Text Databases: A Survey of Text Models and Systems

Arjan Loeffen

Computer & Humanities, Faculty of Arts, University of Utrecht, The Netherlands
Achter de Dom 22-24, 3512]P Utrecht (LOEFFEN@LET RUU.NL)

Abstract. Text models focus on the manipulation of tex-
tual data. They describe texts by their structure, opera-
tions on the texts, and constraints on both structure and
operations. In this article common characteristics of ma-

ine readable texts in general are outlined. Subsequently,
ten text models are introduced. They are described in
terms.of the datat that they s;pport, and the opera-
tions defined by these datatypes. Finally, the models are
compared.

1. Introduction

Texts are converted to electronic representations for all
kinds of purposes. The most central operation performed
on these texts is that of retrieval. Most operations are
founded on elaborate text querying, the results of which
may be used for comparisons, sorting, numerical comput-
ing, printing, editing, annotating, etcetera, as well as for
adg’ditional retrieval operations. In text-based information
systems the electronic texts are required to be available in
a form that allows for dedicated access. Access of texts on
a word-for-word basis ignores important parts of the
information present in the source text. Query facilities
should be powerful, and allow for a more complete access
to the electronic source(s). This includes structural, lin-
%ﬁstic, associative and linear access. If the retrieval part of
the system is powerful enough, any kind of text accessing
system may be defined ‘on top of' this system.

The individual characteristics of the texts that are ul-
timately stored for retrieval cannot be predicted. How-
ever, these texts may be expected to conform to a formal
model of text. The waK ‘text’ 1s thus abstracted into a model
may be reflected in the accessing language, that applies to
the formal aspects of these texts. The power of the access-
ing language is proportional to the extent the information
is conveyed in the electronic text.

Such a text model consists of three elements: the way
text features are abstracted, the operations that are re-
quired for accessing the information in store, and the con-
straints in text representation and access. In this article
these three aspects are introduced. Next, several existin,
text models are described shortly, and finally all models
are discussed in the light of the three aspects of a text
model mentioned.

2. Background

Text and factual databases. There's a clear difference be-
tween the way text directed systems on the one hand, and
text extended database systems on the other treat textual
sources. In database systems, text is treated as a special
kind of field value that calls for some operators that allow
the query to locate terms in that text field. However, for-
malizations of textual relations in these factual database
systems have received little attention from the database
community. Text is mostly a secondary source of in-
formation, and document structure, access paths and con-
straints have not been defined on an abstract level:

SIGMOD RECORD, Vol. 23, No. 1, March 1994

"Most commonly, retrieval systems deal only with two
kinds of textual objects: the word, and the document con-
tainir‘tig it — any intermediate structure is left unrepre-
sented, and therefore inaccessible. [..] The relatively few
systems that represent any structure beyond the document
and the word do so by either hard-copying a particular
structure [..] or by adapting a tmc;:'ltlional structured
database approach, treating textual objects as though they
were fields.” [DEERW92:128]

More structure-oriented text directed models may result
in relevant tools in themselves, but could also be adapted
by both text-based (TB) and text extended (DB+text) sys-
tem models. They will not only set a context for source
oriented research, but also take part in more industrial
applications. Such models are treated in this section.

Characteristics of electronic text. All text models abstract
the nature of text in general. Programs based on the model
will therefore operate on machine readable sources that
may be expected to share most characteristics of their
physical counterparts. Text models should address these
characteristics in a consistent way, as these are features
shared by all machine readable texts. Some of these are
mentioned below.

* Texts are written in natural language. Therefore, char-
acter sets may differ between texts, the concept of
‘word’ may differ between languaﬁsf and users, sen-
tence boundaries are sometimes hard to determine,
etc.

¢ As the models deal with electronic text, the encoding
strategies used to convey characteristics of the origi-
nal text are of high importance. More and more, texts
are exchanged in an encoded form. The most promi-
nent lalsiguage in this respect is the Standard Gener-
alized Marku Languoilige (SGML, {ISO8879)), though
numerous other encoding schemes are in use. It is
fictitious to assume the texts will be rendered in a
bare form, i.e. without structural and informational
codes.

¢ Texts are complex objects. Complexity may for exam-

le take the form of hierarchical and linear relations
een components, and of references from one
component to another. An important structural fea-
ture of texts is that in-line components, such as a
footnote or citation, may occur anywhere in the text.
Next, text hierarchies are based on containment rela-
tions. This means that any operation on the ‘super'
text also applies to the 'sub’ text. Containment should
be an intrinsic part of the model of text structure.

s Strongly related to the previous, the text system
should also be able to determine the basic components,
i.e. what parts of the text may be treated as a unit for
editing, moving, lmkm% and so on. This decision lies
not only on the level of textual representations
(inversion versus linear text scanning), but also on
the level of text structure.

* Texts and subtexts are usually augmented with meta-
information of diverse nature (attributes). This may
take the form of labels attached to text sections, com-
ple’trt(ei documents, or simple tags 'pinned’ on a single
word.

97

* One and the same text may contain parallel text struc-
tures. For example, a document may be structured b
thsical characteristics (pagination, rendition), paral-
el with its logical structure. Any operation that con-
cerns one structure influences the structure of the
other levels.

¢ Texts may be mutable by nature or use. In that case
updates may violate the integrity of the information
in store.

Text models. If we are to select some text models, we
should first determine what we understand as a model.
On this issue, [TAGUE91] states:

"The purpose of a formal system model is to describe the
common features of a set of systems which have been devel-
oped for similar problems. The model will explain the
structure and processes of these systems, and clarify their
general, as opposed to specific, characteristics. The compo-
nents of a model must include the kinds of entities, rela-
tionships and trans, tions or operations which form a
part of the system which it is intended to describe. A com-
plete model will contain a representation of all components

in any system of the kind referenced by the model.”

