last gener-
ation is varied. The amount of space required for EL
decreases from 34 to 28 blocks, while bandwidth in-
creases from 12.87 to 12.99 writes/sec (main memory
consumption is unchanged since the number of non-
garbage log records is the same). Compared to the
FW case of 123 blocks and 11.63 writes/sec, these re-
sults for EL constitute a factor of 4.4 reduction in disk
space and a 12% increase in bandwidth.

We point out that 28 blocks of 2 KBytes each can

"The first generation has the same bandwidth as before.
Only the second generation experiences increased bandwidth,
because of the recirculated records.
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all fit in the main memory of many workstations with
lots of room to spare. The traditional two pass (undo,
redo) recovery method [1] that was appropriate for
databases with large logs and small main memories is
no longer appropriate. Now, we can read the entire log
into memory and perform recovery with a single pass
[9]. Recovery in less than a second may be feasible.
To see how EL performs when bandwidth for flush-
ing is scarce, we increased the flush transfer time
to 45 ms so that the 10 disk drives together pro-
vide a maximum bandwidth of 222 writes per sec.
For a transaction mix with 5% 10 s transactions, the
database is updated at an average rate of 210 objects
per second. Familiarity with queueing theory suggests
that a backlog of unserviced flush requests will ac-
cumulate as the flushing service rate approaches the
rate of new arrivals. Under these circumstances, EL
with recirculation requires 31 disk blocks (20 and 11



in generations 0 and 1, respectively) and a bandwidth
of 13.96 writes per sec. Unflushed committed updates
are recirculated in generation 1 until they are eventu-
ally flushed, but the extra disk space and bandwidth
are not prohibitive. The average distance between oids
of successively flushed objects is now 109,000. Com-
pared to the average of 235,000 which we observed for
previous tests when the transfer time was 25 ms, this
indicates a significant increase in locality. As a back-
log accumulates, disk 1/O for flushing becomes less
random and more sequential. This negative feedback
provides some stability. We conclude that EL is suit-
able when flushing bandwidth is scarce.

5 Related Work

EL essentially performs log compression as it passes
records from one generation to the next. It filters out
records which are no longer needed and keeps only
those records that would be required if a crash were
to suddenly happen. The continuous nature of EL dis-
tinguishes it from previous log compression methods
[8, 6]. These earlier methods are intended for “batch
mode” log compression; records cannot be added to
the existing log while it is being compressed. EL em-
ploys very different techniques to perform log compres-
sion.

The idea of segmenting a fixed amount of storage
space into several temporal generations for the pur-
poses of garbage collection is not new. Lieberman
and Hewitt [10] adopt such a strategy when there are
more general reference patterns amongst a dynami-
cally varying collection of objects held in main mem-
ory. However, a review of the literature reveals no
prior pursuit of a similar strategy for the management
of disk space for a database system’s log.

Rosenblum and Ousterhout [11] use some similar
ideas in the log-structured file system (LFS). The LFS
adds all changes to data, directories and metadata to
the end of an append-only log so that it can take ad-
vantage of sequential disk I/O. The log consists of sev-
eral large segments. A segment is written and garbage
collected (“cleaned”) all at once. To reclaim disk
space, the LFS merges non-garbage pieces from several
segments into a new segment; it must read the con-
tents of a segment from disk to decide what is garbage
and what isn’t. There is a separate checkpoint area
and the LFS performs periodic checkpoints. The LFS
takes advantage of the known hierarchical reference
patterns amongst the blocks of the file system during
logging and recovery.
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Hagmann and Garcia-Molina [7] propose recircula-
tion of log records from long lived transactions within
an unsegmented (i.e., single generation) log. Records
to be recirculated must be read from disk. Their
method still relies on checkpoints.

6 Concluding Remarks

This paper has presented a quantitative evalua-
tion of ephemeral logging and demonstrated that it
has clear advantages over the established firewall tech-
nique for some applications. EL can significantly re-
duce the amount of disk space required to retain log
information when a small proportion of transactions
have relatively long lifetimes. The smaller this pro-
portion and the longer the lifetimes, relative to other
transactions, the greater is the reduction in disk space.
The benefits of reduced disk space for the log are
twofold. First, it reduces the cost for a system. Sec-
ond, recovery time after a crash is expected to be much
shorter because there is less log information to process.
The cost of EL is higher disk bandwidth for manag-
ing log information and greater main memory require-
ments. The amount of extra bandwidth required by
EL decreases as the fraction of long-lived transactions
decreases. ’

We originally formulated EL for a database which
retains a version number timestamp with each object.
For the more general case of no timestamps in the
database, a broader definition of non-garbage records
is required to ensure correct recovery; some log records
may need to wait longer before becoming garbage.

EL challenges the conventional wisdom that check-
points are an inherent necessity for any logging al-
gorithm. By offering continuous logging service, EL is
particularly well suited for highly concurrent database
systems, in which checkpointing is expected to be
much more awkward than for sequential systems.

There are some situations in which the FW tech-
nique is better than EL. When all transactions are
approximately the same duration and checkpoints do
not impose significant overhead, the FW technique re-
quires no more disk space than EL, but it consumes
less bandwidth and main memory. Therefore, EL and
FW should be regarded as two alternative design tech-
niques available to database system designers.

EL provides fault tolerance to system failures [1],
in which the contents of main memory are lost. We
assume that main memory is large enough to buffer the
original and updated values for all objects which an
active transaction has modified, and so a transaction



failure can easily be handled without needing to read
anything from disk. Previously known techniques [4,
5, 1] for archiving continue to provide fault tolerance
to media failures in which some information on disk is
irretrievably lost.

Implementation of EL requires significant control
over the management of information on disk. The
DBMS must have control over a set of disk blocks
which are dedicated for the log. The DBMS chooses
when new contents are written to any of these blocks.
Not all operating systems provide such a high degree of
control over “low level” I/O. Stonebraker [12] wrote an
excellent critique of the shortcomings of existing oper-
ating systems and file systems, from the viewpoint of a
DBMS designer. We add our support to Stonebraker’s
criticisms, and we encourage operating system design-
ers to heed the needs of DBMS designers.

The optimal number of generations and their sizes
depends on the application. We cannot offer any prov-
ably correct analytical methods as tools to a database
administrator (DBA) who must specify these parame-
ters when a system is configured. Ideally, we would like
an adaptable version of EL that dynamically chooses
the number and sizes of generations itself.

Another promising avenue of investigation is a pos-
sible EL-FW hybrid scheme. Like EL, the log is seg-
mented into a chain of FIFO queues. Like FW, a fire-
wall is maintained for each queue; The oldest non-
garbage record in a queue is its firewall. Now, the
LM retains a pointer to only the oldest log record
from each transaction. This can drastically reduce
main memory consumption if each transaction updates
many objects, but at a price of higher bandwidth.
When a transaction’s oldest non-garbage log record
reaches the head of one queue, all of its log records
must be regenerated and added to the tail of the next
queue because the LM does not have pointers to know
their whereabouts in the current queue.

Suppose the transaction manager can estimate the
expected lifetime of a transaction when it begins (for
example, the type of the transaction may indicate its
expected duration). The LM might exploit this in-
formation to reduce bandwidth. Rather than letting
the transaction’s records progress through successively
older generations, it directly adds the transaction’s log
records to the tail of a generation in which the records
are unlikely to reach the head before the transaction
finishes. This technique would be particularly benefi-
cial in conjunction with the hybrid EL-FW approach
described in the previous paragraph.
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