
]Loading Databases Using Dataflow Parallelism
Tom Barclay:~, Robert Bames~, Jim Gray t , Prakash Sundaresan $

Digital Equipment Corporation, San Francisco Systems Center

A b s t r a c t : This paper describes a parallel database load
prototype for Digital's Rdb database product. The prototype
takes a dataflow approach to database parallelism. It
includes an explorer that discovers and records the cluster
configuration in a database, a client CUI interface that
gathers the load job description from the user and 'from the
Rdb catalogs, and an optimizer that picks the best parallel
execution plan and records it in a web data structure. The
web describes the data operators, the dataflow rivers among
them, the binding of operators to processes, processes to
processors, and files to discs and tapes. This paper describes
the optimizer's cost-based hierarchical optimization strategy
in some detail. The prototype executes the web's plan by
spawning a web manager process at each node of the cluster.
The managers create the local executor processes, and
orchestrate startup, phasing, checkpoint, and shutdown. The
execution processes perform one or more operators. Data
f lows among the operators are via memory-to-memory
streams within a node, and via web-manager multiplexed
tcp/ip streams among nodes. The design of the transaction
and checkpoint/restart mechanisms are also described.
Preliminary measurements indicate that this design will give
excellent scaleups.
1. Introduction: The Parallel Imperative
Technology and economic trends encourage us to build
computers as processor-arrays, disk-arrays, tape-arrays,
and communication-line arrays. We call such an array, a
cluster. Clusters are a challenge to program. Current
programming languages and techniques are geared to step-
by-step algorithms. Clusters require parallel algorithms.
Both the scientific and commercial communit ies are
struggling to develop such new programming styles.
Some applications, like file service or online transaction
processing, have natural parallelism. The applications
consist of many small jobs operating against a common
database. Over the last decade we have learned how to
scale up such applications so that processor and disk arrays
can service a hundred thousand users (clients) [Serlin].
The unifying concept has been the notion of a transaction:
an atomic unit of work that executes independently of
concurrently executing tasks -- giving the programmer the
ACID properties (atomicity, consistency, isolation and
durability). This allows programmers to write step-by-step
algorithms, without concern for concurrency issues that
parallel execution creates.

Current address:
~: Microsoft, One Microsoft Way, Redmond, WA 98052-6399.

{ tbarclay, rbarnes } @ microsoft.com.
1 310 Filbert St., S.F., CA 94133. gray@crl.com.
$ Informix, 921 SW Washington St. # 670, Portland, OR 97205.

psundaressan@informix.com.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association of
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

There have been notable success :in building systems that
execute a single large database tasks on a cluster. Teradata
[Teradata] , the Japanese 5th Gene ra t ion pro jec t
[Kitsuregawa 1, 2], the University of Wisconsin [DeWitt
1], and Tandem [Englert] demonstrate batch scaleup to
large clusters. Oracle, Informix, NCR, Sybase and IBM
all have ambitious parallel databae efforts underway.
Paral lel onl ine t ransact ion process ing sys tems are
commonplace Parallel database systems have not had
comparable success. They were ahead of their time -- the
imperative for processor and disk arrays is just arriving.
The technology of terabyte disk farms and 100 processor
arrays not only allows parallel database access, the
technology requires parallel data access. Hundred dollar
per gigabyte disks allow very large online databases.
These databases must be accessed in parallel. Scanning a
terabyte at single-disk speed or single-processor speed will
take days. Parallel access gives speedups of 100x or 1000x
- turning a one-year task into an eight-hour job.
Figure 1 diagrams a cluster - a hundred-processor ,
hundred-tape, thousand-disk system. We bel ieve such
computers will cost less than a million dollars within ten
years. Users will have so many components that one
cannot program the individual processors and disks
individually -- rather the system must automatically decide
where to place data and computation within the cluster.

OO OO OO O-O C X 9 0 0 OO OO OO OO
0 0 E ~ O'E~ EIO EX~ O13 EX3 1319 0 0 E ~
0 0 100 Tape Transports = I 0,000 tapes = 1Petabytel~l~
0 1 9 0 0 0 " 0 0 " 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 E) EIO O'C) G O OO 0 0 0 0 0 0 0 0

0 0 0 0 0 0 (N:-:~ (N,:::) (.J~) (.Jl,::) ~ (.J1,D 0 0
0 0 0 0 0 0 (N2) EI13 (JE) (ND ('J'12) (-Jl'~ 0 0
0 0 0 0 0 0 (J12) (J'O CrO (J13 (J1.3 o12) 0 0
0 0 0 0 0 0 (N.~ I.:J'O (.Jl:,3 (.31~ (Jl~ (-JE) 0 0
0 0 0 0 0 0 (N2) (-Jl:.) O'~ CI12) IJ1-30O 0 0

F i g u r e 1: The cluster (processor, disk, tape array) we
designin 9 for. We believe such clusters will be the typical
way large servers are built in the future. Each node has a
few (less then 10) processors sharing a common memory
of a gigabyte or so. Next in the storage hierarchy is a pool
of discs, each served by a processor. Tape robots form the
base of the storage hierarchy. All the components of the
cluster have a high-speed interconnect (GB/s point-to-point)
and a slower extema network.

7 2 S I G M O D R E C O R D , V o l . 23 , N o . 4 , D e c e m b e r 1 9 9 4

How can we program a cluster? The database community
has adopted a dataflow approach to describing and
implementing parallel algorithms. In this approach, data
resides in files or databases on many disks, tapes, or other
memory devices. Algorithms search subsets of this data,
and either deposit their answers on target storage devices, or
return their answers to an array of application programs. A
dataflow algorithm is described as a directed graph.
Graph nodes, called operators, are sequential programs.
Each operator reads its input record streams (dataflows),
transforms the data, and produces one or more sequential
output record streams. The operator is programmed as a
purely sequential program in a conventional programming
language (COBOL or FORTRAN or C). The edges of the
graph show the dataflows among operators. Storage (disks,
tapes) and application programs are data sources and sinks
in the graphs.
The simplest dataflow graph is a pipeline, in which each
operator takes in a stream of data, operates on it, and then
passes it downstream (see Figure 2). Pipeline parallelism
gives modest speedups because the pipeline is rarely very
long: a pipeline of four operators gives at most a four-fold
speedup. Partitioning the data streams and cloning each
operator gives partition parallelism. If the data is
parti t ioned among a thousand disks, a thousand-fold
partitioning can give a thousand-fold speedup. Partition
parallelism has huge payoffs -- especially as technology
gives more and more disks and processors per dollar.

Pipeline Parallism Partition & Pipeline Parallism

Figure 2: Two kinds of parallelism. (1) Pipeline parallelism
has a sequence of operators operating concurrently,
processing a single data stream. (2) Partition parallelism
clones each operator of the pipeline and splits the data
streams into many disjoint streams. Each of these streams
is fed to a different operator. The pipeline in the left figure
I gives at most a three-fold speedup, the partition at the right
i~ives at most a fifteen-fold speedup/3x5}.
Relational databases are ideally suited to a dataflow
approach. Relations are uniform collections of data.
Relational operators consume one or more relations and
produce a new relation. Certain operators like GROUP-BY
and SORT do not produce pure relations, but they do
produce uniform data streams. So relational operators are
naturally pipelined, and the data streams are easily
partitioned.
Figure 2 is a little vague. Each scan operator can certainly
read a single input stream. But, what if the output records
of a particular filter operator are destined for different
insert operators. For example, what if the filter is a sort

operator. Then "high" records should go to "high" insert
operators and "low" records should go to "low" insert
operators so that the concatenation of the resulting file
partitions is indeed a sorted file.
The Gamma and Volcano systems developed a way to
transparently partition data streams among operators. We
refined those ideas with the following terminology. A data
stream is partitioned when either or both of the source and
destination operators are cloned to get partition parallelism.
If the source is cloned N ways and the destination is cloned
M ways, then there are NxM streams. We call the resulting
set of data streams a dataflow river. Rivers are analogous
to Gamma ' s spli t tables [DeWit t 1] and Volcano ' s
exchange operators [Graefe].
Figure 3 shows a dataflow with the source operators
partitioned two ways and the sink operators partitioned
three ways. Each source operator dumps records into the
river and each sink operator takes records out of its
9artition of the river. Each is unaware that the river is
~artitioned into six streams.

