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A b s t r a c t :  This paper describes a parallel database load 
prototype for Digital's Rdb database product. The prototype 
takes a dataflow approach to database parallelism. It 
includes an explorer that discovers and records the cluster 
configuration in a database, a client CUI interface that 
gathers the load job description from the user and 'from the 
Rdb catalogs, and an optimizer that picks the best parallel 
execution plan and records it in a web data structure. The 
web describes the data operators, the dataflow rivers among 
them, the binding of operators to processes, processes to 
processors, and files to discs and tapes. This paper describes 
the optimizer's cost-based hierarchical optimization strategy 
in some detail. The prototype executes the web's plan by 
spawning a web manager process at each node of the cluster. 
The managers create the local executor processes, and 
orchestrate startup, phasing, checkpoint, and shutdown. The 
execution processes perform one or more operators. Data 
f lows among the operators are via memory-to-memory 
streams within a node, and via web-manager multiplexed 
tcp/ip streams among nodes. The design of the transaction 
and checkpoint/restart mechanisms are also described.  
Preliminary measurements indicate that this design will give 
excellent scaleups. 
1. Introduction: The Parallel Imperative 
Technology and economic trends encourage us to build 
computers as processor-arrays, disk-arrays, tape-arrays, 
and communication-line arrays. We call such an array, a 
cluster. Clusters are a challenge to program. Current 
programming languages and techniques are geared to step- 
by-step algorithms. Clusters require parallel algorithms. 
Both the scientific and commercial  communit ies  are 
struggling to develop such new programming styles. 
Some applications, like file service or online transaction 
processing, have natural parallelism. The applications 
consist of many small jobs operating against a common 
database. Over the last decade we have learned how to 
scale up such applications so that processor and disk arrays 
can service a hundred thousand users (clients) [Serlin]. 
The unifying concept has been the notion of a transaction: 
an atomic unit of  work that executes independently of  
concurrently executing tasks -- giving the programmer the 
ACID properties (atomicity, consistency, isolation and 
durability). This allows programmers to write step-by-step 
algorithms, without concern for concurrency issues that 
parallel execution creates. 

Current address: 
~: Microsoft, One Microsoft Way, Redmond, WA 98052-6399. 

{ tbarclay, rbarnes } @ microsoft.com. 
1 310 Filbert St., S.F., CA 94133. gray@crl.com. 
$ Informix, 921 SW Washington St. # 670, Portland, OR 97205. 

psundaressan@informix.com. 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed 
for direct commercial advantage, the ACM copyright notice 
and the title of the publication and its date appear, and notice 
is given that copying is by permission of the Association of 
Computing Machinery. To copy otherwise, or to republish, 
requires a fee and/or specific permission. 

There have been notable success :in building systems that 
execute a single large database tasks on a cluster. Teradata 
[Teradata] ,  the Japanese  5th Gene ra t ion  pro jec t  
[Kitsuregawa 1, 2], the University of Wisconsin [DeWitt 
1], and Tandem [Englert] demonstrate batch scaleup to 
large clusters. Oracle, Informix, NCR, Sybase and IBM 
all have ambitious parallel databae efforts underway. 
Paral lel  onl ine t ransact ion process ing  sys tems are 
commonplace Parallel database systems have not had 
comparable success. They were ahead of their time -- the 
imperative for processor and disk arrays is just  arriving. 
The technology of terabyte disk farms and 100 processor 
arrays not only allows parallel  database access,  the 
technology requires parallel data access. Hundred dollar 
per gigabyte disks allow very large online databases.  
These databases must be accessed in parallel. Scanning a 
terabyte at single-disk speed or single-processor speed will 
take days. Parallel access gives speedups of  100x or 1000x 
- turning a one-year task into an eight-hour job. 
Figure 1 diagrams a cluster - a hundred-processor ,  
hundred-tape, thousand-disk system. We bel ieve such 
computers will cost less than a million dollars within ten 
years. Users will have so many components  that one 
cannot program the individual  processors  and disks 
individually -- rather the system must automatically decide 
where to place data and computation within the cluster. 
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F i g u r e  1: The cluster (processor, disk, tape array) we 
designin 9 for. We believe such clusters will be the typical 
way large servers are built in the future. Each node has a 
few (less then 10) processors sharing a common memory 
of a gigabyte or so. Next in the storage hierarchy is a pool 
of discs, each served by a processor. Tape robots form the 
base  of the storage hierarchy. All the components of the 
cluster have a high-speed interconnect (GB/s point-to-point) 
and a slower extema network. 
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How can we program a cluster? The database community 
has adopted a dataflow approach to describing and 
implementing parallel algorithms. In this approach, data 
resides in files or databases on many disks, tapes, or other 
memory devices. Algorithms search subsets of this data, 
and either deposit their answers on target storage devices, or 
return their answers to an array of  application programs. A 
dataflow algorithm is described as a directed graph. 
Graph nodes, called operators, are sequential programs. 
Each operator reads its input record streams (dataflows), 
transforms the data, and produces one or more sequential 
output record streams. The operator is programmed as a 
purely sequential program in a conventional programming 
language (COBOL or FORTRAN or C). The edges of  the 
graph show the dataflows among operators. Storage (disks, 
tapes) and application programs are data sources and sinks 
in the graphs. 
The simplest dataflow graph is a pipeline, in which each 
operator takes in a stream of  data, operates on it, and then 
passes it downstream (see Figure 2). Pipeline parallelism 
gives modest speedups because the pipeline is rarely very 
long: a pipeline of  four operators gives at most a four-fold 
speedup. Partitioning the data streams and cloning each 
operator gives partition parallelism. If  the data  is 
parti t ioned among a thousand disks, a thousand-fold 
partitioning can give a thousand-fold speedup. Partition 
parallelism has huge payoffs -- especially as technology 
gives more and more disks and processors per dollar. 

Pipeline Parallism Partition & Pipeline Parallism 

Figure 2: Two kinds of parallelism. (1) Pipeline parallelism 
has a sequence of operators operating concurrently, 
processing a single data stream. (2) Partition parallelism 
clones each operator of the pipeline and splits the data 
streams into many disjoint streams. Each of these streams 
is fed to a different operator. The pipeline in the left figure 
I gives at most a three-fold speedup, the partition at the right 
i~ives at most a fifteen-fold speedup/3x5}. 
Relational databases are ideally suited to a dataflow 
approach. Relations are uniform collections of data. 
Relational operators consume one or more relations and 
produce a new relation. Certain operators like GROUP-BY 
and SORT do not produce pure relations, but they do 
produce uniform data streams. So relational operators are 
naturally pipelined, and the data streams are easily 
partitioned. 
Figure 2 is a little vague. Each scan operator can certainly 
read a single input stream. But, what if the output records 
of  a particular filter operator are destined for different 
insert operators. For example, what if the filter is a sort 

operator. Then "high" records should go to "high" insert 
operators and "low" records should go to "low" insert 
operators so that the concatenation of  the resulting file 
partitions is indeed a sorted file. 
The Gamma and Volcano systems developed a way to 
transparently partition data streams among operators. We 
refined those ideas with the following terminology. A data 
stream is partitioned when either or both of  the source and 
destination operators are cloned to get partition parallelism. 
If the source is cloned N ways and the destination is cloned 
M ways, then there are NxM streams. We call the resulting 
set of data streams a dataflow river. Rivers are analogous 
to Gamma ' s  spli t  tables [DeWit t  1] and Volcano ' s  
exchange operators [Graefe]. 
Figure 3 shows a dataflow with the source operators 
partitioned two ways and the sink operators partitioned 
three ways. Each source operator dumps records into the 
river and each sink operator takes records out of  its 
9artition of  the river. Each is unaware that the river is 
~artitioned into six streams. 