It is assumed that textual data are modelled if three as-
pects are covered: the text structure, operations that are
allowed and relevant for text handling, and constraints
that apply on both structure and operations. These may
each be separated in a physical description and a logical de-
scription. We should however focus on the latter if not de-
scribing a particular implementation. The aspects should
align with text characteristics as mentioned earlier.

s Structure. The model will show how textual data are

interrelated such that a correct representation of the
source may be given. This does not mean that partic-
ular logical text descriptions are presented. The
model should allow the user to spe?;g' the text type
(all structural features, including different informa-
tion levels) in a uniform fashion.
Structural features are abstracted into a definition
scheme that describes all possible text structures.
This usually takes the form of a text grammar. Subse-
quently, text are classified (a type is assigned to it),
and the text is sectioned into manageable parts. Thus
schema’s in factual database systems would be coun-
terparted by grammars in a textual context.

¢ Operations. The model focuses on how operations
may address those objects that are described by the
grammar. Again, particular interpretations of such
objects are not described. The model will onlg de-
scribe the basic relations between textual objects
(hierarchical, linear, referencing) and the way such
relations may be defined and queried.

¢ Constraints. ical constraints are imposed on text
manipulations. This includes restrictions in cross-ref-
erencmg, removal of structural objects, derth of nest-
ing, and so on. Purely on the operational side, con-
straints mag' be formulated such as the way a foot-
note should be accessed, if annotations may be ex-

rted without the annotated text section to go with
it, and so on. Any model will show how such con-
straints may be formulated — it will however not de-
fine these particular constraints.

In the following some text models are presented shortly.
Most of the models are actually used in implementing a
text handling application. Structural characteristics of text
are most extensively defined by the SGML standard
([1508879)) and the ODA standard ({ISO8613]). The mod-
els address both document structure and behavior, but do
not (completely) align with one or both of these standards.

The models are described (where possible) by the
datatypes that are vital to the model, and the operations
and constraints that are defined upon these datatypes. The

98

description of the models in terms of datatypes allows for
a clear distinction between data, procedures and con-
straints.] like to stress that such types are deferred from the
references on the models, and are therefore not always
available as a supported type.

3. TDM

Introduction. As the relational model is widely in use, and
textual sources are to be incorporated, it seems reasonable
to try to extend the relational operator set on these textual
objects. This is the approach taken by the TDM model.
[DESAI86] describes a text data model (TDM) based on
nonfirst normal form (NFNF). The aim of the TDM is to
extend the operations defined on textual fields in a NFNF
relational model. TDM assumes the relational model to
pass the text fields as TEXT instances; it returns a success
code (succeeds or fails) as the evaluation result. For in-
stance, the following NFNF relational expression will suc-
ceed for all tuples in the database that have the text "May"
in the ABSTRACT field:

retrieve TITLE
where ABSTRACT\"May"® # ABSTRACT

Such queries are relatively sim%le, but assume that the
where clause activates a subprocess that retrieves
information of the non-normalized ABSTRACT field. This
is the focus of the TDM model.

Objects. TDM introduces four basic datatypes for text
processing, and the operations that apply. TEXT is a recur-
sive relation of CHARACTER (ordered))'. A text ovalue
(constant) is enclosed between matching characters, eg.
"text”, Mother textM. An (UN)ORDERED SET is an
(un)ordered list of unique characters or texts. The OR-
DERED SET constants are denoted by (a,b,c). The UN-
ORDERED SET is denoted by {a,b,c}. Sets do not collect
sets nor expressions. Furthermore, a struct is supported to
model dependent substructures.

erations. Special operators are applied to the instances.
e most basic operator that applies to TEXT is the search
operator e, e.g.:

r ¢ "John" « "h"

assigns "h" to r if "h" is contained in r. Text expressions
{that operate on text) produce TEXT or (UN)ORDEREDSET in-
stances.

Concatenation (+) is defined on TEXT and on UN-
ORDEREDSET.. For text concatenation, the ent may be
any text expression, and therefore may include ordered
sets (unordered sets are in this case not supported):

"Ope" + "Admiration™ ¢ "ration"
returns "Operation"

"Ope" + "Admiration"™ < ("ration®, "mi")
returns "Operationmi®

This last expression is transduced to "Ope" +
"Admiration" ¢ "ration"™ + "admiration" -
"mi" which is evaluated, as all expressions in TDM, from
left to right.

Unordered set concatenation is the regular set union,
defined on UNORDEREDSET only.

Removal (-) is defined over TEXT and UNORDEREDSET.
Text removal is complementary to concatenation. It re-
moves the first text occurrences from a text instance.

"Operation specification™ - "ion"
returns "Operat specification"

SIGMOD RECORD, Vol. 23, No. 1, March 1994

Unordered set removal is the regular set difference op-
eration. The same question as formulated above applies
here.

Copy-extraction (®) is defined over TEXT, and pro-
duces an ordered set with two elements: the first result is
due to ooncatenation, the second to subtraction.
"Specification " 3] "pe" returns
(Specification pe", "Scification "), which
comes down to moving "pe" from the start of the subject
to the end.

Division (/) is also defined on TEXT. The operation is
similar to removal, but is more elaborate. It has two re-
sults: the quotient and the remainder. For instance, "abc"
/ "b" returns ("a", "c"), i.e. the subtexts that precede
and follow the nominator "b" in the denominator "abc",
respectively. Two operators t1/t2 and t1\t2 are avail-
able to select the preceding or following part of the divi-
sion. The nominator may be an ordered set, for example:

*"ABCDEFG" / ("B", "D", "F")
returns ("A","G")

The operation is in fact a fragmentation operation, as the
elements of the parameter set are used to select each left
element in the subject text preceding any element of the
unordered set. For example,

"You made an error." / {" ", "."}
returns {"You", "made", "an", "error"}

These constructions are typically used to define text views
that are much like functions in the sense that text expres-
sions may be assigned to them, specifying a placeholder
variable in both the expression and the text view:

punctuation_list « (" ", ",", ".", "2", "I"}
define word_list(t) « t / punctuation_list

The text views take on the of the expression
(word_list would be of type TEXT), and may be used
where this tz'ipe is accepted.

Other ‘data ' may be constructed at will using a
traditional struct. A typical use for this primitive is the
collection of text views Into a grammar specifying the text
structure.