P i p e l i n e P a r t i t i o n

@ @ @

Figure 3: When operators are cloned, dataflows are
partitioned. The partitioned dataflow, called a river, is
composed of many point-to-point data streams. Source
operators put records into the river. The river has a split
table at each source that designates which sink operator
(stream) the record should be sent to. Splits can be based
on record key ranges, key hashes, on round-robin, or can
replicate records. Sink operators have merge boxes that
combine all incomin~l streams into a sin~lle stream.
River partitioning is based on a split-table. All the streams
of a river have the same split table. As the name suggests,
when a record is inserted into a river, the river program
uses the split table to pick a destination stream for the
record. The river program first extracts field values from
the record. Then it compares these values to values in the
split table to pick a destination stream. The split table can
be a range-partitioning, a hash partitioning, a round robin,
or even a replication (in which input records are sent to all
sink operators),
This discussion gives a sense of the database community 's
approach to parallelism. Almost every database vendor
has a parallelism project based on these ideas. All believe
that parallel database systems will be a major trend over
the next decade. In 1992 we started an advanced-
development project to adapt known parallel database
techniques to Rdb, Digital Equipment Corporat ion 's
database system. We were surpr ised to find that
considerable research and innovation was needed to apply
the techniques we thought were well understood. We
encountered issues that we had never seen discussed
before. This paper documents most of these issues and the
approaches we took to them.

S I G M O D R E C O R D , V o l . 23 , N o . 4 , D e c e m b e r 1 9 9 4 73

2. Goals and Approach
Our initial approach was to adapt the techniques used by
Teradata, Gamma, and Tandem to Digital 's Rdb. We
wanted to build the infrastructure to execute parallel
programs, and to bui ld some ut i l i t ies using that
infrastructure. The implementation was to be portable
among several operating systems (OpenVMS, OSF/I , and
NT). This was a four-person effort separate from the Rdb
development group -- so we focused on bui lding a
prototype that could later be integrated with Rdb. The
prototype did not modify Rdb, but rather ran as an
application. That integration is now in progress.
We designed for processor clusters accessing many disks
and tape drives. Each node of the cluster is a shared-
memory mult i -processor with a large RAM memory.
Nodes of the cluster are interconnected by a high-
bandwidth (multi-gigabit/second) interconnection network.
Each processor can directly access a subset of the disks and
tapes. Typically, disks and tapes are served by one node to
other nodes. A node indirectly accesses a device by
sending requests to the device's server node.
We wanted to apply parallel techniques to the problem of
loading data from disk or tape into an SQL database. This
is a fixed problem and so is much simpler than planning an
arbitrary database query. On the other hand, data loading
exercises all the components of our infrastructure. It has to
pick a load plan, assign processes to processors, scratch
files to disks, start and monitor the processes executing the
plan, deal with failures, and provide an operator interface
to control and observe the load operat ion. This
infrastructure is equally useful to a parallel query executor.
Simply stated, a data load task copies a collection of data
records into a disk-resident SQL database. Several
requirements are implicit in this description:
• Heterogeneous: The input stream may have multiple

record types and the target may be multiple tables. The
target tables may be partitioned to disjoint storage areas
or clustered together in common storage areas.

• Diverse-Input Media: The data source may be a process,
a file, or a table. If it is a file, the data may be on disk or
tape.

• Da ta convers ion : The input data format is probably
different from the table format (data types). The data
must be converted to the target data types (i.e., ASCII to
IEEE float).

• I n t e g r i t y Checks : The input data may have errors.
Erroneous data is sent to a rejectfile and diagnostics are
sent to a message file.

• C lus te r ing a n d Pa r t i t i on ing : The table may be
partitioned among many storage devices -- either for
capacity or bandwidth. Each storage area is defined by a
partitioning criterion, and each has a rule for clustering
related records. For efficiency, the load operation must
partition the input data and then sort each partition into
clustered order.

• Indexing: The records of the table typical ly have
secondary indices (hash, B-tree, R-tree, signature).
These indices must be updated to reflect the new records.

Our main focus was on the use of parallelism to accelerate
load operations. But speed is not the only requirement.
The load operation is expected to have the following
properties.

• Automatic: Once the load is specified, the details of
allocating space and performing the load should be
automatic.

• I n c r e m e n t a l : It should be possible to load additional
data into a pre-existing table, not just load data into a
new table.

• Online: Espec ia l ly for inc rementa l loads , o ther
applications may need read-write access to the table
while the load is proceeding.

• Sealeable: The load should be able to handle very large
jobs. Terabyte loads will be common.

• Moni tored: The system administrator wants to inquire
about the load status, cancel the load, suspend it, resume
it, or change the load rate.

• R e s t a r t a b l e : If there is a failure during the load, the
operation should be restartable, with no loss o f data
integrity and with minimal loss of work.

• Por table : The design should be portable to a verity of
commodity operating systems (NT, UNIX, OpenVMS).

Our prototype focused on a single-table load supporting
process, file (disk or tape), or table sources. B-tree and
hashed base tables and indices are supported. All load
phases except table definition are automated. Incremental
and online load is supported by combining transactions
with a checkpoint-restart facility.
Figure 4 diagrams the load data flow for a clustered base
table and three indices. The legend explains the flow.

Figure 4: The dataflow graph of a single-table database
load operation. Input records must be sorted by the
clustering key in order to build the base table -- otherwise
the insert operation would do random disk I0 and would run
lO0-times slower. The base table has three secondary
indices in this example. The index records are of the form:
(alternate-key, record_id). One cannot construct the index
record until the base table record has been placed and its
record_id assigned by the database system. The table
insert operator builds these index records. Each index load
has a dataflow graph similar to table-load graph. If the
base table or indices are hashed, then a hash operator
(MakeDBkey) must be inserted prior to the sort step in the
flow, so that records can be sorted in hash order. Each
node of the c=lraeh can be cloned for partition parallelism.

i

You might think that Figure 4 allows a seven-fold pipeline
speedup. After all, the pipeline is seven deep and the three
index-build steps can proceed in parallel. In fact, the sort-
merge steps are blocking: merge cannot start until sort-run
generation has completed. The little disks above the
arrows in Figure 4 indicate these blocking flows. No
pipeline in Figure 4 is deeper than three operators. The
computation actually consists of three phases:

7 4 S I G M O D R E C O R D , V o l . 23 , N o . 4 , D e c e m b e r 1 9 9 4

(1) Scan the input stream and build base table runs.
(2) Sort the runs, insert the base table records, and generate

the index records. Sort these index records into runs.
(3) Merge the index records insert them into the indices.
Pipeline speedup will be less than three-fold on this job.
Partition-parallelism must be used to get ten-fold and
hundred-fold speedups.
The parallel loader automatically builds and executes
parallel versions of such graphs. It picks the appropriate
graph and the appropriate degree of parallelism for each
phase. The plan is constrained by the input and output data
formats and by the cluster size and speed. The goal is to
find and execute the fastest plan satisfying these
constraints.
Our specific performance goal was to load a Wisconsin
terabyte in a day. The load can use the cluster described in
Figure 1. A Wisconsin terabyte is based on the Wisconsin
Benchmark [DeWitt 2] and consists of:
• A four billion record base table. Each record is 208

bytes and has 18 integer and character fields. This table
occupies about 800GB.