P i p e l i n e  P a r t i t i o n  

@ @ @ 

Figure 3: When operators are cloned, dataflows are 
partitioned. The partitioned dataflow, called a river, is 
composed of many point-to-point data streams. Source 
operators put records into the river. The river has a split 
table at each source that designates which sink operator 
(stream) the record should be sent to. Splits can be based 
on record key ranges, key hashes, on round-robin, or can 
replicate records. Sink operators have merge boxes that 
combine all incomin~l streams into a sin~lle stream. 
River partitioning is based on a split-table. All the streams 
of a river have the same split table. As the name suggests, 
when a record is inserted into a river, the river program 
uses the split table to pick a destination stream for the 
record. The river program first extracts field values from 
the record. Then it compares these values to values in the 
split table to pick a destination stream. The split table can 
be a range-partitioning, a hash partitioning, a round robin, 
or even a replication (in which input records are sent to all 
sink operators), 
This discussion gives a sense of the database community 's  
approach to parallelism. Almost  every database vendor 
has a parallelism project based on these ideas. All believe 
that parallel database systems will be a major trend over 
the next decade. In 1992 we started an advanced-  
development project to adapt known parallel database 
techniques to Rdb, Digital  Equipment  Corporat ion 's  
database system. We were surpr ised to find that 
considerable research and innovation was needed to apply 
the techniques we thought were well understood. We 
encountered issues that we had never seen discussed 
before. This paper documents most of  these issues and the 
approaches we took to them. 
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2. Goals and Approach 
Our initial approach was to adapt the techniques used by 
Teradata, Gamma, and Tandem to Digital 's  Rdb. We 
wanted to build the infrastructure to execute parallel  
programs,  and to bui ld  some ut i l i t ies  using that 
infrastructure. The implementation was to be portable 
among several operating systems (OpenVMS, OSF/I ,  and 
NT). This was a four-person effort separate from the Rdb 
development  group -- so we focused on bui lding a 
prototype that could later be integrated with Rdb. The 
prototype did not modify Rdb, but rather ran as an 
application. That integration is now in progress. 
We designed for processor clusters accessing many disks 
and tape drives. Each node of  the cluster is a shared- 
memory mult i -processor  with a large RAM memory.  
Nodes of  the cluster  are interconnected by a high- 
bandwidth (multi-gigabit/second) interconnection network. 
Each processor can directly access a subset of the disks and 
tapes. Typically, disks and tapes are served by one node to 
other nodes. A node indirectly accesses a device by 
sending requests to the device's server node. 
We wanted to apply parallel techniques to the problem of 
loading data from disk or tape into an SQL database. This 
is a fixed problem and so is much simpler than planning an 
arbitrary database query. On the other hand, data loading 
exercises all the components of our infrastructure. It has to 
pick a load plan, assign processes to processors, scratch 
files to disks, start and monitor the processes executing the 
plan, deal with failures, and provide an operator interface 
to control  and observe  the load operat ion.  This 
infrastructure is equally useful to a parallel query executor. 
Simply stated, a data load task copies a collection of data 
records into a disk-resident  SQL database.  Several 
requirements are implicit in this description: 
• Heterogeneous:  The input stream may have multiple 

record types and the target may be multiple tables. The 
target tables may be partitioned to disjoint storage areas 
or clustered together in common storage areas. 

• Diverse-Input  Media:  The data source may be a process, 
a file, or a table. If it is a file, the data may be on disk or 
tape. 

• Da ta  convers ion :  The input data format is probably 
different from the table format (data types). The data 
must be converted to the target data types (i.e., ASCII  to 
IEEE float). 

• I n t e g r i t y  Checks :  The input data may have errors. 
Erroneous data is sent to a rejectfile and diagnostics are 
sent to a message file. 

• C lus te r ing  a n d  Pa r t i t i on ing :  The table may be 
partitioned among many storage devices -- either for 
capacity or bandwidth. Each storage area is defined by a 
partitioning criterion, and each has a rule for clustering 
related records. For efficiency, the load operation must 
partition the input data and then sort each partition into 
clustered order. 

• Indexing: The records of  the table typical ly have 
secondary indices (hash, B-tree, R-tree, signature ..... ). 
These indices must be updated to reflect the new records. 

Our main focus was on the use of  parallelism to accelerate 
load operations. But speed is not the only requirement. 
The load operation is expected to have the following 
properties. 

• Automatic:  Once the load is specified, the details of  
allocating space and performing the load should be 
automatic. 

• I n c r e m e n t a l :  It should be possible to load additional 
data into a pre-existing table, not just load data into a 
new table. 

• Online: Espec ia l ly  for inc rementa l  loads ,  o ther  
applications may need read-write access to the table 
while the load is proceeding. 

• Sealeable: The load should be able to handle very large 
jobs. Terabyte loads will be common. 

• Moni tored:  The system administrator wants to inquire 
about the load status, cancel the load, suspend it, resume 
it, or change the load rate. 

• R e s t a r t a b l e :  If there is a failure during the load, the 
operation should be restartable, with no loss o f  data 
integrity and with minimal loss of  work. 

• Por table :  The design should be portable to a verity of  
commodity operating systems (NT, UNIX, OpenVMS). 

Our prototype focused on a single-table load supporting 
process, file (disk or tape), or table sources. B-tree and 
hashed base tables and indices are supported. All  load 
phases except table definition are automated. Incremental 
and online load is supported by combining transactions 
with a checkpoint-restart facility. 
Figure 4 diagrams the load data flow for a clustered base 
table and three indices. The legend explains the flow. 

Figure 4: The dataflow graph of a single-table database 
load operation. Input records must be sorted by the 
clustering key in order to build the base table -- otherwise 
the insert operation would do random disk I0 and would run 
lO0-times slower. The base table has three secondary 
indices in this example. The index records are of the form: 
(alternate-key, record_id). One cannot construct the index 
record until the base table record has been placed and its 
record_id assigned by the database system. The table 
insert operator builds these index records. Each index load 
has a dataflow graph similar to table-load graph. If the 
base table or indices are hashed, then a hash operator 
(MakeDBkey) must be inserted prior to the sort step in the 
flow, so that records can be sorted in hash order. Each 
node of the c=lraeh can be cloned for partition parallelism. 

i 

You might think that Figure 4 allows a seven-fold pipeline 
speedup. After all, the pipeline is seven deep and the three 
index-build steps can proceed in parallel. In fact, the sort- 
merge steps are blocking: merge cannot start until sort-run 
generation has completed.  The little disks above the 
arrows in Figure 4 indicate these blocking flows. No 
pipeline in Figure 4 is deeper than three operators.  The 
computation actually consists of three phases: 
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(1) Scan the input stream and build base table runs. 
(2) Sort the runs, insert the base table records, and generate 

the index records. Sort these index records into runs. 
(3) Merge the index records insert them into the indices. 
Pipeline speedup will be less than three-fold on this job. 
Partition-parallelism must be used to get ten-fold and 
hundred-fold speedups. 
The parallel loader automatically builds and executes 
parallel versions of  such graphs. It picks the appropriate 
graph and the appropriate degree of  parallelism for each 
phase. The plan is constrained by the input and output data 
formats and by the cluster size and speed. The goal is to 
find and execute the fastest plan satisfying these 
constraints. 
Our specific performance goal was to load a Wisconsin 
terabyte in a day. The load can use the cluster described in 
Figure 1. A Wisconsin terabyte is based on the Wisconsin 
Benchmark [DeWitt 2] and consists of: 
• A four billion record base table. Each record is 208 

bytes and has 18 integer and character fields. This table 
occupies about 800GB. 