4. P-strings

Introduction. The focus of the p-string model of
[GONNES87] is text-dominated databases, described as
‘collections of structured data, predominantly composed
of alphabetic characters’. The authors focus on dictionar-
ies, news clippings, legal documents and so on: highly
structured data that allow a high degree of normalization,
that do not fit easily into tables — the main argument is
that these of 'records’ cannot be treated as tuples,
but should be handled as trees of information units, de-
scribed by grammars, and manipulated by tree manipula-
tion functions. The paper presents a model for text-domi-
nated databases as a textual counterpart for relational
models for factual data. A variant of this model is pre-
sented in [TAGUE91]. [GYSSE89] elaborates on the
mathematical fundamentals of grammar based models
such as the p-string model. They define the minimal tree
manipulations as both an algebra (on instances, where the
D-tree datatype is central), and as a calculus (on collec-
tions, which calls for the R-TREE datatype). These opera-
tions (8 in total for D-trees) form a complete set for the
implementation of the p-string model. However, in this
section only the p-string model is described.

Objects. We may recognize several datatypes used in the
p-string model. STRING is any sequence of alphabetical
characters. The P-STRING is the representation of a parsed

SIGMOD RECORD, Vol. 23, No. 1, March 1994

string, i.e. a string that has been described by a grammar
and is represented accordingly. GRAMMAR, then, is a set of
rules that is identified by a non-terminal symbol (which
serves as a local root). The grammar is built by a parser
enerator for context free grammars. Its interface is not
gescn’bed in [GONNES87], in contrast with [GYSSE89],
who describe both the structure and the schema behavior
of similar grammars. An example of a PAT grammar is
given here {(these rules are part of an art icle grammar):

source := 'In: ' compname ' ' vol ' (' nr '), '
year

compname := '[' shortname shortyear ')'

nr := digit+

vol := digit+

shortname := char+

shortyear := digit digit

year := '19' shortyear

Other datatypes are INTEGER and BOOLEAN in the tra-
ditional sense, and VECTOR and SET, that collect subtrees as
a list or an ordered set (no duplicate subtrees). A third
g};s:ia.l datatype is PARTITION, a vector with two elements.

is is the result of the partitioned by operator. Finally,
FUNCTIONS are treated as data that implement pro-
cesses. These may succeed and fail, returning booleans that
implement operators such as and and or.

 source

=T
< _(RHOTEyear f——————se(Goat)

|||

.issues”". In: [IEEEK92] 4 (3), 1992.

Figure 1 - P-STRING represented as a tree.

Operations. The operation parsed by is defined on STRING.
It parses a STRING according to a grammar and yields a p-
STRING. For example:

'...In: [IEEEK92] 4 (3), 199%2.°
parsed by Article

returns a P-STRING, the source part of which is depicted
in Fig. 1.

99

reparsed by, defined on P-STRING, re-evaluates a P-STRING
according to a (SUB)JGRAMMAR, identified bﬁea root symbol,
i.e. each node labeled by that symbol will be reparsed. For
example, suppose the grammar for source is modified:

source := 'In: ' compname ' ' vol ' (' nr '), '
year v . (I pg L pg l) v
pg := digit+

Applying the reparsed by operator to 'In: [IEEEK92]
4 P%);l?gwsz . (223_23_]1)39;1-“&11 yield the p-string dis-
played in Fig. 2.

These two operations are central to the p-string
model. Some other interesting operations are listed below.
in, subtrees and every are typical tree-management
operations that do not depend on the grammar specifica-
tion. The transduced by operation uses the grammar to
create a new p-string. partitioned by and where are based
on the evaluation of FUNCTION instances passed.

shortyear
shortyear

]
a

a‘aaaaaa lEHE:

tn: [{IEEEK92) 4 (3), 1992.((223-237)

o | o

igit)

digit

)
pad
]

Figure 2 - A reparsed reference.

The in operator, defined on P-STRING, takes a sKmbol and
locates the first occurrence of that symbol in the I!l)-stﬁng
by a depth first, left to right search. The result of the oper-
ator is a copy of the subtree. subtrees, defined on p-
STRING, accepts an argument P of type symbol, and returns
the immediate subtrees of each node P as a VECTOR. every,
defined on P-STRING, is similar to in, but performs a full
traversal and collects all subtrees with the node labeled by
the symbol given in the VECTOR passed as a parameter.
suppressing, defined on P-STRING, removes all subtrees
that are labeled by the (set of) symbol(s) passed.
transduced by, defined on P-STRING, accepts a p-
string and a Eart of a grammar, and yields the subsection
of p-string that conforms to the new grammar. For in-
stance, if we are to define a grammar G' (where G is the
original grammar used to parse E) and pass it to E, this

100

will yield a short book description of the kind result =
"Gonnet (1987)"™

G' := {article := surname ', (' year ')"'}
Result := E transduced by G’

partitioned by, defined on P-5TRING, performs an intra-p-
string comparison with the ent FUNCTION (returning
a value F for each node) that is applicable to all subtrees of
the original p-string P. The operator returns a p-string that
groups the subtrees of P by their F values. The result is a
set of PARTITIONS. where, defined on P-S5TRING, takes a
boolean function and returns the P-STRING with all sub-
treesfremoved where the application of the boolean func-
tion fails.

5. PAT

Introduction. The PAT text searching system [GONNES7,
91} has been developed at the University of Waterloo, Cen-
ter for the New Oxford English Dictionary and Text Research,
where it is used to query the Oxford English Dictionary
(OED). The PAT text model is implemented as a text re-
trieval engine that communicates with the user either di-
rectly by PAT expressions, or bz a tailored windowing in-
terface called LES TOR [SALMI92]

Objects. PAT is founded on indexed text, where the index
terms are specified by a grammar: the so called text in-
staller builds up these ingex&s by defining several term
patterns, that each result in a separate index.