• Three B-tree indices on three integer fields. One of the
indices is "clustering", the others are secondary indices.
Each index has 4 billion entries, and is about 60GB.
Together they are about 180GB.

We calculate that this job would take over a 150 days if run
on Rdb without using parallelism. Our goal was a 150x
speedup by using a combination of parallelism and
improved algorithms.
3. System Structure
Load requests are defined by commands to a character or
graphical user interface (GUI or CUI) process called the
client. The commands describing the load job are passed
to an optimizer program that picks a parallel execution plan
for the job.
The optimizer has three inputs:
• The user's description of the input data size, source, and

format.
• The SQL database and table definition of the target table

and its indices.
• A definition of the cluster's hardware and software as

found by a cluster explorer.
Based on these parameters the optimizer picks a dataflow
graph, a degree of parallelism for each operator, and a
binding of operators to processes in the cluster. The plan is
chosen to minimize the elapsed execution time of the load
job.
The execution plan is expressed as a data structure called a
web. The web can be displayed in human-readable form,
but its purpose is to define the execution plan to the
parallel execution environment. For debugging purposes
the CUI can construct and edit webs. This allowed us to
manually program the execution environment before the
optimizer was fully functional. It also allowed us to
benchmark the optimizer's webs against hand-built ones.
Once a web has been picked, a web manager process is
forked to execute the web. The first manager forks web
managers at each other node of the cluster. Each web
manager in turn forks a local set of executor processes to
perform the web operations at the local node. The web
managers communicate among one another using tcp/ip.
Within a node, all interprocess communication is via a

stream interface built on shared memory to eliminate
memory copies.
The executor processes examine their part of the web and
create an execution thread for each operator. Operator
threads initialize themselves by opening their input and
output rivers, files, and databases. Thereafter, each thread
executes by reading input data from input rivers or files,
processing data, and then writing output data to output
rivers or inserting the data into an SQL table. The
execution rate is limited only by the speed of each operator
and by the rate at which data can flow through the rivers.

Operators: ~ s e r l
Figure 5: The parallelism prototype has a planning phase
shown at the left and an execution phase at the right. The
optimizer generates a parallel plan (web) based on the job
definition, the database definition, and the cluster
configuration. The client starts the plan execution by
forking a web-manager. It in turn forks web managers in
each other cluster node. The web managers fork executors
at their nodes. The executors perform their part of the web
by creating a thread per operator. The operators
communicate via the river s~,stem.
If the load is incremental, the executors commit their
updates every few seconds -- this prevents resources from
being locked for very long periods, but has a high cost in
logging and forcing premature index updating. In any
case, the web managers maintain a checkpoint-restart
mechanism that allows the web to restart from a recent
point and continue the computation. The restart
mechanism is designed to assure that each record is loaded
exactly once.
3.1. CUI-GUI: The User Interface
Suppose the system administrator has a terabyte of data to
be loaded into the system. The data could come from local
disk files or tapes, or it could arrive via high-speed
communication lines.
The administrator invokes a client process and describes
the input data. He defines
(1) the input record format in a field-by-field manner
giving its name and type,
(2) the names of the data sources be they files or tapes,
(3) if the input is from tape, then the approximate number
of records on each tape,
(4) the name of the target database and table, and
(5) if the target table does not already exist, the logical

definition of the table including column names, types,
indices, comments, constraints, and triggers.

Ideally, the parallel database utility would do the rest. It
would do the physical database design for the target table,
pick a load plan, and execute it. Our prototype does not do
the physical design. The system administrator must define
the table and indices. In addition he must partition it
among the discs. Looking at Figure 1 the administrator has
to pick the thousand storage-area partitions and assign the
storage areas to the thousand individual disks. Clearly this
physical design process should be automated by a program

S I G M O D R E C O R D , Vo l . 23 , N o . 4, D e c e m b e r 1 9 9 4 75

that looks at the configuration database (Figure 6) and
spreads the data among disks with enough capacity to hold
the data and carry the data traffic. The physical database
design program should create storage areas to hold the
data, and then connect these storage areas to the table
definition by extending the table partitioning criterion.
These storage areas eouht be allocated by a greedy
algorithm that simply spread them among disks
proportional to the free space on each disk. Alternatively,
the distribution could be based on the current "heat" of
each disk, preferentially placing data on the coldest (least
used) disks. To restate, we wanted to do this, but did not
have time to implement it. Rather, in our prototype, the
human user did physical database design.
The loader did automate all steps beyond physical database
design. The optimizer reads the source and target data
definitions, plans data conversion, data sorting, data
loading, and then index building. The optimizer produces
a web. This step takes a few seconds. The web is passed
to the web manager processes for execution.
Once the web is executing, the client can monitor the
execution by peeking at the per-web shared memory at
each node. The prototype client has a primitive character
interface to monitor the execution -- but it is still quite
useful. A graphical interface would be nicer. The user can
stop or cancel the web by issuing commands to the client.
3.2. The Explorer: Discovers Cluster Configuration.
The first task in programming or managing a cluster is to
explore the cluster and record the configuration and
capacity of each node and device. Our explorer runs atop
the operating system and builds an SQL database
describing each node, disk, tape, and describing how they
interconnect (See Figure 6).

Node_Name
CPUs
speed (tin) Memo~ (Me)

N~_No~

To_Node
Speed (MB/s)

Node_Store ~ 1 ~
Node_Name
Store_Name
Speed (MB/s)

Stores (disk/tape)
StoreName
Type (disk, tape,...)
Latency (ms)
Speed (MB/s)
Capacity (MB)
Free_space (MB)

Figure 6: The entity-relationship diagram of the c/uster
configuration database built by the explorers executing at
each node. The Nodes table describes the processors and
memory at each node. The Stores table describes the
speed, capacity, and free space of each disk and tape
robot. The Node_Store and Node_Node tables record the
point-to-point connectivity and bandwidth between directly-
connected nodes and disks and amon~l nodes.
An explorer process is launched at each cluster node. Each
explorer examines the size and speed of the processors (by
running simple benchmarks and by asking the operating
system). It also benchmarks the accessible disks by
reading and writing them and it records how much free
space each disk has. It then benchmarks the speed of the
interconnect between this node and other members of the
cluster (again by running simple benchmarks). The results
of all these experiments are recorded in the cluster-wide
configuration database shown in Figure 6. The explorer
runs occasionally (once a day) to update this database with
current statistics.

The actual configuration database includes more detailed
information about the nodes and stores. In particular, it
fences off some stores and processors that are not to be
used by the parallel executor. It could record how busy
each disk and tape is and avoid using busy devices for
temporary results.
The explorer was very successful. Few people know what
is in their cluster and how full or fast it is. The explorer
code is operating-system specific, but the resulting
database is generic. The only difficulty we had was in
building the Node_Node table. First, it is difficult to
discover the cluster wiring diagram. We had to use many
heuristics. Second, rating the connection speed between N
nodes is a 2N 2 problem. Our solution will not scale to
very large processor clusters.
3.3. Optimizer: Picks a Plan
The optimizer picks a good plan for a specific load task
and generates a web describing the plan. The optimizer
begins by reading the SQL table definition from the
database, and the cluster configuration from the explorer's
SQL database (see Figure 6). This information, combined
with the user's input data definition defines the task and
the constraints on the execution plan.
The optimizer's goal is to find a parallel plan that will fit on
the cluster and that will give the fastest possible load time.
The optimizer assumes the load task is the only job on the
system, and that all the (not-fenced) devices and processors
and all the not-used storage are available for the job.