• Three B-tree indices on three integer fields. One of  the 
indices is "clustering", the others are secondary indices. 
Each index has 4 billion entries, and is about 60GB. 
Together they are about 180GB. 

We calculate that this job would take over a 150 days if run 
on Rdb without using parallelism. Our goal was a 150x 
speedup by using a combination of  parallelism and 
improved algorithms. 
3. System Structure 
Load requests are defined by commands to a character or 
graphical user interface (GUI or CUI) process called the 
client. The commands describing the load job are passed 
to an optimizer program that picks a parallel execution plan 
for the job. 
The optimizer has three inputs: 
• The user's description of  the input data size, source, and 

format. 
• The SQL database and table definition of  the target table 

and its indices. 
• A definition of the cluster's hardware and software as 

found by a cluster explorer. 
Based on these parameters the optimizer picks a dataflow 
graph, a degree of  parallelism for each operator, and a 
binding of  operators to processes in the cluster. The plan is 
chosen to minimize the elapsed execution time of the load 
job. 
The execution plan is expressed as a data structure called a 
web. The web can be displayed in human-readable form, 
but its purpose is to define the execution plan to the 
parallel execution environment. For debugging purposes 
the CUI can construct and edit webs. This allowed us to 
manually program the execution environment before the 
optimizer was fully functional. It also allowed us to 
benchmark the optimizer's webs against hand-built ones. 
Once a web has been picked, a web manager process is 
forked to execute the web. The first manager forks web 
managers at each other node of  the cluster. Each web 
manager in turn forks a local set of executor processes to 
perform the web operations at the local node. The web 
managers communicate among one another using tcp/ip. 
Within a node, all interprocess communication is via a 

stream interface built on shared memory to eliminate 
memory copies. 
The executor processes examine their part of  the web and 
create an execution thread for each operator. Operator 
threads initialize themselves by opening their input and 
output rivers, files, and databases. Thereafter, each thread 
executes by reading input data from input rivers or files, 
processing data, and then writing output data to output 
rivers or inserting the data into an SQL table. The 
execution rate is limited only by the speed of  each operator 
and by the rate at which data can flow through the rivers. 

Operators: ~ s e r l  
Figure 5: The parallelism prototype has a planning phase 
shown at the left and an execution phase at the right. The 
optimizer generates a parallel plan (web) based on the job 
definition, the database definition, and the cluster 
configuration. The client starts the plan execution by 
forking a web-manager. It in turn forks web managers in 
each other cluster node. The web managers fork executors 
at their nodes. The executors perform their part of the web 
by creating a thread per operator. The operators 
communicate via the river s~,stem. 
If the load is incremental, the executors commit their 
updates every few seconds -- this prevents resources from 
being locked for very long periods, but has a high cost in 
logging and forcing premature index updating. In any 
case, the web managers maintain a checkpoint-restart 
mechanism that allows the web to restart from a recent 
point and continue the computation.  The restart 
mechanism is designed to assure that each record is loaded 
exactly once. 
3.1. CUI-GUI: The User Interface 
Suppose the system administrator has a terabyte of  data to 
be loaded into the system. The data could come from local 
disk files or tapes, or it could arrive via high-speed 
communication lines. 
The administrator invokes a client process and describes 
the input data. He defines 
(1) the input record format in a field-by-field manner 
giving its name and type, 
(2) the names of  the data sources be they files or tapes, 
(3) if the input is from tape, then the approximate number 
of records on each tape, 
(4) the name of  the target database and table, and 
(5) if the target table does not already exist, the logical 

definition of  the table including column names, types, 
indices, comments, constraints, and triggers. 

Ideally, the parallel database utility would do the rest. It 
would do the physical database design for the target table, 
pick a load plan, and execute it. Our prototype does not do 
the physical design. The system administrator must define 
the table and indices. In addition he must partition it 
among the discs. Looking at Figure 1 the administrator has 
to pick the thousand storage-area partitions and assign the 
storage areas to the thousand individual disks. Clearly this 
physical design process should be automated by a program 
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that looks at the configuration database (Figure 6) and 
spreads the data among disks with enough capacity to hold 
the data and carry the data traffic. The physical database 
design program should create storage areas to hold the 
data, and then connect these storage areas to the table 
definition by extending the table partitioning criterion. 
These storage areas eouht be allocated by a greedy 
algorithm that simply spread them among disks 
proportional to the free space on each disk. Alternatively, 
the distribution could be based on the current "heat" of 
each disk, preferentially placing data on the coldest (least 
used) disks. To restate, we wanted to do this, but did not 
have time to implement it. Rather, in our prototype, the 
human user did physical database design. 
The loader did automate all steps beyond physical database 
design. The optimizer reads the source and target data 
definitions, plans data conversion, data sorting, data 
loading, and then index building. The optimizer produces 
a web. This step takes a few seconds. The web is passed 
to the web manager processes for execution. 
Once the web is executing, the client can monitor the 
execution by peeking at the per-web shared memory at 
each node. The prototype client has a primitive character 
interface to monitor the execution -- but it is still quite 
useful. A graphical interface would be nicer. The user can 
stop or cancel the web by issuing commands to the client. 
3.2. The Explorer: Discovers Cluster Configuration. 
The first task in programming or managing a cluster is to 
explore the cluster and record the configuration and 
capacity of each node and device. Our explorer runs atop 
the operating system and builds an SQL database 
describing each node, disk, tape, and describing how they 
interconnect (See Figure 6). 

Node_Name 
CPUs 
speed (tin) Memo~ (Me) 

N~_No~ 

To_Node 
Speed (MB/s) 

Node_Store ~ 1 ~  
Node_Name 
Store_Name 
Speed (MB/s) 

Stores (disk/tape) 
StoreName 
Type (disk, tape,...) 
Latency (ms) 
Speed (MB/s) 
Capacity (MB) 
Free_space (MB) 

Figure 6: The entity-relationship diagram of the c/uster 
configuration database built by the explorers executing at 
each node. The Nodes table describes the processors and 
memory at each node. The Stores table describes the 
speed, capacity, and free space of each disk and tape 
robot. The Node_Store and Node_Node tables record the 
point-to-point connectivity and bandwidth between directly- 
connected nodes and disks and amon~l nodes. 
An explorer process is launched at each cluster node. Each 
explorer examines the size and speed of the processors (by 
running simple benchmarks and by asking the operating 
system). It also benchmarks the accessible disks by 
reading and writing them and it records how much free 
space each disk has. It then benchmarks the speed of the 
interconnect between this node and other members of the 
cluster (again by running simple benchmarks). The results 
of all these experiments are recorded in the cluster-wide 
configuration database shown in Figure 6. The explorer 
runs occasionally (once a day) to update this database with 
current statistics. 