As the grammar is not context sensitive, some prob-
lems may occur in defining indexing terms, e.g. ‘word’
would be defined as a sequence of characters between in-
terpunction, which will distinguish the 'words’ U, S, pol-
icy, making, ice, creamin'U.S. policy-making on
ice cream'. Moreover, SGML encoded documents will
cause (;)roblems when the slash (/) is defined as interpunc-
tion, due to the end tag specification in this language.
There's no model intrinsic reason why a context sensitive
grammar has not been defined (y=t). The designers state
somewhat evasively that “the richness of natural language
and the richness of information needs from natural language
texts will always cause problems in defining indexing satisfacto-
rily” ([SALMI92:8)).

Within the same index the elements may not overlap
and are always of the same nature, e.g. characters
(proofreading), words (text retrieval), structural sections
(gierarchical views). Each element starts a semi-infinite
string, i.e. the sequence of characters starting from the ele-
ment upto the end of the text. Searching is based on the
match between e%uery and index term: if the indexed ele-
ments are defined as 'character’, the text is fully accessible.
An advantage of treating texts as build out of such semi-
infinite strings is that no superimposed (precompiled) text
representation is required.

The evaluation result of expressions in PAT are result
sets that consist either of match points or regions. There-
fore, we may distinguish, among others, the following
datatypes. CHARACTER is the smallest indexable element.
STRING is defined as any sequence of characters. Strings
are always normalized (both as subject and object), i.e.
interpunction characters are converted to blanks. This re-
stricts searching for terms with specific delimiters. MATCH-
POINT indicates the start of a semi-infinite string. Each
match point has a unique position in the text. REGION is a
text section between two characters. REGIONS always be-
long to one or more region sets (non overla%ping). ypical
examples are year (a sequence of 4 digits between inter-
punction), and paragraph (all text between
<paragraph and </paragraph, where *>' is treated as
interpunction). The s(\)xé)port of regions in this sense distin-
guishes the PAT model from conventional full text re-
trieval applications, though not from other text models (cf.

SIGMOD RECORD, Vol. 23, No. 1, March 1994

ocontainment model, MdF, treated in sections 7 and 8 re-
spectively). MATCHPOINTSET is an (unordered) result set
containing MATCHPOINTS. REGIONSET (also a result set) is an
unordered set containing REGIONS.

Operations. PAT expressions are defined over these basic
datatypes, and each one may serve as subject and object in
any expression. Below the operations defined are de-
scribed.

First, the ran§e operator (..} is defined over STRINGS.
The operator implements a generator over its elements,
each element lexicographically between subject and ob-
ject, inclusive. For example, "mi".."mo" is evaluated as
a set of strings {"mi", "m3j”, "mk", "ml”, "mn",
"mo"}. Next, a lexical search will locate the argument in
the text via the index. It returns a MATCHPOINTSET con-
taining all matchpoints for the argument. If the argument
is a single term (as in line 1 below) all positions of that
term are collected; if a range of terms is specified (as in line
2), all terms lexically between the prior and the latter are
collected:

1 "You will stay there anyway" "ay"
2 "You will stay there anyway"™ "ya".."yz"

The 'cursor' in the subject string may be moved directly.
In that case, a MATCHPOINTSET of all match points that are
at a specified Fosition is returned. For examglle, absolute
positions are denoted by [pl. The following will return one
match point.

"You will stay there anyway" [10])

As another example, the shift operator moves the cursor a
number of positions relative to the current cursor position,
returning a MATCHPOINTSET. The expression below shifts 2
positions to the right.

"You will stay there anyway" shift.2 "w"

Frequency search operators deal with the frequency of
terms in the s:l&iect, and always return a MATCHPOINTSET.
signif is defined in two ways. First, the most frequent sub-
strings consisting of whole indexed elements may be re-
trieved, beginning a phrase starting with the given object
string. For instance, signif "a" will (in case of a word
b index) return the set of match points of the most fre-
quent words in the subject string starting with ‘a’. signif
may accept a second parameter (in that case a dot indi-
cates a parameter passed) that specifies the number of
consecutive indexed elements that should be compared.
Second, if a negated parameter is passed, the signif.-n will
return the n most frequent elements in a sequence of match
point sets. For example, signif.-3 will return the
match point sets for the three most frequent terms in the
source string.

The Lrep operator is similar to regular indexed re-
trieval, but is designed to find the longest repeated sub-
string. It accepts a match point set as its argument, and
returns a subset of the argument set that identifies at least
two longest matching extensions. If an integer argument is

as in 1rep.6 'a'), of all semi-infinite strings
that are retrieved by a regular lrep operation, the results
that eahre closest to the integer argument specified are re-
turned.
The docs operator returns a REGIONSET that starts and
ends with any character of the MATCHPOINTSETs entered as
an argument. For instance, the followixf ression
would return region set with one element, i enii)g-ing ‘ay
there any"

"You will stay there anyway"
docs ("ay")..("ya".."yz")

Several operators work on sets and return a subset — the
gpe of the subject determines the type of the result set. in-
uding returns the subset that contains the argument

SIGMOD RECORD, Vol. 23, No. 1, March 1994

string. If a text is defined as a set of re%ions denoting sen-
tences (symbolically referred to as *S), *S including
"of" would return the subset of sentences containing the
string 'of". PAT also implements regular set manipulation
(f)gerators (for difference, union, intersection). Finally, the

y.n and the near.n operators are used when the mem-
bers of the subject set must precede some member of the
object set by at most n characters (implementing adja-
cency). The within operator returns all regions in subject
that are contained in the object set, e.g. sonnetlines =
*line within *sonnet.

6. TOMS

Introduction. The TOMS model (textual object management
system) is developed and used as part of a full text re-
trieval system. It is a primary indexing toolkit, i.e. a series
of algorithms that create an index surrogate for superim-

text structures, i.e. all hierarchical text units beyond
the word token.

TOMS deals with textual objects — those components of
texts that are of interest and that may be recognized and

. The management of these objects includes the de-
scription of structural relationships, their recognition and
access in the textual object.