R o o t
Device File % Database River

~lRecord ~ Table ~ ~cord Node
I ~e,d |~e~ ~ Reid P~ocess Operator ~River
'Device ~ F~dF:X, d -- Sl:~,(Field. Valu e, t~Fil e

/ ~S~orageMap Table
;~ (Value. StorageArea)

StorageArea
Device

] Figure 7: The web schema. The device (disk, tape,...) and
I node (processor, memory) data come from the explorer.
I Input and output file information comes from the CUI. The
I optimizer generates scratch file information. Each file has a
]record descriptor and resides on a set of devices. The
/database information comes from the SQL schema. Each
I database has a set of tables and storage areas. Each table
I has a set of fields, indices, and storage maps. Each
I storage map maps a table-range to a storage area. Each
I river has a record definition and a splittable. Each node
I has a set of processes. Each process has a set ofiL
L operators that read and write rivers, files and tables. The][
I optimizer picks an appropriate phasing, process, operator, II
I and river structure. II
Even though a data load is a simple INSERT-SELECT

statement, parallel load optimization is complex problem.
There are many issues to consider, such as selecting
appropriate types and numbers of operators, groulbing
operators into processes, partitioning work among
operators, placing processes at nodes, allocating memory
for operators, picking devices required by operators for
scratch and log files, etc.

76 S I G M O D R E C O R D , Vol . 23, No . 4, D e c e m b e r 1994

The load optimization problem is computationally
intractable. The simpler problem of optimally assigning a
set of n tasks with given CPU requirements to a set of p
processors is known as the processor-scheduling problem
[Garey & Johnson]. It is NP-Complete in the number of
tasks n. The processor-scheduling problem is one
component in the load optimization problem. So the load
optimization problem is at least as hard. Consequently, we
used a combination of analytical reasoning and heuristics
to reduce the search space.

Related Work
Hong [Hong] looked at the question of optimization for a
shared-memory multi-processor environment. He
advocated the idea of two phase optimization. The first
phase produces the best sequential plan for a given query
without regard for parallelism. The second phase
subsequently produces the best parallelization of this
sequential plan. Hong presents arguments and
experimental evidence to show that this is a good
optimization strategy for an SMP environment.
Hasan and Motwani [Hasan, Motwani] examined the
tradeoff between communication costs and parallelism.
They present analytical techniques to identify worthless
parallelism where the communication costs associated with
parallelism outweigh gains from parallel execution. Their
techniques eliminate many plans that are provably sub-
optimal.

Optimization Strategy: Four Phases
Our optimizer is a Cost-based Hierarchical with four
decision steps. The Optimizer enumerates various plans by
making different choices at each step. The first step
consists of choosing a template for the plan. Second, the
degree of parallelism is decided for the plan. The third
step does process placement, memory allocation, and
device selection. The fourth step evaluates the cost of the
resulting plan. The least-cost plan is ultimately chosen.
We now discuss each of these steps in greater detail.
(1) Pick a template: A template is a blueprint for a parallel
plan. It contains a high-level description of a sequential
plan along with a specification, showing the dataflows, the
binding of operators to processes, and showing how the
plan may use partition parallelism. Templates are similar
to Hong's best serial plans, except that they (1) show the
process and data flow splits, (2) make parallelism explicit,
and (3) the optimizer may consider multiple templates.
Analytic techniques, including those described in [Hasan,
Motwani], restrict the choice of templates. Reasoning
about worthless parallelism helps decide to co-locate
operators in a single process. For example, if the output of
each Merge operator feeds into a single corresponding
InsertTable operator, co-locating these operators in a single
process type is best. Operators may also have widely
varying characteristics: ScanFile is extremely CPU-light
while InsertTable is extremely CPU-heavy. Picking
different degrees of parallelism for these two operators
requires that they be in different processes. This bottleneck
analysis prescribes cloning ratios among operators: a
single fast upstream operator may be able to drive five
downstream operators.
(2) Pick degree of parallelism: The second optimization
step transforms a template into a partitioning plan. A
partitioning plan specifies the parallelism degree of each

template process. Different parallel plans are obtained by
cloning each process a specified number of times. The
Optimizer deduces a maximum degree of cloning for each
process type. It then iterates through the search space
generating plans with varying numbers of processes of
each type up to the maximum. For example, if there are
100 input files to be scanned and the target table has 200
storage areas, the optimizer considers between 1 and I00
Scan processes and between 1 and 200 Sort-Insert
processes. The cloning degree of the source and sink of a
template river in turn imply a specific partitioning of each
river. For each partitioned plan, the optimizer considers
many process placements, memory allocations, and device
selections for individual operators.

Considering every combination of the process cloning
degrees, p, leads in the 100-source 200-sink case to a
search space with 100 x 200 = 20,000 cases. This space
may be searched more efficiently by realizing that many of
these 20,000 cases are quite similar and therefore need not
all be considered individually. For example, while there is
a substantial difference between plans containing 1, 2, 3, 4,
or 5 Scan processes, there is not much difference between
having, say, 80, 81, 82, 83 or 84 InsertTable processes.
The search space can be dramatically reduced by only
considering partition values that result in each Scan
process scanning a distinct number of files. A similar
heuristic is applied for Insert processes and the number of
storage areas they insert into. This leads to a reduction in

the search space from O(l-bni) to O(R'~'-~/) where m i is
the maximum partitioning of each template process type.
In the example, the heuristic reduces the search space from
20,000 cases to less than 600. This square-root heuristic is
a special case of the idea that the optimizer need only
examine plans that are significantly different.
(3) Place processes and data in duster: The third step in
the optimization process places processes at nodes, selects
devices for logs and sort scratch files, and allocates
memory for operators such as Sort and SQL engines. A
simple heuristic chooses devices: each Sort operator's
scratch files are co-located with the corresponding
InsertTable's storage areas. Each InsertTable operator also
co-locates its log files on the target disk. These heuristics
are based on a performance analysis that indicates that
scratch file IO and log IO nicely overlap with the
corresponding database IO. These heuristics dramatically