The actual configuration database includes more detailed 
information about the nodes and stores. In particular, it 
fences off some stores and processors that are not to be 
used by the parallel executor. It could record how busy 
each disk and tape is and avoid using busy devices for 
temporary results. 
The explorer was very successful. Few people know what 
is in their cluster and how full or fast it is. The explorer 
code is operating-system specific, but the resulting 
database is generic. The only difficulty we had was in 
building the Node_Node table. First, it is difficult to 
discover the cluster wiring diagram. We had to use many 
heuristics. Second, rating the connection speed between N 
nodes is a 2N 2 problem. Our solution will not scale to 
very large processor clusters. 
3.3. Optimizer: Picks a Plan 
The optimizer picks a good plan for a specific load task 
and generates a web describing the plan. The optimizer 
begins by reading the SQL table definition from the 
database, and the cluster configuration from the explorer's 
SQL database (see Figure 6). This information, combined 
with the user's input data definition defines the task and 
the constraints on the execution plan. 
The optimizer's goal is to find a parallel plan that will fit on 
the cluster and that will give the fastest possible load time. 
The optimizer assumes the load task is the only job on the 
system, and that all the (not-fenced) devices and processors 
and all the not-used storage are available for the job. 

R o o t  
Device File % Database River 

~lRecord ~ Table ~ ~cord Node 
I ~e,d |~e~ ~ Reid P~ocess Operator ~River 
'Device ~ F~dF:X, d -- Sl:~,(Field. Valu e, t~Fil e 

/ ~S~orageMap Table 
;~ (Value. StorageArea) 

StorageArea 
Device 

] Figure 7: The web schema. The device (disk, tape,...) and 
I node (processor, memory) data come from the explorer. 
I Input and output file information comes from the CUI. The 
I optimizer generates scratch file information. Each file has a 
]record descriptor and resides on a set of devices. The 
/database information comes from the SQL schema. Each 
I database has a set of tables and storage areas. Each table 
I has a set of fields, indices, and storage maps. Each 
I storage map maps a table-range to a storage area. Each 
I river has a record definition and a splittable. Each node 
I has a set of processes. Each process has a set ofiL 
L operators that read and write rivers, files and tables. The ][ 
I optimizer picks an appropriate phasing, process, operator, II 
I and river structure. II 
Even though a data load is a simple INSERT-SELECT 

statement, parallel load optimization is complex problem. 
There are many issues to consider, such as selecting 
appropriate types and numbers of operators, groulbing 
operators into processes, partitioning work among 
operators, placing processes at nodes, allocating memory 
for operators, picking devices required by operators for 
scratch and log files, etc. 
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The load optimization problem is computationally 
intractable. The simpler problem of optimally assigning a 
set of n tasks with given CPU requirements to a set of p 
processors is known as the processor-scheduling problem 
[Garey & Johnson]. It is NP-Complete in the number of 
tasks n. The processor-scheduling problem is one 
component in the load optimization problem. So the load 
optimization problem is at least as hard. Consequently, we 
used a combination of analytical reasoning and heuristics 
to reduce the search space. 

Related Work 
Hong [Hong] looked at the question of optimization for a 
shared-memory multi-processor environment. He 
advocated the idea of two phase optimization. The first 
phase produces the best sequential plan for a given query 
without regard for parallelism. The second phase 
subsequently produces the best parallelization of this 
sequential plan. Hong presents arguments and 
experimental evidence to show that this is a good 
optimization strategy for an SMP environment. 
Hasan and Motwani [Hasan, Motwani] examined the 
tradeoff between communication costs and parallelism. 
They present analytical techniques to identify worthless 
parallelism where the communication costs associated with 
parallelism outweigh gains from parallel execution. Their 
techniques eliminate many plans that are provably sub- 
optimal. 

Optimization Strategy: Four Phases 
Our optimizer is a Cost-based Hierarchical with four 
decision steps. The Optimizer enumerates various plans by 
making different choices at each step. The first step 
consists of choosing a template for the plan. Second, the 
degree of parallelism is decided for the plan. The third 
step does process placement, memory allocation, and 
device selection. The fourth step evaluates the cost of the 
resulting plan. The least-cost plan is ultimately chosen. 
We now discuss each of these steps in greater detail. 
(1) Pick a template: A template is a blueprint for a parallel 
plan. It contains a high-level description of a sequential 
plan along with a specification, showing the dataflows, the 
binding of operators to processes, and showing how the 
plan may use partition parallelism. Templates are similar 
to Hong's best serial plans, except that they (1) show the 
process and data flow splits, (2) make parallelism explicit, 
and (3) the optimizer may consider multiple templates. 
Analytic techniques, including those described in [Hasan, 
Motwani], restrict the choice of templates. Reasoning 
about worthless parallelism helps decide to co-locate 
operators in a single process. For example, if the output of 
each Merge operator feeds into a single corresponding 
InsertTable operator, co-locating these operators in a single 
process type is best. Operators may also have widely 
varying characteristics: ScanFile is extremely CPU-light 
while InsertTable is extremely CPU-heavy. Picking 
different degrees of parallelism for these two operators 
requires that they be in different processes. This bottleneck 
analysis prescribes cloning ratios among operators: a 
single fast upstream operator may be able to drive five 
downstream operators. 
(2) Pick degree of parallelism: The second optimization 
step transforms a template into a partitioning plan. A 
partitioning plan specifies the parallelism degree of each 

template process. Different parallel plans are obtained by 
cloning each process a specified number of times. The 
Optimizer deduces a maximum degree of cloning for each 
process type. It then iterates through the search space 
generating plans with varying numbers of processes of 
each type up to the maximum. For example, if there are 
100 input files to be scanned and the target table has 200 
storage areas, the optimizer considers between 1 and I00 
Scan processes and between 1 and 200 Sort-Insert 
processes. The cloning degree of the source and sink of a 
template river in turn imply a specific partitioning of each 
river. For each partitioned plan, the optimizer considers 
many process placements, memory allocations, and device 
selections for individual operators. 

Considering every combination of the process cloning 
degrees, p, leads in the 100-source 200-sink case to a 
search space with 100 x 200 = 20,000 cases. This space 
may be searched more efficiently by realizing that many of 
these 20,000 cases are quite similar and therefore need not 
all be considered individually. For example, while there is 
a substantial difference between plans containing 1, 2, 3, 4, 
or 5 Scan processes, there is not much difference between 
having, say, 80, 81, 82, 83 or 84 InsertTable processes. 
The search space can be dramatically reduced by only 
considering partition values that result in each Scan 
process scanning a distinct number of files. A similar 
heuristic is applied for Insert processes and the number of 
storage areas they insert into. This leads to a reduction in 