First, TOMS is designed to identify textual objects in a
given set of texts. This may concern any sequence of al-
phanumerical characters, such as words, paragraphs,
chapters. Each individual object is assigned a type. A pro-
vision is made for the assi; ent of attributes. Second,
TOMS defines and the relationships between these
textual objects through document grammars, and makes
this information persistent. The Trelations are strictly
hierarchical, however, the designers are planning to in-
corporate more elaborate kinds of relations such as refer-
ence and recursion. Third, TOMS is based on the defi-
nition of recognizer functions that deal with object recogni-
tion. Thus the grammar activates a set of recognizer func-
tions stored in a library, each of which is responsible for
the recognition of a typed object instance.

Reco§njzer functions are bound to a class of textual ob-
jects (see example below). They accept a strinF of charac-
ters in a document, and return a list of (offset, length) pairs
of all the objects of their class found within that text. The
combination of recognizer functions and the document

ammar make up a document parser. When the individual
objects (tokens) are r ized by the parser they are col-
lected in a primary index 5also concordance list). All tokens
are indexed by their in a secondary index. The primary
index lﬁ c(ent‘;al to 3 e TOMS a p{‘:ach, ie. ar;ly rec-
ognizable (and typed) sequence of characters in the text
will end up in the index. =

In TOMS, structuring constructs, based on —but not con-
forming to— the ODA convention [ISO8613], describe the
possible relationships between the textual objects. These
are:

REP Repetition of similar objects (shortened by the
use of square brackets).

CHO Alternative objects.

SEQ Sequence of objects.

PAR Parallel objects.

For example, the following grammar describes an e-mail
message ((IDEERW92:132]):

message SEQ (
status,
headers [
CHO (
adhead SEQ (
label,

101

{address]),
nahead SEQ (
label,
value [valwordl))l,
body [sentence {[word]}])

Object class references are printed in bold. They are recog-
nized by associated recognizer functions.

Objects. This subsection describes the kinds of objects
used by the TOMS system. A description of omﬁons is
not included, as they are not clearly descri in the
source reference.

An INDEX is the combination of a primary and se-
condary index. The index is used to access individual ob-
jects (primary) of any type (secondary). The document
structure (available as a MARKING) is separated from, but
navigationally related to the index. A MARKING is a struc-
ture tree created when a grammar is applied to the text,
much like a P-STRING (see section 4). It is immutable —
therefore, no structure recompilation operations are de-
fined. Markings may be traversed and int ated by the
user of typed CURSORs. Each word and each higher level
object has its own cursor. Regular tree navigation is sup-
ported, always returning a cursor. In addition, the func-
tion context accepts an object and a cursor and returns a
list of textual objects that are contained in, or contain the
object provided as an argument. The cursor determines
the of the object returned: if the cursor is of type
word, all words are returned in a list. The project function
returns the first cursor that is a decedent of the given cur-
sor and which matches the given label (type).

A CURSOR holds information on the current object in
the marking. Each object may have its own cursor. Each
cursor has a ‘type' (i.e. is associated with a recognizer
function). Finally, an OBJECT-LIST holds the result of the
context operation offered by MARKING. This implements a

ttibject operation that returns each consecutive object in
the list.

7. The containment model

Introduction. [BURKQO91, 92a, 92b] describe the con-
tainment model. This model provides operations and data
structures for a text-dominated database with a hierarchi-
cal structure. It tries to bind the features of data retrieval
and information retrieval systems, in particular the rank-
ing strategies applied to word collections in text retrieval
environments. The model is implemented as a retrieval en-

ine; the Textriever system that interfaces to the engine is

escribed in [BURKO91]. Each local text hierarchy within
a document, e.g. each chapter, is recorded in a tag and hi-
erarchy specification (THS), which keeps track of tags valid
for that hierarchy, the structure of the hierarchy, and in-
terface menu items that apply for that type of hierarchy.
The texts are stored in a database, which is partitioned into
data collections. Each data collection starts with a THS file
specification (somewhat similar to an SGML DTD), fol-
lowed by the document collection title and a representa-
tion of various local hierarchies.

Inline encoded extents (cf. SGML exceptions) are
separated from the 'main' hierarchical structure (also
called the spinal sequence, cf. SGML elements), but may be
used for specification or cross-reference purposes.

Objects. The containment model is based on contiguous ex-
tents, much like 'regions' in PAT defined as linear charac-
ter orderings between start- and end positions. If these
extents do not cross, they are disjoint. If one or more
(disjoint) contiguous extents together have particular sig-
nificance in the database, their union is called a text ele-
ment (cf. SGML element).

A concordance list denotes the list of all text elements
that are of the same type, such as all words, all chapters,

102

and so on. All concordance lists together defined on one
text or text corpus denote the structure of the text, and al-
low for structured retrieval through retrieval command
strings (RCS). These commands are expressions that acti-
vate filters of two types: selection and rejection.

Anticlizpating the subsection on operations, some examples
of a RCS are given below (evaluated from left to right).
The first RCS will select all chapter titles within chapters
that contain the word highlands or mountain. The sec-
ond RCS however locates chapter_titles that contain
both words:

resultl = <chapter> SW {<chapter_title>
SW {"highlands", "mountain"}}

result2 = <chapter> SW {<chapter title>}
SW {"highlands"™} SW {"mountain"™}

A DC-EXTENT (disjoint contiguous extent) is the repre-
sentation of a textual item. It holds the start position and
end position of the series of text symbols. Contiguous ex-
tents may be static (created when the text is added to the
database) or dynamic (defined at retrieval time). A
CONCORDANCE-LIST is a collection of disjoint contiguous
extents. Concordance lists may be symbo and used in
subsequent expressions. For instance, <chapter> de-
notes all concordance lists that are labeled as chapter.

A RESULT-LIST is built for each expression, but re-
mains within the retrieval engine and is transient. It is
identified similar to retrieval sets in more conventional in-
formation retrieval environments.

Operations. The following operations are defined for the
containment model.