S I G M O D R E C O R D , Vol . 23, No . 4, D e c e m b e r 1994 77

reduce the search space and also ensure that no one disk
becomes a bottleneck.
Process placement and memory allocation decisions are
relatively easy when the configuration is either a single
SMP node or a shared-disk cluster of similar SMP nodes.
In these cases, the configuration's symmetry enables the
Optimizer to spread the work evenly across the nodes, and
distribute memory evenly across the Sort operators on a
node. For the template shown in Figure 8 the Optimizer
would evenly distribute the Scan processes among the
nodes and then evenly distribute the Insert processes. If, in
addition, each Insert process receives input from a single
Scan process, then reasoning about worthless parallelism
directs the Optimizer to co-locate each Scan process and all
its related Insert processes on the same node.
The optimization problem is computationally harder for
asymmetric configurations. If different nodes have
different speeds and different amounts of memory, then it
is no longer straight-forward to distribute the work evenly
among the nodes. Again, if particular devices are
accessible only from particular nodes, the process
placement and device selection steps become inter-related
and more complicated. Thus, for asymmetr ic
configurations, one either pretends to have symmetry and
uses simple techniques, or searches the space. Given the
exponential size o f the search space, randomized
algorithms such as simulated annealing seem to be the
only alternative to presumed symmetry.
A shared-nothing cluster o f similar nodes where each disk
is "owned" by some node that servers that disk still
possesses significant symmetry. The optimization strategy
used for shared disk-clusters may be extended to this case
by first placing all processes that have device affinity near
(one of) their desired devices -- a greedy algorithm. The
remaining processes are then placed in the emptiest nodes
unless they in turn have an affinity to processes. The cost
function discards placements that are infeasible or sub-
optimal.
(4) Est imate plan cost: The first three steps produce a
fully specified plan. The fourth optimization step
estimates the plan's elapsed execution time. The
Optimizer's goal is to find the plan with the minimum
estimated elapsed time. Blocking operators divide the
execution of a plan into natural, non-overlapping phases.
The optimizer estimates the cost of a multi-phase plan as
the sum of the phase elapsed times.
The plan's estimated elapsed time during a phase is the
maximum of the elapsed times for each of the processors,
devices, networks, or processes during that phase. Cost
functions are associated with each operator and with each
type of river (intra-process, inter-process, and inter-node).
During the cost evaluation phase, it is convenient to think
of rivers as operators. Cost evaluation proceeds in a
source-to-sink fashion. The cost functions for the operators
and rivers are used to calculate the elapsed times for the
processors, devices networks, and processes.
Operator and river cost functions are multi-dimensional:
they specify the processing, I/O, memory, and
communications cost to process a data unit. The cost or
an operator is obtained as a maximum of a number of
terms. Special note is taken of any asynchronous I/O and
asynchronous network transmission costs in estimating

elapsed times -- these times overlap with execution and so
the cost is the maximum of the three, rather than the sum.
Some operators such as Sort have a discontinuous costs
(one pass or two). Available memory and disk space are
modeled as constraints. These constraints often eliminate
plans involving one-pass sorting.
Complex cost functions make global analytical reasoning
extremely hard. They force an enumeration-evaluation
approach to optimization. Analysis reduces the number of
plans that are evaluated.
The combined use of templates, the square-root reduction,
and the placement heuristics, works well. Optimization for
SMP and symmetric shared-disk clusters was quick.
Planning a load for a 4-node (24-processor SMP), 400
storage area (disk), 24 input file (tape) system involved
generating and evaluating about 400 plans. It took less
than a second to pick a plan.

4. Para l le l E x e c u t i o n
4.1. Execution Environment: Overview
Webs are executed by a collection of executor processes
spread among nodes of the cluster. Each node has a web
manager that creates the executors at that node and
performs node-wide services for the web. The web
manager allocates a node-wide shared memory segment,
manages intra-node communication, coordinates startup,
phasing, checkpointing, and shutdown, and monitors
performance.
The web assigns each executor a set of operators to
execute. Each executor can be thought of as a multi-
threaded process: one thread for each operator in the
process. Executors all run the same program. That
program locates the executor's part of the web and
initializes the rivers and operators specified by the web for
that process. Startup is interpretive, but after a second or
two the web is initialized and the operators execute at the
raw machine speed.

Figure 9: The parallel execution environment. Each node
has a web manager. The web describes a set of operators
and their bindings to processes. The web manager
examines the web and creates a shared memory region
containing the web and the river/steam buffers for
communication among operators and processes at that
node. It creates the executor processes that perform the
web operations. Operators communicate via rivers. Inter-
node communication is via sessions tcp/ip streams among
web man~ers.
Each operator is programmed as a sequential operation
with three phases: (1) initialization, (2) execution, and (3)
termination. The initialization phase opens the operator's

7 8 S I G M O D R E C O R D , V o l . 23 , N o . 4, D e c e m b e r 1 9 9 4

input and output rivers, opens or creates input and output
files, and attaches to the database if necessary. The
execution phase reads the input rivers or files, operates on
the records, and produces a dataflow stream that flows to
an output river, file, or table. When the input streams dry
up (when all records have been processed), the operator
terminates by closing the input and output rivers. This
s imple model is complicated by checkpointing, error
handling, and transaction commit.
Rivers carry datafiows among operators. Rivers within a
node jus t pass data via shared memory. This
communication is especially fast within a process, because
user-level threads dispatch very quickly and because there
are often no splits or merges within a process. Flows
among processes at a node (an SMP) may involve splits
and merges but still avoid extra memory copies by using
shared memory. Intra-node rivers use operating system
process waits and dispatches that add overhead. Flows
among nodes involve tcp/ip and are much more expensive.
The relative costs of these three kinds of flows are 1:2:40
in the no-copy case and 1:2:12 in the one-data-copy case
where either producer or consumer must move the data in
memory. We expected to replace tcp/ip with a much more
ef f ic ient c lus te r -communica t ion protocol based on
reflective memory.
4.2 Startup: Processes, Rivers, Operators
After the opt imizer picks a plan and records it as a web
file, the client process forks a web manager on the local
node. This first web manager, called the root, coordinates
the web's execution. The root web manager re~ds the web
file and forks a web manager for each other cluster node
used by the web. The fork passes the web file name and
the root's tcp/ip socket number. Each subsidiary web
manger reads the web, gets a tcp/ip address and sets up a
communication session to the root. The root collects these
socket names and broadcasts the resulting directory. Now,
each web manager knows the addresses of all others and
can contact the ones it needs to talk to. One web manager
needs to talk with another if the web specifies a dataflow
between execution processes in their two nodes.
At the same time, each web manager al locates and
initializes a shared memory area at the node. This area
holds the web and the river buffers for all operators at the
node. The segment also holds the performance meters and
other node-wide information. The web manager then forks
that node's local execution processes as specified by the
first phase of the web.
Each executor first attaches to the shared memory segment.
It reads its part of the web from shared memory. Based on
this it, initializes the rivers and then initializes each
operator bound to the process. It then begins operator
execution. When all it's operators have completed, the
executor process notifies the web manager that the phase is
complete. If this its last phase, the executor terminates.
When all phases are complete, the web managers signal the
root and a job completion file is written with summary
statistics.
4.3 The River System - Startup and Execution
The river system is a key part of the design. Initially, we
considered using a tcp/ip session for each stream among
processes. This idea was short lived for two reasons:

Polynomial Explosion: A thousand scanners feeding a
thousand sort-merge-insert operators would require a
million tcp/ip sessions. We had to do something to cut
down this polynomial explosion.

tcp/ip Performance: The tcp/ip implementation we used
was expensive. It cost six million instructions to transfer
one megabyte of data within the node and eight million
instructions to transfer a megabyte between two nodes.
Writing data to a shared disk and reading it back is ten
times faster than using tcp/ip. The cpu cost of a message
is approximately f + mxb where f i s the fixed cost, m is
the per-byte cost, and b is the message size in bytes. For
memory-to-memory (same-node) requests, f is about
3,000 instructions and m is about 6 instructions per byte.
For LAN transfers, f is approximately 3,000 instructions
and rn is approximately 8 instructions per byte.

Performance problems with tcp/ip are legendary. A one-
i n s t ruc t ion -pe r -b i t - s en t is typ ica l o f c ommerc i a l
LAN/WAN communications protocol stacks. It makes
them un-usable for dataflow computing. Our solution to
these problems was to use tcp/ip as little as possible and to
look forward to the day that we can eliminate it. We did
the following:
RIO: Create a new communications protocol that lends

i tself to fast implementations. The protocol allows
operators to exchange data streams with no extra
memory copies. This protocol, called RIO (for fiver IO),
maps to a memory-to-memory protocol (MIO).