the search space from O(l-bni) to O(R'~'-~/) where m i is 
the maximum partitioning of each template process type. 
In the example, the heuristic reduces the search space from 
20,000 cases to less than 600. This square-root heuristic is 
a special case of the idea that the optimizer need only 
examine plans that are significantly different. 
(3) Place processes and data in duster: The third step in 
the optimization process places processes at nodes, selects 
devices for logs and sort scratch files, and allocates 
memory for operators such as Sort and SQL engines. A 
simple heuristic chooses devices: each Sort operator's 
scratch files are co-located with the corresponding 
InsertTable's storage areas. Each InsertTable operator also 
co-locates its log files on the target disk. These heuristics 
are based on a performance analysis that indicates that 
scratch file IO and log IO nicely overlap with the 
corresponding database IO. These heuristics dramatically 
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reduce the search space and also ensure that no one disk 
becomes a bottleneck. 
Process placement and memory allocation decisions are 
relatively easy when the configuration is either a single 
SMP node or a shared-disk cluster of similar SMP nodes. 
In these cases, the configuration's symmetry enables the 
Optimizer to spread the work evenly across the nodes, and 
distribute memory evenly across the Sort operators on a 
node. For the template shown in Figure 8 the Optimizer 
would evenly distribute the Scan processes among the 
nodes and then evenly distribute the Insert processes. If, in 
addition, each Insert process receives input from a single 
Scan process, then reasoning about worthless parallelism 
directs the Optimizer to co-locate each Scan process and all 
its related Insert processes on the same node. 
The optimization problem is computationally harder for 
asymmetric configurations. If  different nodes have 
different speeds and different amounts of memory, then it 
is no longer straight-forward to distribute the work evenly 
among the nodes. Again, if particular devices are 
accessible only from particular nodes, the process 
placement and device selection steps become inter-related 
and more complicated.  Thus, for asymmetr ic  
configurations, one either pretends to have symmetry and 
uses simple techniques, or searches the space. Given the 
exponential  size o f  the search space, randomized 
algorithms such as simulated annealing seem to be the 
only alternative to presumed symmetry. 
A shared-nothing cluster o f  similar nodes where each disk 
is "owned" by some node that servers that disk still 
possesses significant symmetry. The optimization strategy 
used for shared disk-clusters may be extended to this case 
by first placing all processes that have device affinity near 
(one of) their desired devices -- a greedy algorithm. The 
remaining processes are then placed in the emptiest nodes 
unless they in turn have an affinity to processes. The cost 
function discards placements that are infeasible or sub- 
optimal. 
(4) Est imate plan cost: The first three steps produce a 
fully specified plan. The fourth optimization step 
estimates the plan's elapsed execution time. The 
Optimizer's goal is to find the plan with the minimum 
estimated elapsed time. Blocking operators divide the 
execution of  a plan into natural, non-overlapping phases. 
The optimizer estimates the cost of a multi-phase plan as 
the sum of the phase elapsed times. 
The plan's estimated elapsed time during a phase is the 
maximum of the elapsed times for each of  the processors, 
devices, networks, or processes during that phase. Cost 
functions are associated with each operator and with each 
type of  river (intra-process, inter-process, and inter-node). 
During the cost evaluation phase, it is convenient to think 
of  rivers as operators. Cost evaluation proceeds in a 
source-to-sink fashion. The cost functions for the operators 
and rivers are used to calculate the elapsed times for the 
processors, devices networks, and processes. 
Operator and river cost functions are multi-dimensional: 
they specify the processing,  I/O, memory,  and 
communications cost to process a data unit. The cost or 
an operator is obtained as a maximum of a number of  
terms. Special note is taken of any asynchronous I/O and 
asynchronous network transmission costs in estimating 

elapsed times -- these times overlap with execution and so 
the cost is the maximum of the three, rather than the sum. 
Some operators such as Sort have a discontinuous costs 
(one pass or two). Available memory and disk space are 
modeled as constraints. These constraints often eliminate 
plans involving one-pass sorting. 
Complex cost functions make global analytical reasoning 
extremely hard. They force an enumeration-evaluation 
approach to optimization. Analysis reduces the number of  
plans that are evaluated. 
The combined use of templates, the square-root reduction, 
and the placement heuristics, works well. Optimization for 
SMP and symmetric shared-disk clusters was quick. 
Planning a load for a 4-node (24-processor SMP), 400 
storage area (disk), 24 input file (tape) system involved 
generating and evaluating about 400 plans. It took less 
than a second to pick a plan. 

4. Para l le l  E x e c u t i o n  
4.1. Execution Environment: Overview 
Webs are executed by a collection of  executor processes 
spread among nodes of  the cluster. Each node has a web 
manager that creates the executors at that node and 
performs node-wide services for the web. The web 
manager allocates a node-wide shared memory segment, 
manages intra-node communication, coordinates startup, 
phasing, checkpointing, and shutdown, and monitors 
performance. 
The web assigns each executor a set of  operators to 
execute. Each executor can be thought of  as a multi- 
threaded process: one thread for each operator in the 
process. Executors all run the same program. That 
program locates the executor's part of  the web and 
initializes the rivers and operators specified by the web for 
that process. Startup is interpretive, but after a second or 
two the web is initialized and the operators execute at the 
raw machine speed. 

Figure 9: The parallel execution environment. Each node 
has a web manager. The web describes a set of operators 
and their bindings to processes. The web manager 
examines the web and creates a shared memory region 
containing the web and the river/steam buffers for 
communication among operators and processes at that 
node. It creates the executor processes that perform the 
web operations. Operators communicate via rivers. Inter- 
node communication is via sessions tcp/ip streams among 
web man~ers. 
Each operator is programmed as a sequential operation 
with three phases: (1) initialization, (2) execution, and (3) 
termination. The initialization phase opens the operator's 
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input and output rivers, opens or creates input and output 
files, and attaches to the database if necessary. The 
execution phase reads the input rivers or files, operates on 
the records, and produces a dataflow stream that flows to 
an output river, file, or table. When the input streams dry 
up (when all records have been processed), the operator 
terminates by closing the input and output rivers. This 
s imple model is complicated by checkpointing,  error 
handling, and transaction commit. 
Rivers carry datafiows among operators. Rivers within a 
node jus t  pass data  via shared memory.  This  
communication is especially fast within a process, because 
user-level threads dispatch very quickly and because there 
are often no splits or merges within a process. Flows 
among processes at a node (an SMP) may involve splits 
and merges but still avoid extra memory copies by using 
shared memory. Intra-node rivers use operating system 
process waits and dispatches that add overhead. Flows 
among nodes involve tcp/ip and are much more expensive. 
The relative costs of  these three kinds of  flows are 1:2:40 
in the no-copy case and 1:2:12 in the one-data-copy case 
where either producer or consumer must move the data in 
memory. We expected to replace tcp/ip with a much more 
ef f ic ient  c lus te r -communica t ion  protocol  based on 
reflective memory. 
4.2 Startup: Processes, Rivers, Operators 
After  the opt imizer picks a plan and records it as a web 
file, the client process forks a web manager on the local 
node. This first web manager, called the root, coordinates 
the web's execution. The root web manager re~ds the web 
file and forks a web manager for each other cluster node 
used by the web. The fork passes the web file name and 
the root's tcp/ip socket number. Each subsidiary web 
manger reads the web, gets a tcp/ip address and sets up a 
communication session to the root. The root collects these 
socket names and broadcasts the resulting directory. Now, 
each web manager knows the addresses of  all others and 
can contact the ones it needs to talk to. One web manager 
needs to talk with another if the web specifies a dataflow 
between execution processes in their two nodes. 
At  the same time, each web manager al locates and 
initializes a shared memory area at the node. This area 
holds the web and the river buffers for all operators at the 
node. The segment also holds the performance meters and 
other node-wide information. The web manager then forks 
that node's local execution processes as specified by the 
first phase of the web. 
Each executor first attaches to the shared memory segment. 
It reads its part of the web from shared memory. Based on 
this it, initializes the rivers and then initializes each 
operator bound to the process. It then begins operator 
execution. When all it's operators have completed, the 
executor process notifies the web manager that the phase is 
complete. If  this its last phase, the executor terminates. 
When all phases are complete, the web managers signal the 
root and a job completion file is written with summary 
statistics. 
4.3 The River System - Startup and Execution 
The river system is a key part of the design. Initially, we 
considered using a tcp/ip session for each stream among 
processes. This idea was short lived for two reasons: 

Polynomial Explosion: A thousand scanners feeding a 
thousand sort-merge-insert operators would require a 
million tcp/ip sessions. We had to do something to cut 
down this polynomial explosion. 

tcp/ip Performance: The tcp/ip implementation we used 
was expensive. It cost six million instructions to transfer 
one megabyte of data within the node and eight million 
instructions to transfer a megabyte between two nodes. 
Writing data to a shared disk and reading it back is ten 
times faster than using tcp/ip. The cpu cost of a message 
is approximately f + mxb where f i s  the fixed cost, m is 
the per-byte cost, and b is the message size in bytes. For 
memory-to-memory (same-node) requests, f is about 
3,000 instructions and m is about 6 instructions per byte. 
For LAN transfers, f is approximately 3,000 instructions 
and rn is approximately 8 instructions per byte. 