CONCORDANCE-LISTs implement four operations. Select nar-
row (SN) is interpreted as 'is contained in’ i.e. selects the
concordance lists that are contained in the concordance
list passed as an argument. One may thus select the
concordance lists ‘of lower level. For example,
<chapter> SN <paragraph> selects all paragraphs
that are part of a chapter. Select wider (SW) is interpreted
as ‘contains’, and returns a concordance list of all extents
that contain the argument <chapter> SW
{"Information retrieval"} returns all extents la-
beled as chapter that contain the phrase given.

Reject narrow (RN) is the opposite of SN, while reject
wider (I{W) is the opposite of S\rg. : 4

RESULT-LISTs implement five operations. var name[n] re-
turns the extent at index » in the result list. [var_namel
(cardinal) returns the number of extents in the result list.
var_name(n :m) returns the sub-result list of the given re-
sult Tist that runs from position n upto m (including).
length returns the word length of the extent passed as an

ment. For instance, length{result list(2)} will
refurn the word length of the extent at index 2.

A typical derived operation is rank, based on the IDF
(inverse document frequency) formula of [HARMA90]. It
accepts a previously compiled result list, a label, and a se-
quence of terms that are treated as the query terms:

ranking = RANK{list_of_docs, <doc>,
"mountain®, "highland"}

The operation returns a result list that contains all extents
that are presumed to be most relevant for the user's infor-
mation needs (put down in the term list).

8. MdF

Text models define both the structure of the textual
sources and how they are manipulated in terms of objects,
operations and constraints. [DOEDE%4] only focuses on

SIGMOD RECORD, Vol. 23, No. 1, March 1994

text representation. This is partly due to the complexity of
text handling. All text models are founded on the as-
sumption that the texts are well formed with respect to
consecutiveness and grammatical (mostly hierarchical)
structure. This is realistic in controlled situations, eg.
checked corpora, validated dictionaries, and the like.
However, problems occur when texts function in less
controlled or more complex situations, as in corpus lin-
guistics, where linguistic structure is the focus of text in-
terrogation and relations between linguistic objects may
be of any type, and in text criticism, where texts are in-
complete or corrupted.

The MdF model (Monads-dot-Features) has emerged from
the work on the ECA linguistic database (Electronic
Concordance Application). MdF is based on the definition of
textual objects and the relations between these objects.
These objects represent a set of (possibly non-consecutive)
monads.

Objects. The two main types in the MdF model are
MONAD and OBJECT. A MONAD is an absolute, indivisible
position in a text, which corresponds to e.g. a word. Each
monad is assigned a unique number, i.e. the first monad
recognized in the text string is numbered as 1, the second
as 2, and so on. Monads are grouped as OBJECTS, e.g.
words are grouped into sentence objects, sentence objects
are grouped into paraq_;\aph objects etc. They thus form
typed sets of monads. The of an object assigned to a
group of monads defines (as always) the number and kind
of features (attributes) that are valid for that group (eg.
text, surface and part_of_speech for word objects).
Such features are used fo convey information on the
object, and includes the text that is associated with the
monad (e.g. the word form itself). Features may be
grou%d as (un)ordered sets.

bjects are also numbered (ordinal): the combination
of object type and its ordinal is called the object name (the
second word in a text is word-2). The name uniquely
identifies each object.

As stated, features may be used to denote facts (such as
categoric information) and relations (links with com
clauses). No restrictions apply to these features: their val-
ues may even have an internal structure. This immedi-
ately implies that no restrictions are imposed on the user
as to how relate objects. For instance, there's no scheme or
grammar to go with the model that enforces constraints
and therefore preserves integrity on the structure level.

Operations. The model as described is simple, because it
is very abstract. There are no immediate constraints on the
way the model is used to describe the textual source. MdF
does not define any way of accessing and manipulating
the MdF conforming database. This has some advantages,
that will be outlined here.

As monads form (ordered) sets of relevant locations
in the text, the part_of relation between object; and object
may be defined as a subset relation over monads collect
by ob'fct and object,. Most hierarchical relations may be
described by the part_of relation.

The MdF model allows the part_of relation to be ab-
stracted into objects. part_of is an ad-hoc notion: it may
turn out that a specific set of monads is part of a (equally
large, or larger) set of monads. This does not mean that
the related assumptions on this containment exist. If
these would exist, the part_of relation may be formulated
by two notions that in fact describe composition:
covered_by and buildable_from. covered_by denotes the
part_of relation; buildable_from denotes the has_parts
relation. These notions are type specific.

There are circumstances where ranges of text po-
sitions may overlap. This typically occurs when two con-
current object schema's exist on the same text. The same
would hold for a text grammar that deals with page lay-

SIGMOD RECORD, Vol. 23, No. 1, March 1994

out, and one that deals with content structure. Overlap-
ping sets are supported by the MdF model.

Normally, monads represent consecutive text el-
ements by positions, and objects collect and type these se-
quences accordingly. These text elements are represented
in a feature. However, ranges of monads may be disre-
garded. If the monads of an object are not consecutive the
object is said to have one or more holes.

Finally, as objects may have ‘'holes’, the notion of con-
secutiveness is considered. Linearly ordered monads, how-
ever derived from the original text, are called a universe.
For example, "John, called Mary." is a universe U
of "John, who had missed the last train,
called Mary.". Consecutiveness is defined over sub-
strata, i.e. "John, " precedes "called" with respect to
the universe U. Such a concept may be valuable for struc-
tured documents that contain tags that should be dis-
regarded in certain contexts (e.g. linear searches on the
running text).

9. The Bayan system

Introduction. According to [KING90:12], “the primary func-
tion of text management systems is to provide for the storage
and manipulation z‘:{ documents. An additional function of these
systems is to provide a means for conveying the meaning of the
texts that they manage.”

The authors describe an object-based system de-
signed to handle Arabic texts in particular. According to
the authors, a new system design was needed because
current models had some shortcomings: their data ab-
straction capacities were too limited, and too little atten-
tion was given to problems conceming graphemic word-
and sentence composition in the Arabic languages. The
former was resolved by implementing words, texts and
documents as objects, as will be treated below. The latter
was resolved by contextual analysis of word fragments in
Arabic: "Instead of sim IZet ing to adopt an environment to
Arabic, the properties oft rabic language were the starting
point and everything was designed to meet the needs of Arabic,
thus avoiding the shortcomings of other projects.”