M I O (Memory- to -memory s t reams) : MIO is used for
communication within an SMP. Eventually, MIO can be
extended to distributed memory and reflective memory
hardware clusters [DASH]. MIO uses SIO for off-node
communication.

S IO (s t ream IO on the LAN): SIO is for node-to-node
communication based on tcp/ip until it can be replaced
with a standard high-performance cluster protocol.

Multiplex Sessions on Web Manager tep/ip sessions: We
ameliorated the polynomial-explosion problem by only
opening tcp/ip sessions among web managers. The
tcp/ip session between the web managers at two nodes
multiplexes all traffic between operators at those two
nodes. This cuts the polynomial explosion from a
million to less than five thousand sessions in a hundred-
node cluster. A three-level multiplexing scheme would
be needed to cut the polynomial explosion for massive
clusters (thousands of nodes).

MIO-SIO is a uni-directional session-oriented protocol
involving open () , get_buffer () , send_buffer () , and

close() routines. There is only one extra call:
f r e e b u f f e r () that indicates to MIO-SIO that the buffer
has been consumed. The semant ics of MIO-SIO
send_buffer () and get_buffer () are unusual. Once a
buffer is sent, the producer can no longer access it.
g e t . _bu f f e r () , when invoked by a producer returns an
empty buffer, while g e t b u f f e r () invoked by a
consumer gets a full buffer. Figure 10 illustrates many of
these ideas.
4.4 The RIO Protocol and Protocol stack
MIO-SIO flow control is simple: Each stream has a budget
of two or three buffers. When a producer exceeds its
budget, its g e t _ b u f f e r () requests stall. If a downstream
operator stalls, all upstream operators will stall until the

S I G M O D R E C O R D , V o l . 23 , N o . 4 , D e c e m b e r 1 9 9 4 7 9

consumer catches up. A consumer process may have wait
for input and a producer may have to wait for a consumer
to free a buffer. On the VMS operating system, process
waits and wakeups were implemented with mailboxes and
asynchronous system traps (ASTs.) Threads and ASTs also
exist on NT. On UNIX, threads and the event-signal
mechanism would be used.

!The RIO protocol and protocol stack

A simple MIO pipeline.

Figure 10. The RIO interface is built on a memory-to-
memory transport (MIO) for communication within a
process or SMP. MIO uses a stream interface (SIO) for
node-to-node communication. SIO buffers flows via MIO to
the local web manager that then uses tcp/ip to flow the data
to the destination node web manager (see Figure 11.) The
MIO-SIO protocol is suited for a zero-copy memory-to-
memory implementation. A producer gets a buffer from
MIO-SIO and fills it. When the buffer is full, the producer
sends the buffer. The consumer gets a buffer, empties it,
and then frees it. If the two processes share memory, there
are no extra memory copies. The diagram at the bottom
left shows a pipeline using the MIO-SIO interface. Rather
than freeing the buffer, the middle process modifies it and
passes it down stream. This is useful for data validation
and data conversion operations. River merge operators
also work in this pipeline fashion. The river system, RIO,
implements a record-at-a-time interface on top of SIO and
MIO. It also manages steam merges and splits.
Multiplexing data streams on top of a few tcp/ip sessions
creates a three-hop inter-node communications protocol.
When an operator at one node wants to send data to an
operator at another node, the data first flows to the local
web manager (via MIO), then node-to-node (via tcp/ip),
and then from the destination web manager to the
destination operator (via MIO).
This scheme is practical because it costs about 12,000
instructions to send a 32KB buffer through MIO, while it
costs over 250,000 instructions to send it via tcp/ip. So the
two extra MIO hops add less than 10% to the overhead.
RIO is a record-at-a-time interface programmed atop MIO-
SIO. RIO also implements the river system's record split
and merge operators. The call interface to rivers is
open_river (), get_record(),put_record(),
close_river (). In addition, a bulk interface allows an
operator to deal with the records in a buffer as a batch.

i •

®
~Shared Memory

Figure 11: The three-hop message protocol used by MIO-
SIO to reduce the polynomial explosion. I_AN streams and
rivers travel via MIO (1) to the local web manager that then
multiplexes them over a tcp/ip sessions SIO (2) to other
web managers. MIO is used at the destination to deliver
the data to the destination operator. Since MIO is a zero-
copy message protocol, it adds less than 10% to the
message cost. A three-level multiplexing scheme would be
needed for clusters much larger than 100 nodes (600
processors I.
The get_record (), put_record () requests are pointer
oriented so that no extra data copies are needed -- ideally,
they can pipeline data through the operators without extra
data copies. Only when a record is transformed, or split
into one o f several data buffers is the record actually
copied. This means that some operators get the zero-copy
performance indicated in Table 12. We believe the MIO
fixed cost could be reduced by a factor of three by more
careful programming -- it should be less than the tcp/ip
fixed cost.
Table 12: Cost of sending 1MB in 32KB chunks from
operator to operator (measured in thousands of
instructions.) Operators attempt to minimize data copies
within the RIO system, so both zero-copy and 1-copy time
are relevant.

transfer method

read/write disk
intra-process MIO, 0- copy
intra-process MIO, 1-copy
inter-process MIO, 0-copy
inter-process MIO, 1-copy

Iocal-tcp/ip
LAN tcp/ip

LAN RIO 0-copy
LAN RIO 1-copy
LAN RIO 2-copy

fixed cost / per byte total
32KB cost cost/MB
(k ins) (ins) (k ins)

5 0.1 250
7 0.0 200
7 0.5 700
12 0.0 400
12 0.7 1,100
4 6.0 6,000
5 8.0 8,150
29 8.0 9,000
29 8.7 9,700
29 9.4 10,400

4.5. Executor and Operator Structure
We considered having just one process at each node and
using our own thread mechanism to execute the operators
at that node. This approach would have reduced operating
system overheads but has several drawbacks. First, the
database system we were using is not thread-safe, That is,
it lacks an asynchronous call interface, and it associates
transactions with the process rather than with the thread.
This is a typical problem with database systems. So each
database operator needs to have a separate operating
systems task. Second, we find that many thread packages
are not much faster than the OpenVMS process
mechanism. Using operating system processes, exploits
multiprocessing and has little cost on VMS. In essence,

80 S I G M O D R E C O R D , V o l . 23 , N o . 4 , D e c e m b e r 1 9 9 4

VMS processes are our threads and the global shared
memory is our one-process address space.
All the papers we have read on parallel database systems
have focused on the query problem. In queries, data is
pulled from the database into the application. The
application calls for a set of records, and this translates to
calls to upstream data sources. This is a pull architecture
where downstream operators pull (call for) data from
upstream operators. Pull works very well if there is a
single data sink. As diagrammed in Figure 8, data loading,
does not have a single data sink. That diagram shows four
data sinks, the base table and three index tables. In
multiple-sink dataflows, a push architecture with flow
control is needed. That is, each opera tor works
independently and attempts to keep its output buffers full.
Each operator pulls from its inputs and pushes to its
outputs. The operator blocks when there are no inputs, or
when the two or three output buffers are full.
Orthogonal to the data flow, it is occasionally necessary to
commit a transaction or checkpoint the current state of the
web. These issues require that the operator thread poll for
such events or that it provide a callback to perform such
actions.
These issues led us to implement a simple thread package
for operator execution. Each operator is implemented as a
set of entry points:
op_s tar t0 : Ini t ial ize the operator, al locating storage,

opening rivers, tables, and files.
op_do0: Read a buffer-load (about 32KB) of data from the

upstream rivers, process it, and generate target data.
o p _ e n d 0 : Flush any internal data downstream and close

all rivers.
o p _ e o m m i t 0 : Prepare to commit all work (see the next

section)
op_checkpoint0: A checkpoint is being taken, record any

data you will need at restart (see the next section)
All operators follow this template. We implemented
operators to read and write files, tables, and tapes. We also
imp lemen ted sort and hash opera to r s . Hav ing
implemented one operator, it was relat ively easy to
implement others. We are confident that sophisticated
users can copy these templates and construct other
operators such as hash-join, aggregates, and cross-tabs.

