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A big dichotomy in data system design is the column-
vs. row-stores one. The first supports analytical, and
the latter transactional workloads. There have been sev-
eral efforts to bridge the two, especially in light of new
hybrid transactional analytical processing workloads.

For example, SAP HANA [11] and Oracle TimesTen
[8] use in-memory column-stores to offer efficient ana-
lytical processing and employ a row-wise write-store to
support ACID transactions. MemSQL uses a row-store
for data ingestion in memory, and writes columns on
disk to reduce future I/O [13]. IBM dashDB is a hybrid
store that supports mixed workloads [4]. Academic sys-
tems [2, 3, 9] also combine columnar and row-wise ar-
chitectures. They all require conversions between row-
wise and columnar formats, and, hence, they have to
balance between efficient analytics and data freshness.
What if we had a way to decouple the physical data

layout from the data access performance?

In other words, what if we could store any layout L1, and
ship through the memory hierarchy any layout L2, trans-
parently converting rows to columns and vice versa? We
now have two fundamental questions: (a) how to offer
such transparent data transformation? (b) once we have
it, how to change the data system’s architecture? In this
short note we focus on the first challenge.

Data movement is one of the biggest inefficiencies in
computing [5], so the initial motivation of column-stores
is to avoid unnecessary column accesses. Row-wise lay-
outs allow transactional workloads to ensure update and
insert locality and avoid updating multiple locations.

In an in-memory system, we can address both these
requirements with a smart memory controller that im-
plements projection and offers access to arbitrary groups
of columns. As Moore’s law is slowing down, domain-
specific accelerators are becoming viable in the long run
[6], hence, we envision to embed a light-weight verti-
cal partitioner in the memory c ontroller to on-the-fly
project arbitrary groups of columns. This controller will
have access to a much higher bandwidth than what is ex-
posed to the processor, as it will be able to exploit in full
the parallelism of memory chips. The query processor

can decide at compile-time the optimal layout for each
query and request it from the memory controller. From
the software side, a special type of ephemeral variables
can act as pointers to virtual hybrid layouts (similar to a
non-materialized view). Accessing them would start the
projection machinery and propagate through the cache
hierarchy the desired layout without creating a physical
copy in main memory. This vision has similar motiva-
tion with disaggregated memory [10], however, it aims
to build local smart memory, that can also allow cloud
systems to access disaggregated smart memory.

Similarly, in a disk-based system, we can address these
challenges by pushing projection to storage and send up
the memory hierarchy the desired data layout for each
query. By employing modern devices like smart SSDs
[7], we can implement in-storage custom logic to verti-
cally partition data. Analytical queries will access read-
only versions of their optimal layout without creating
permanent copies in memory. Updates will access row-
oriented base data, and existing read-only versions of
columns will be invalidated when relevant updates are
received and old queries complete. Pages with column
projections are marked as read-only, while pages with
full rows are marked as read/write. The two levels of
transparent data transformation can work synergistically.
How to achieve this? Building an FPGA prototype mem-
ory controller requires collaboration between data man-
agement and hardware researchers [1]. Near-data exe-
cution of relational operators [14] using programmable
logic in the middle [12] will use an on-the-fly column
extractor which compacts the useful data and ships it
through the cache hierarchy. Ultimately, our goal is to
build new memory and disk controllers to offer trans-
parent data transformation.
What is next? If a query can consume data with the
ideal layout, how should query optimization change?
What about heuristics, like pushing selection? Can this
be extended to allow for efficient access in arbitrary slices
of tensors and matrices? This vision will fuel strong
interaction between data management, hardware, pro-
gramming languages and software engineering.
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