Objects and operations. The Bayan system s::ip rts three
main object types. These will be mention ere; their
(minimal) operations will be explained below each object
specification. The basic object identification is not speci-
fied, but are collected in lists (typed as OBJECT_ID) to repre-
sent sequences of text units. Although several simple
types are supported (DATE, AUTHOR_ID, ACCESS, STATUS),
and at least an additional LIsT class is supported to collect
TEXT_UNITs, these will not be treated further.

An ARABIC_DOCUMENT contains the elements that make up
the document and some additional features. These ele-
ments may be other ARABIC_DOCUMENTS or TEXT_UNIT ob-
jects. This object class is the only one that implements
composition. The operations rendered by this ADT are
given here.

The list_all_elements operation returns a list of
TEXT_UNIT objects that the object is composed of. This list-
ing is recursive, such that collected elements of type ARA-
BIC_DOCUMENT will list their elements in turn. out-
Fut_text_body actually prints or displays the result of

ist_all_elements. add_an_element requires a position
and an OBJECT_ID, and inserts the objects at that location in
the document. The operation is not specified further; the
concept of ‘document position' is absent in [KING90]. The
same holds for delete_element, that requires the same pa-
rameter types.
A TEXT_UNIT holds the indivisible text parts that make up
an ARABIC_DOCUMENT. The text is input directly into the
object using the edit operation; no reference to a grammar
is given, nor is such a reference intended. The operations
rendered by this ADT are output_text_body, which out-

103

puts the body of text in the object (which is of type ARA-
BIC_TEXT), and edit, which invokes an Arabic text editor
on the text body. Objects of type ARABIC_WORD contain the
linguistic root of the Arabic word, (root-to-wordtype)
derivation rules, and categoric information. The operation
add_rule appends a derivation rule to the ARABIC_WORD
instance. A specific rule may be applied to a root using the
make_derived_word operation. The a l.‘plicability of the
rule is tested by is_legal. match tests if the word given
matches the root word or any derived word . Finally,
all ibly derived words are listed by the
list_all_derived operation, i.e. all derivation rules are ap-
plied to the root.

The operations rendered by all objects, apart from the op-
erations listed here, deal with memory management (and
are therefore not relevant to the survey). Apart from these,
create_object accepts an OBJECT_ID, and creates an in-
stance of the class that implements the create_object op-
eration. The operation modify_attribute accepts an
OBJECT_ID, an attribute name and a value, and will update
that attribute accordingly. delete_object will remove the
object identified by OBJECT_ID from memory and the
database.

Bayan is designed to implement a TBMS for Arabic texts.
Therefore a lot of attention is given to the environment in
which the objects will function.

The objects are located in the object mana%e\r, which
works like a server with a restricted interface. This object
manager holds the database and object buffer mentioned
above. It also holds information on the and the
general class methods. The object manager I/O interface
uses drivers to type and display Arabic text, using the
contextual analysis module.

The g manager receives a word and returns a list
of ?‘gject identifiers (of documents or text units) for these
words or derivations of these words in all documents. The
search is based on indexing, such that words are related to
documents and text units by special pointer structures
(not %object identifier).

e text manager is responsible for document input
and cntput. The text converted to internal object format
(ARABIC_DOCUMENT, TEXT_UNIT) is passed to the presenta-
tion manager. This module interacts with the application,
or displays the information on the screen or printer.

10. Other models

Some models have been Frsented that only give an
overview of the structure of textual objects. These models
do present a grammar for document parsing, but provide
no information on access languages or object behavior.
Therefore, these ‘models’ are gathered here.

Extended MAESTRO'. The model described by
[BARNA91] focuses on hierarchical relations between doc-
ument collections. These collections may contain both docu-
ments and other document collections. Documents are

and may be attributed. The document attributes
may be of two : TEXT and REFERENCE. Thus, in Mae-
stro a document CompJType may be defined as

document : CompJType is PaperType with Date text

PaperType is a named document grammar, Date is the
attribute of the document, and CompJType is the name of
the binding between the grammar and the attribute. docu-
ment is a declaration keyword. The grammar in Maestro
takes the form of a rudimentary SGML DTD which lacks
attributes, minimization and exceptions, and cannot han-
dle concurrent document markup.

The model uses zones to store the location of all ele-
ment contents in the running text. Each new text element

104

found is assigned an OID, a link to a parent element, and
a zone. This produces a tree structure, of which the termi-
uires the text to be
immutable, and access to the zones is based on hierarchy

nal elements point to a zone. This r

traversals.

Grif. The text model of the Grif system [QUINTS9] is
based on the use of three languages S, P (presentation lan-
age) and T (exchange language). In S one declares the

ierarchical and sequential structure of a document:

STRUCTURE Book;
Book=BEGIN
Title=TEXT;
Author=TEXT;
Body=LIST OF (chapter);
END;
Chapter=BEGIN

The TEXT type is a character string; the LIST indicates a se-
Each root ob-
ject (Book, Chapter etc.) defines an object that may be
regations and references. A document may be
created using any root object description (e.g. Chapter).
Thus documents may be built in a modular fashion.
References to other text objects are defined by a special
language construct UNITS. Constraints on document ma-
nipulations are thus regulated by the STRUCTURE de-

quence structures of the paramerized

used in a;

scription. Attributes of text objects are supported.

Multos. [LUTZ89] assumes that a hierarchical, 2'pe-ori-
ented document model may be defined. In this, the ODA
standard is followed.

The grammar used to identify the document struc-
inition (CSD). This
records three main principles. First, documents are tree
structured (aggregation ot low level objects). This struc-
tural kriowledge extends classical retrieval by allowin,

ture is called the conceptual structure

logical sections of documents to be specified. Second, ea
conceptual structure is
fined b

Third, the system is extended by r

ponent).