Performance problems with tcp/ip are legendary. A one- 
i n s t ruc t ion -pe r -b i t - s en t  is typ ica l  o f  c ommerc i a l  
LAN/WAN communications protocol stacks. It makes 
them un-usable for dataflow computing. Our solution to 
these problems was to use tcp/ip as little as possible and to 
look forward to the day that we can eliminate it. We did 
the following: 
RIO: Create a new communications protocol that lends 

i tself  to fast implementations.  The protocol allows 
operators to exchange data streams with no extra 
memory copies. This protocol, called RIO (for fiver IO), 
maps to a memory-to-memory protocol (MIO). 

M I O  (Memory- to -memory  s t reams) :  MIO is used for 
communication within an SMP. Eventually, MIO can be 
extended to distributed memory and reflective memory 
hardware clusters [DASH]. MIO uses SIO for off-node 
communication. 

S IO (s t ream IO on the LAN):  SIO is for node-to-node 
communication based on tcp/ip until it can be replaced 
with a standard high-performance cluster protocol. 

Multiplex Sessions on Web Manager tep/ip sessions: We 
ameliorated the polynomial-explosion problem by only 
opening tcp/ip sessions among web managers. The 
tcp/ip session between the web managers at two nodes 
multiplexes all traffic between operators at those two 
nodes. This cuts the polynomial  explosion from a 
million to less than five thousand sessions in a hundred- 
node cluster. A three-level multiplexing scheme would 
be needed to cut the polynomial explosion for massive 
clusters (thousands of nodes). 

MIO-SIO is a uni-directional session-oriented protocol 
involving open ( ) , get_buffer ( ) , send_buffer ( ) , and 

close() routines. There is only  one extra  call:  
f r e e b u f f e r  ( ) that indicates to MIO-SIO that the buffer 
has been consumed.  The semant ics  of  MIO-SIO  
send_buffer ( ) and get_buffer ( ) are unusual. Once a 
buffer is sent, the producer can no longer access it. 
g e t . _bu f f e r  ( ) ,  when invoked by a producer returns an 
empty buffer,  while g e t  b u f f e r ( )  invoked by a 
consumer gets a full buffer. Figure 10 illustrates many of 
these ideas. 
4.4 The RIO Protocol and Protocol stack 
MIO-SIO flow control is simple: Each stream has a budget 
of  two or three buffers. When a producer exceeds its 
budget, its g e t _ b u f f e r  ( ) requests stall. If a downstream 
operator stalls, all upstream operators will stall until the 
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consumer catches up. A consumer process may have wait 
for input and a producer may have to wait for a consumer 
to free a buffer. On the VMS operating system, process 
waits and wakeups were implemented with mailboxes and 
asynchronous system traps (ASTs.) Threads and ASTs also 
exist on NT. On UNIX, threads and the event-signal 
mechanism would be used. 

!The RIO protocol and protocol stack 

A simple MIO pipeline. 

Figure 10. The RIO interface is built on a memory-to- 
memory transport (MIO) for communication within a 
process or SMP. MIO uses a stream interface (SIO) for 
node-to-node communication. SIO buffers flows via MIO to 
the local web manager that then uses tcp/ip to flow the data 
to the destination node web manager (see Figure 11.) The 
MIO-SIO protocol is suited for a zero-copy memory-to- 
memory implementation. A producer gets a buffer from 
MIO-SIO and fills it. When the buffer is full, the producer 
sends the buffer. The consumer gets a buffer, empties it, 
and then frees it. If the two processes share memory, there 
are no extra memory copies. The diagram at the bottom 
left shows a pipeline using the MIO-SIO interface. Rather 
than freeing the buffer, the middle process modifies it and 
passes it down stream. This is useful for data validation 
and data conversion operations. River merge operators 
also work in this pipeline fashion. The river system, RIO, 
implements a record-at-a-time interface on top of SIO and 
MIO. It also manages steam merges and splits. 
Multiplexing data streams on top of a few tcp/ip sessions 
creates a three-hop inter-node communications protocol. 
When an operator at one node wants to send data to an 
operator at another node, the data first flows to the local 
web manager (via MIO), then node-to-node (via tcp/ip), 
and then from the destination web manager to the 
destination operator (via MIO). 
This scheme is practical because it costs about 12,000 
instructions to send a 32KB buffer through MIO, while it 
costs over 250,000 instructions to send it via tcp/ip. So the 
two extra MIO hops add less than 10% to the overhead. 
RIO is a record-at-a-time interface programmed atop MIO-  
SIO. RIO also implements the river system's record split 
and merge operators. The call interface to rivers is 
open_river (), get_record(),put_record(), 
close_river (). In addition, a bulk interface allows an 
operator to deal with the records in a buffer as a batch. 

i • 

® 
~Shared Memory 

Figure 11: The three-hop message protocol used by MIO- 
SIO to reduce the polynomial explosion. I_AN streams and 
rivers travel via MIO (1) to the local web manager that then 
multiplexes them over a tcp/ip sessions SIO (2) to other 
web managers. MIO is used at the destination to deliver 
the data to the destination operator. Since MIO is a zero- 
copy message protocol, it adds less than 10% to the 
message cost. A three-level multiplexing scheme would be 
needed for clusters much larger than 100 nodes (600 
processors I. 
The get_record (), put_record ( ) requests are pointer 
oriented so that no extra data copies are needed -- ideally, 
they can pipeline data through the operators without extra 
data copies. Only when a record is transformed, or split 
into one o f  several data buffers is the record actually 
copied. This means that some operators get the zero-copy 
performance indicated in Table 12. We believe the MIO 
fixed cost could be reduced by a factor of  three by more 
careful programming -- it should be less than the tcp/ip 
fixed cost. 
Table 12: Cost of sending 1MB in 32KB chunks from 
operator to operator (measured in thousands of 
instructions.) Operators attempt to minimize data copies 
within the RIO system, so both zero-copy and 1-copy time 
are relevant. 

transfer method 

read/write disk 
intra-process MIO, 0- copy 
intra-process MIO, 1-copy 
inter-process MIO, 0-copy 
inter-process MIO, 1-copy 

Iocal-tcp/ip 
LAN tcp/ip 

LAN RIO 0-copy 
LAN RIO 1-copy 
LAN RIO 2-copy 

fixed cost / per byte total 
32KB cost cost/MB 
(k ins) (ins) (k ins) 

5 0.1 250 
7 0.0 200 
7 0.5 700 
12 0.0 400 
12 0.7 1,100 
4 6.0 6,000 
5 8.0 8,150 
29 8.0 9,000 
29 8.7 9,700 
29 9.4 10,400 