Figure 13: The flow within an executor process is to call
the o p _ s t a r t () entry of each operator belonging. Then
the executor calls any op_do () operation that has an input
buffer. When all operations return a completion code, the
executor calls o p _ e n d () for all operations and then
terminates the process. Each op_do () step processes
one or more input buffers and passes them downstream to l
the next river and operators.

4.6. Transactions and Checkpoint/Restart
Thus far, we have ignored errors. What i f a record fails an
integrity check, or a unique-key check, or a referential-
integrity check? What happens if a transaction cannot
commit? What happens if a process or processor fails?
These are all difficult questions that have no easy answers.
Solving these problems is a fundamental part of any
parallel database system design.
Bad records are the simplest problem. If a record contains
data that v io la tes an in tegr i ty cons t ra in t (e .g . ,
birth_year between 1850 and CURRENT),then
the record can be sent to an error river (called the sewer)
along with a diagnostic. These rejected records can be
handled later. Both the data conversion and the database
insert code may discover bad records. For incremental
loads, integrity checks are enforced at each insert or are
deferred to commit , but they are checked a lmost
immediately. This makes error handling re la t ive ly
straightforward. The details of handling bad records are
much more complex for batch loads that create indices and
check referential integrity after the base table has been
loaded. The techniques are still fairly obvious. If a record
violates a constraint, it is deleted and sent to the sewer.
How does dataflow interact with transactions? The simple
answer is: "Not well." There are no obvious transaction
boundaries in the dataflow beyond the whole transaction --
that is an o ld -mas t e r ne w -ma s t e r batch model .
Unfortunately, to allow incremental loads of databases, no
part of the database should be locked for more than a few
seconds. This means that incremental loads must commit
every few seconds.
In the Rdb/VMS system, transactions are associated with
processes. Using the distributed transaction mechanism, it
is possible to associa te a t ransact ion with several
prco.esses. This has relatively high cost, so we adopted the
following simpler approach. Every few thousand insert
operations (every few seconds), an I n s e r t T a b l e
process commits. It does this by calling the op_commit0
entry point of each operator to allow it to flush any buffers
and make any integrity checks it needs to make. In
particular, this causes any deferred index updates to be
sorted, and performed in batch. Once each operator has
signaled willingness to commit, the process commits .
(This requires that all corresponding index inserts of this
process must be performed by this process).
If the commit is successful, fine. If the commit fails, then
there is a problem - some record violated an integrity
constraint. Now, the InsertTable process must re-
insert every record of the failed transaction, carefully
inserting each record and sending bad records to the sewer.
This requires that the insert-table operator keep a copy of
each such record. This can be done by retaining the input
river buffers and committing when a certain number of
buffers have accumulated. The InsertTable operator has a
callback to either discard the input buffers (successful
commit) or to carefully reinsert the records and then
commit (failed commit case).
We implemented this simple transaction mechanism. We
designed but did not implement checkpoin t - res ta r t
mechanisms. Performance numbers reported here include
the transaction overhead for UNDO-REDO logging needed
to make incremental loads work.

S I G M O D R E C O R D , V o l . 23 , N o . 4, D e c e m b e r 1994 81

Process and processor failure are much more difficult
problems. What if a hundred processors and a thousand
disks have been working for a day, and some one of them
fails? Much work would be lost by restarting from scratch.
If the load is incremental, then UNDO-REDO logging is
operating and the database is consistent. The only problem
is that some records may be lost (not inserted in the
database.) If the process were recreated and its input data
streams were reset to that point, then the process could re-
execute the needed data processing.
Checkpoint-restart is the standard technique for masking
failures of long-running batch operations. The root web
manager initiates a checkpoint approximately every hour.
In this case, a failure will lose and redo only a half hour of
work on average.
Checkpoints and restarts are coordinated by the root web
manager. It first requests all web managers to quiesce all
their executors. Each executor calls its operators asking
them to prepare to checkpoint. The idea is that data
sources stop reading records, data consumers empty their
input rivers, flush any internal sate, and fill their output
buffers. Eventually, all executors are in their outer loops,
all transactions are committed and most rivers are empty.
Now each operator is called to checkpoint its state in a
node- local checkpoin t file. In addi t ion all r ivers
checkpoint their non-empty buffers and their current
stream sequence numbers. When this is complete, the web
starts the dataflow again.
I f a node fails, each node restarts from the most recent
successful checkpoint . The operators and rivers are
reinstantiated, the computation proceeds from that point
forward.
Much of this technology was pioneered in the 1960's by
batch processing systems and is recorded in checkpoint-
restart manuals from that era. We found two novel issues.
Blocking Opera t ions . Most operations (like scan, make-

key, and insert) have almost no state. Certain operations
like aggregates, join, sort, and merge have a great deal of
state and have scratch files. They must record this state
at each checkpoint. Even when they complete, they
cannot delete their state until the next checkpoint
completes (this suggests that phase changes should
trigger checkpoints). This is similar to triggering a
checkpoint each time a tape ends.

Idempotenee: It is important that records not be inserted
twice. Restarting at an early point in the data stream
might place a record in the database twice, The
idempotence problem is fairly easily solved: when a
transaction commit, it writes a "high-water-mark" in the
database, recording the identifier or sequence number of
the highest inserted record. At restart, the insert operator
reads this high-water-mark, and discards all records prior
to that as they appear in the input stream. Only records
beyond the high water mark are inserted in the input
stream. This is called the MiniBatch technique in Gray
and Reuter [Chapter 5].

Determinism: A second execution forward from a given
state may not generate records in the same order.
Records coming from a sequential device (tape or disk)
and records coming from a transformer will be in the
same order on re-execution, but records coming from a
river-merge operation may be permuted if the buffers

arrive from the sources in different order. If a river
merges data from sources A and B, the first execution
might present a pair of record buffers in the order A1 A2
A3 B1 B2 B3, while a second execution might present
them in the order A1, BI , A2, B2, A3, B3, or any other
of the sixteen possible permutations that preserve the
order of the A and B sub-sequences. We have found
only two solutions to this problem. (1) If the operator is
order insensit ive, that is the operator ' s output is
independent of the input order, then one can ignore this
problem. Sort and aggregate operators have this
property. (2) If the operator is order-sensi t ive (e.g.,
Insert), then it must insist on a deterministic ordering of
the input buffers so that the river merge operation will
produce the same record steam independent of the timing
of the buffers arriving from multiple data sources.
Buffer sequence numbers are the standard way to
manage this logic.

Fault-tolerance for these long-running batch operations
seems ripe for rediscovery of old techniques, and invention
of some new ones. We did not implement our ideas, and
so cannot tell how successful they would have been.