4.5. Executor and Operator Structure 
We considered having just one process at each node and 
using our own thread mechanism to execute the operators 
at that node. This approach would have reduced operating 
system overheads but has several drawbacks. First, the 
database system we were using is not thread-safe, That is, 
it lacks an asynchronous call interface, and it associates 
transactions with the process rather than with the thread. 
This is a typical problem with database systems. So each 
database operator needs to have a separate operating 
systems task. Second, we find that many thread packages 
are not much faster than the OpenVMS process 
mechanism. Using operating system processes, exploits 
multiprocessing and has little cost on VMS. In essence, 
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VMS processes are our threads and the global shared 
memory is our one-process address space. 
All the papers we have read on parallel database systems 
have focused on the query problem. In queries, data is 
pulled from the database into the application.  The 
application calls for a set of records, and this translates to 
calls to upstream data sources. This is a pull architecture 
where downstream operators pull (call for) data from 
upstream operators. Pull works very well if there is a 
single data sink. As diagrammed in Figure 8, data loading, 
does not have a single data sink. That diagram shows four 
data sinks, the base table and three index tables. In 
multiple-sink dataflows, a push architecture with flow 
control  is needed. That is, each opera tor  works 
independently and attempts to keep its output buffers full. 
Each operator pulls from its inputs and pushes to its 
outputs. The operator blocks when there are no inputs, or 
when the two or three output buffers are full. 
Orthogonal to the data flow, it is occasionally necessary to 
commit a transaction or checkpoint the current state of  the 
web. These issues require that the operator thread poll for 
such events or that it provide a callback to perform such 
actions. 
These issues led us to implement a simple thread package 
for operator execution. Each operator is implemented as a 
set of entry points: 
op_s tar t0 :  Ini t ial ize the operator,  al locating storage, 

opening rivers, tables, and files. 
op_do0:  Read a buffer-load (about 32KB) of  data from the 

upstream rivers, process it, and generate target data. 
o p _ e n d 0 :  Flush any internal data downstream and close 

all rivers. 
o p _ e o m m i t 0 :  Prepare to commit all work (see the next 

section) 
op_checkpoint0:  A checkpoint is being taken, record any 

data you will need at restart (see the next section) 
All operators follow this template. We implemented 
operators to read and write files, tables, and tapes. We also 
imp lemen ted  sort and hash opera to r s .  Hav ing  
implemented one operator,  it was relat ively easy to 
implement others. We are confident that sophisticated 
users can copy these templates and construct  other 
operators such as hash-join, aggregates, and cross-tabs. 

Figure 13: The flow within an executor process is to call 
the o p _ s t a r t  () entry of each operator belonging. Then 
the executor calls any op_do ( ) operation that has an input 
buffer. When all operations return a completion code, the 
executor calls o p _ e n d ( )  for all operations and then 
terminates the process. Each op_do ( ) step processes 
one or more input buffers and passes them downstream to l 
the next river and operators. 

4.6. Transactions and Checkpoint/Restart 
Thus far, we have ignored errors. What i f  a record fails an 
integrity check, or a unique-key check, or a referential- 
integrity check? What happens if  a transaction cannot 
commit? What happens if a process or processor fails? 
These are all difficult questions that have no easy answers. 
Solving these problems is a fundamental  part of  any 
parallel database system design. 
Bad records are the simplest problem. If a record contains 
data that v io la tes  an in tegr i ty  cons t ra in t  (e .g . ,  
birth_year between 1850 and CURRENT),then 
the record can be sent to an error river (called the sewer) 
along with a diagnostic. These rejected records can be 
handled later. Both the data conversion and the database 
insert code may discover bad records. For incremental 
loads, integrity checks are enforced at each insert or are 
deferred to commit ,  but they are checked a lmost  
immediately.  This makes error  handling re la t ive ly  
straightforward. The details of  handling bad records are 
much more complex for batch loads that create indices and 
check referential integrity after the base table has been 
loaded. The techniques are still fairly obvious. If  a record 
violates a constraint, it is deleted and sent to the sewer. 
How does dataflow interact with transactions? The simple 
answer is: "Not well." There are no obvious transaction 
boundaries in the dataflow beyond the whole transaction -- 
that is an o ld -mas t e r  ne w -ma s t e r  batch model .  
Unfortunately, to allow incremental loads of  databases, no 
part of the database should be locked for more than a few 
seconds. This means that incremental loads must commit 
every few seconds. 
In the Rdb/VMS system, transactions are associated with 
processes. Using the distributed transaction mechanism, it 
is possible to associa te  a t ransact ion with several  
prco.esses. This has relatively high cost, so we adopted the 
following simpler approach. Every few thousand insert 
operations (every few seconds),  an I n s e r t T a b l e  
process commits. It does this by calling the op_commit0  
entry point of each operator to allow it to flush any buffers 
and make any integrity checks it needs to make. In 
particular, this causes any deferred index updates to be 
sorted, and performed in batch. Once each operator has 
signaled willingness to commit,  the process commits .  
(This requires that all corresponding index inserts of  this 
process must be performed by this process). 
If the commit is successful, fine. If the commit fails, then 
there is a problem - some record violated an integrity 
constraint. Now, the InsertTable process must re- 
insert every record of the failed transaction, carefully 
inserting each record and sending bad records to the sewer. 
This requires that the insert-table operator keep a copy of 
each such record. This can be done by retaining the input 
river buffers and committing when a certain number of  
buffers have accumulated. The InsertTable operator has a 
callback to either discard the input buffers (successful 
commit) or to carefully reinsert the records and then 
commit (failed commit case). 
We implemented this simple transaction mechanism. We 
designed but did not implement  checkpoin t - res ta r t  
mechanisms. Performance numbers reported here include 
the transaction overhead for UNDO-REDO logging needed 
to make incremental loads work. 
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Process and processor failure are much more difficult 
problems. What if a hundred processors and a thousand 
disks have been working for a day, and some one of them 
fails? Much work would be lost by restarting from scratch. 
If the load is incremental, then UNDO-REDO logging is 
operating and the database is consistent. The only problem 
is that some records may be lost (not inserted in the 
database.) If the process were recreated and its input data 
streams were reset to that point, then the process could re- 
execute the needed data processing. 
Checkpoint-restart is the standard technique for masking 
failures of long-running batch operations. The root web 
manager initiates a checkpoint approximately every hour. 
In this case, a failure will lose and redo only a half hour of 
work on average. 
Checkpoints and restarts are coordinated by the root web 
manager. It first requests all web managers to quiesce all 
their executors. Each executor calls its operators asking 
them to prepare to checkpoint.  The idea is that data 
sources stop reading records, data consumers empty their 
input rivers, flush any internal sate, and fill their output 
buffers. Eventually, all executors are in their outer loops, 
all transactions are committed and most rivers are empty. 
Now each operator is called to checkpoint its state in a 
node- local  checkpoin t  file. In addi t ion all r ivers 
checkpoint  their non-empty buffers and their current 
stream sequence numbers. When this is complete, the web 
starts the dataflow again. 
I f  a node fails, each node restarts from the most recent 
successful checkpoint .  The operators and rivers are 
reinstantiated, the computation proceeds from that point 
forward. 
Much of this technology was pioneered in the 1960's by 
batch processing systems and is recorded in checkpoint- 
restart manuals from that era. We found two novel issues. 
Blocking Opera t ions .  Most operations (like scan, make- 

key, and insert) have almost no state. Certain operations 
like aggregates, join, sort, and merge have a great deal of 
state and have scratch files. They must record this state 
at each checkpoint.  Even when they complete,  they 
cannot delete their state until the next checkpoint  
completes (this suggests that phase changes should 
trigger checkpoints).  This is similar to triggering a 
checkpoint each time a tape ends. 