5. Performance Measurements
Recall that our goal was to load a Wisconsin terabyte in a
day using a hundred-processor thousand-disk cluster. Most
of our development and performance results were done on
a much more modest one-node, two-processor, eight-disk
system in our laboratory. We were unable to get access to
a large cluster before the project ended. We had occasional
access to a 24-processor 400-disk cluster.
The hardware was a DEC System 4000 -620 which is a
dual-processor 150Mhz Alpha RISC processor. Each
processor is rated at 100SPECints, but SPECint is a cache-
local benchmark. Measurements of n:~mory intensive
applications typical of database systems indicate the
machine executes about 40 million instructions per second.
It had 256MB of main memory and eight 2 MB/s SCSI
discs on four controllers.
We tested the load of a million-record hash-structured base
table with no secondary indices. The source data was
stored on separate disk files. All loads were done as
incremental loads with undo logging and locking enabled.
Transactions committed every 50,000 inserts. Turning
transactions off cuts the IO and cpu cost in half.
The Rdb load utility is the base case. It is a single-process
that reads an input source and inserts data into the target
table. This single process (1) scans the input, (2) formats it
as a database record, (3) constructs the hash key for each
record, (4) sorts the records into hash order, (4) inserts the
records in hash order, and (5) commits occasionally.
Next a single-process web was measured. It emulates the
loader but uses a batch-insert interface to Rdb insert
developed for us by the Rdb team. This simple change,
allowing InsertTable0 to insert 100-records at a time rather
than making a separate call per insert reduced cpu time by
40%. In fact, we found a 20:6:2:1 ratio between dynamic
SQL (PREPARE-EXECUTE the INSERT statement), static
SQL, (EXEC SQL INSERT...), a low level. (DSRI)
interface, and this vector-oriented interface. The Rdb load
utility is now converted to this vector interface.

82 S I G M O D R E C O R D , V o l . 23 , N o . 4 , D e c e m b e r 1 9 9 4

Table 14: Elapsed and cpu time to load a million records
from file to SQL table using the Rdb load utility, a 1-
process web, a simple pipeline, and then a 2-way and 5-
way cloning of the sort-insert process. All tests were run
on a dual-155Mhz SMP DEC Alpha 4000 system.

Form of Load elapsed (see) cpu (sec)
Rdb Load 1785 1097

1 Process web 1217 685

1 Scan 1 Sort-Insert 1205 685

1 Scan 2 Sort-Insert 889 717

1 Scan 5 Sort-Insert 565 766

Next pipeline parallelism overlaps input scanning the with
sorting. A parallel web of a scan process feeding a hash-
sort-merge-insert process had almost no effect on either
elapsed time or cpu time. That is because the hash-sort-
merge-insert process is IO bound. This incidentally shows
that pipeline parallelism is often not a giant improvement.
The next two experiments cloned the hash-sort-merge-
insert process two and then five ways. These experiments
show that the cpu time rises slightly (about 10%) with the
parallel execution and consequent extra scheduling, but
that the elapsed time drops by 25% and then 54%. The
Ix5 case has only 70% cpu utilized. With more discs, the
system could have been configured as a lx8 web. We
believe this web would have a 15% cpu increase but 4x
reduction in elapsed time to less than 400 seconds. This
would correspond to a 2500 record/second load rate for
this node. The index load time is a second phase that runs
about four times faster than the initial load since the data
volume is four times less.
By using six-way 200 MHz Alpha processors, and four
times as many disks, the load rate should reach I0,000
records per second. That translates to 173 GB/day. By
extrapolating from Table 13 and 15, one estimates that a
hundred processor thousand-disk system structured as
sixteen SMP nodes would be able to load 2.4 TB per day.
The traffic in and out of each node would be a modest
2MB/s which is well within FDDI and ATM bandwidths.
These extrapolations assume that there are no bottlenecks
in the design. We analyzed the design and believe that no
bottlenecks exist. We were able to try some very simple
webs in a small cluster, and did not see any bottlenecks.
Unfortunately, the project ended before we could try the
software on a really large cluster.
6. Summary and Conclusions
Dataflow parallelism is the most promising approach to
parallelize database operations. The prototype we built
automates much of the parallel database loading task. An
explorer discovers the cluster configuration, and an
optimizer picks the minimum-plan to perform the load.
Physical database design and placement remain to be done.
Our system execution model was novel. There is a web
execution monitor at each node of the cluster. It sets up a
collection of processes executing at that node. Operators
within a node can use a high-performance zero-copy
memory-to-memory stream transport. Streams among
nodes are multiplexed over tcp/ip sessions to reduce the
polynomial explosion.
Connecting transactions with the dataflow web allows
incremental and online loads, but raises interesting issues

related to transaction failure. Adding checkpoint-restart to
database dataflows is an area we designed but did not
implement. It will be interesting to see how these ideas
work in the product.
In the end, the parallel data load utility demonstrated good
speedup due to parallelism. Unfortunately, staff and
budget constraints prevented us from testing the prototype
on a large cluster. Despite that, we believe the approach to
be sound and believe that these ideas will be widely used
in database future products.
7. A c k n o w l e d c j m e n t s
The Rdb team, especially Louis Dimino, Jay Feenan, Steve
Hagan, Paul Mackin, Rabah Mediouni, Ian Smith and Peter
Spiro helped us with advice, encouragement, code, and
equipment. They were a key part of this effort, and are
now moving the prototype into their product.
8. References.
[DASH] M. Heinrich, et. al., "The Performance Impact

and Flexibility of the Stanford FLASH Multiprocessor, "
6th ASPLOS, Oct. 1994.

[DeWitt 1] D. DeWitt, et. al., "GAMMA - A High
Performance Dataflow Database Machine", Proc. 12th
VLDB, Chicago, Sept. 1986.

[DeWitt 2] D. DeWitt, "The Wisconsin Benchmark, Past,
Present, and Future", in The Benchmark Handbook for
Database and Transaction Processing Systems. 2nd ed.,
Morgan Kaufmann, San Mateo 1993.

[Englert] S. Englert, "Performance Benefits of Parallel
Query Execution and Mixed Workload Support in
NonStop SQL Release 2", Tandem Systems Review,
V.6.2, Oct 1990, pp. 12-23.

[Garey & Johnson] M.R. Garey, D.S. Johnson, Computers
and Intractability, W.H. Freeman, 1979.

[Graefe] Graefe, G., "Query Evaluation Techniques for
Large Databases," ACM Computing Surveys, V. 25.2,
pp: 73-170, June, 1993.

[Gray & Reuter] J. Gray, A. Reuter, Transaction
Processing Concepts and Techniques. Morgan
Kaufmann, San Mateo, 1992.

[Hasan, Motwani] W. Hasan and R. Motwani,
"Optimization Algorithms for Exploiting the Parallelism-
Communication Tradeoff in Pipelined Parallelism,"
Proc. 20th VLDB, Santiago, pp. 36-47 Sept. 1994.

[Hong] W. Hong, Parallel Query Processing Using Shared
Memory Multiprocessors and Disk Arrays, Ph.D. Thesis,
U.C. Berkeley, 1992.

[Kitsuregawa 1] M. Kitsuregawa, H. Tanaka, T. Moto-ka,
"Application of Hash to Database Machine and Its
application," New Generation Computing, 1,1 pp.63-74,
Springer Verlag, 1983

[Kitsuregawa 2] M. Kitsuregawa, Yasushi Ogawa,
"Bucket Spreading Parallel Hash : A New Robust
Parallel Hash Join Method for Data Skew in the Super
Database Computer(SDC)." Proc. 16th. VLDB, pp.59-
70. 1990.

[Serlin] O. Serlin, "The History of the TPC", in The
Benchmark Handbook for Database and Transaction
Processing Systems. 2nd ed., Morgan Kaufmann
Publishers, San Mateo 1993.

[Teradata] Teradata DBS Concepts and Facilities for the
NCR System 3600, AT&T GIS, Dayton Ohio, Jan 1994.

S I G M O D R E C O R D , Vol . 23, No. 4, D e c e m b e r 1994 83