Idempotenee:  It is important that records not be inserted 
twice. Restarting at an early point in the data stream 
might place a record in the database twice, The 
idempotence problem is fairly easily solved: when a 
transaction commit, it writes a "high-water-mark" in the 
database, recording the identifier or sequence number of 
the highest inserted record. At restart, the insert operator 
reads this high-water-mark, and discards all records prior 
to that as they appear in the input stream. Only records 
beyond the high water mark are inserted in the input 
stream. This is called the MiniBatch technique in Gray 
and Reuter [Chapter 5]. 

Determinism:  A second execution forward from a given 
state may not generate records in the same order. 
Records coming from a sequential device (tape or disk) 
and records coming from a transformer will be in the 
same order on re-execution, but records coming from a 
river-merge operation may be permuted if the buffers 

arrive from the sources in different order. If  a river 
merges data from sources A and B, the first execution 
might present a pair of record buffers in the order A1 A2 
A3 B1 B2 B3, while a second execution might present 
them in the order A1, BI ,  A2, B2, A3, B3, or any other 
of the sixteen possible permutations that preserve the 
order of the A and B sub-sequences. We have found 
only two solutions to this problem. (1) If the operator is 
order  insensit ive,  that is the operator ' s  output  is 
independent of the input order, then one can ignore this 
problem. Sort and aggregate  operators  have this 
property. (2) If the operator is order-sensi t ive (e.g., 
Insert), then it must insist on a deterministic ordering of  
the input buffers so that the river merge operation will 
produce the same record steam independent of  the timing 
of  the buffers arriving from multiple data  sources.  
Buffer sequence numbers are the standard way to 
manage this logic. 

Fault-tolerance for these long-running batch operations 
seems ripe for rediscovery of old techniques, and invention 
of  some new ones. We did not implement our ideas, and 
so cannot tell how successful they would have been. 

5. Performance Measurements 
Recall that our goal was to load a Wisconsin terabyte in a 
day using a hundred-processor thousand-disk cluster. Most 
of our development and performance results were done on 
a much more modest one-node, two-processor, eight-disk 
system in our laboratory. We were unable to get access to 
a large cluster before the project ended. We had occasional 
access to a 24-processor 400-disk cluster. 
The hardware was a DEC System 4000 -620 which is a 
dual-processor 150Mhz Alpha  RISC processor.  Each 
processor is rated at 100SPECints, but SPECint is a cache- 
local benchmark. Measurements of  n:~mory intensive 
applications typical  of  database systems indicate the 
machine executes about 40 million instructions per second. 
It had 256MB of  main memory and eight 2 MB/s SCSI 
discs on four controllers. 
We tested the load of a million-record hash-structured base 
table with no secondary indices. The source data was 
stored on separate disk files. All  loads were done as 
incremental loads with undo logging and locking enabled. 
Transactions committed every 50,000 inserts. Turning 
transactions off cuts the IO and cpu cost in half. 
The Rdb load utility is the base case. It is a single-process 
that reads an input source and inserts data into the target 
table. This single process (1) scans the input, (2) formats it 
as a database record, (3) constructs the hash key for each 
record, (4) sorts the records into hash order, (4) inserts the 
records in hash order, and (5) commits occasionally. 
Next a single-process web was measured. It emulates the 
loader but uses a batch-insert  interface to Rdb insert 
developed for us by the Rdb team. This simple change, 
allowing InsertTable0 to insert 100-records at a time rather 
than making a separate call per insert reduced cpu time by 
40%. In fact, we found a 20:6:2:1 ratio between dynamic 
SQL (PREPARE-EXECUTE the INSERT statement), static 
SQL, (EXEC SQL INSERT...), a low level.  (DSRI)  
interface, and this vector-oriented interface. The Rdb load 
utility is now converted to this vector interface. 
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Table 14: Elapsed and cpu time to load a million records 
from file to SQL table using the Rdb load utility, a 1- 
process web, a simple pipeline, and then a 2-way and 5- 
way cloning of the sort-insert process. All tests were run 
on a dual-155Mhz SMP DEC Alpha 4000 system. 

Form of Load elapsed (see) cpu (sec) 
Rdb Load 1785 1097 

1 Process web 1217 685 

1 Scan 1 Sort-Insert 1205 685 

1 Scan 2 Sort-Insert 889 717 

1 Scan 5 Sort-Insert 565 766 

Next pipeline parallelism overlaps input scanning the with 
sorting. A parallel web of a scan process feeding a hash- 
sort-merge-insert process had almost no effect on either 
elapsed time or cpu time. That is because the hash-sort- 
merge-insert process is IO bound. This incidentally shows 
that pipeline parallelism is often not a giant improvement. 
The next two experiments cloned the hash-sort-merge- 
insert process two and then five ways. These experiments 
show that the cpu time rises slightly (about 10%) with the 
parallel execution and consequent extra scheduling, but 
that the elapsed time drops by 25% and then 54%. The 
Ix5 case has only 70% cpu utilized. With more discs, the 
system could have been configured as a lx8 web. We 
believe this web would have a 15% cpu increase but 4x 
reduction in elapsed time to less than 400 seconds. This 
would correspond to a 2500 record/second load rate for 
this node. The index load time is a second phase that runs 
about four times faster than the initial load since the data 
volume is four times less. 
By using six-way 200 MHz Alpha processors, and four 
times as many disks, the load rate should reach I0,000 
records per second. That translates to 173 GB/day. By 
extrapolating from Table 13 and 15, one estimates that a 
hundred processor thousand-disk system structured as 
sixteen SMP nodes would be able to load 2.4 TB per day. 
The traffic in and out of each node would be a modest 
2MB/s which is well within FDDI and ATM bandwidths. 
These extrapolations assume that there are no bottlenecks 
in the design. We analyzed the design and believe that no 
bottlenecks exist. We were able to try some very simple 
webs in a small cluster, and did not see any bottlenecks. 
Unfortunately, the project ended before we could try the 
software on a really large cluster. 
6. Summary and Conclusions 
Dataflow parallelism is the most promising approach to 
parallelize database operations. The prototype we built 
automates much of the parallel database loading task. An 
explorer discovers the cluster configuration, and an 
optimizer picks the minimum-plan to perform the load. 
Physical database design and placement remain to be done. 
Our system execution model was novel. There is a web 
execution monitor at each node of the cluster. It sets up a 
collection of processes executing at that node. Operators 
within a node can use a high-performance zero-copy 
memory-to-memory stream transport. Streams among 
nodes are multiplexed over tcp/ip sessions to reduce the 
polynomial explosion. 
Connecting transactions with the dataflow web allows 
incremental and online loads, but raises interesting issues 

related to transaction failure. Adding checkpoint-restart to 
database dataflows is an area we designed but did not 
implement. It will be interesting to see how these ideas 
work in the product. 
In the end, the parallel data load utility demonstrated good 
speedup due to parallelism. Unfortunately, staff and 
budget constraints prevented us from testing the prototype 
on a large cluster. Despite that, we believe the approach to 
be sound and believe that these ideas will be widely used 
in database future products. 
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