Documents are preprocessed to convey layout and
logical knowledge. The recognition process (reading docu-
their form fo the conceptual structure) is
controlled by the content description language (CDL). This
language defines the rules for classification (typing), by
supporting all kinds of recognition cﬁlrnedicates, such as lay-

ing, structural knowl-
erences, etc. The re-
t of this preprocessing is a content representation, that
in retrieval. [LUTZ89] reports on some find-

ments, mappi

out and logical forms, pattern mat

edge (linked with the CSD results),

may be us
ings in terms of relevance.

11. Discussion

In this concluding section the models are com

tions should take advantage of the time and
in the preceding

teristics as mentioned in section 2.

SIGMOD RECORD, Vol. 23, No. 1, March 1994

typed. The type of the object is de-
its structure (as abstracted in the grammar).
ing an 'open’
component in the supertype definition (the 'spring’ com-

ed on the
basis of the three model evaluation criteria established in the

inning of this paper. These criteria are structure, oper-
ations and constraints defined on the logical level. Some
general restrictions of the models are described, as these
restrictions point out what augmentations are expected in
future work in this area. Future text models or applica-
ort in-
vested in the models outlined here. The descriptions given
sections outline some of the merits of the
models. In this last section I also refer to the text charac-

Logical structure. All models support text access based on
linear order and containment relations, that take the form of
hierarchies described by grammars (p-string, TOMS, ex-
tended Maestro, Multos, Grif, TDM to a certain extent), or
are recognized ad-hoc using set-based operations
(Containment, TDM, MdF). Grammars are usually context
free; only one model incorporates conditional recognition
(p-strin, ;'

Although edgrammars are central to text structurin
they are limited in extent. A context-free grammar would
not be able to reject a sequence of footnote references
without intermediate running text. No general context
(in)sensitive rewriting grammar can describe the occur-
rence of in-line elements such as highlighted phrases, an-
notation marks, and so on — at least not in an elegant
way. Only the p-string grammar format allows for some
dynamic conditions in recognition that restricts the scope
ot the rewriting process. However, even this grammar is
too straightforward to recognize and abstract all (realistic)
textual objects. The Containment model r izes in-line
elements, for example cross-references, but does not allow
for constraints on this level.

The PAT model does not recognize the concept of hi-
erarchies. It focuses on linear sequences that may be typed
and indexed arbitrarily. The grammar is used only to rec-

ize these objects. Nested relations are not maintained
when scanning the source text. Furthermore, all semantics
attached to specific strings are at retrieval
time. The exclusion of a cross-reference from the source is
a retrieval operation (set difference). Bayan uses no
grammar but links sections into a tree of objects. Bayan
ma{‘ be considered as a structured text editor, augmented
with linguistic knowledge representations.

Some models use (part of) a standard on text encoding
(ODA: TOMS, Multos, SGML: extended Maestro) to rec-
ognize and interpret structural aspects of the texts. SGML
is usually only interpreted as a code format, not as a
structuring strat%'. one of the models will correctly
process real-life SGML encoded documents (unless in con-
troiled circumstances, PAT). For instance, the Contain-
ment model assumes the source to be tagged in a trans-
arent way. The markup lan, % advccated is SGML.
owever, the inclusion of SG 'TDs and declarations,
or SGML attributes is not modelled. SGML is thus used as
a tag list only, that is reflected in the local THS grammar.
This grammar is not elaborated upon in the references.
elations put down in the source text are usually not
recognized and are recorded externally if supported at all
(MdF, TDM). For a hypergraph based PAT extension, see
[RAYMOS88). An exceg:jon may be the CDL reference
recognition of Multos, though the rationale of this particu-
lar recognition process is unclear.

Multiple structures are modelled only partly (TOMS, MdF),
and none of the models go into the intrinsic relation be-
tween such parallel structures.

Although more than one grammar may be defined
on the same source (thus implementing concurrent text

ammars) it remains unclear how the relations between

ese parsed structures are modelled by the E—strin
model. The model does not define operators that link dif-
ferent elements in two or more concurrent p-strings on the
same text sequence, allowing for queries such as "what
kind of substructure starts at page 147" or "Where do sen-
tences pass the line boundaries?”.

In TOMS, the inclusion of the PAR operator allows
for multiple 'views' on the same document. However, it is
not made clear how the same document may be recog-
nized by two or more parallel encodings. It seems reason-
able to assume that the recognizer functions know about
embedded tags (or more general: patterns) that do not
belong to the current element, and that should be skipped.

The textual objects are interpreted as sections — regions or
cursors (PAT, TOMS, Containment, Maestro) and/or off-

SIGMOD RECORD, Vol. 23, No. 1, March 1994

sets (semi-infinite strings in PAT) — that are related by
containment or succession, or are strings in their own right
(p-string, MdF, TDM).

The separation of character functions is made by none of
the models defined here. It is unclear how intermediate
codes or characters are filtered out or replaced by other se-
quences when viewing the text. None of the models
exFlicitly mention multiple character encoding or replace-
able character sets. The -models focus on ‘clean’, though
possibly tagged texts.

Attributes are supported to a limited extent, and are never
extracted from the source text. Attributes are limited in
definition and type (Maestro, Grif). The MdF model,
though clearly based on attribute definition, does not re-
strict or T{;te the use of the object features. It therefore
does not allow any structuring strategy to be formulated
(anything goes’). TOMS also allows for the definition of
object-related data attributes. However, these are not part
of the text, and cannot be recognized as such.

Logical operations. Most of the models focus on the ex-
pressions used to access the text. These expressions gener-
ate sets (TDM, PAT, Contairunent) or other datatypes such
as parsed string representations (p-string). In this respect, the
p-string model is transparent and relatively flexible. How-
ever, the source as well as the grammar are immutable ob-
jects — changing the source will have to result in a com-
plete reparse (an alternative is treated in [GYSSE89])

The TOMS model described focuses on a tree traver-
sal strategy (MARKING). This differs from the other models
that use set maniFulation or string scanning to query the
structural parts of the text. Linear order in text structures
is recognized.

The operator set is sometimes defined on a minimal basis
(Containment, Bayan), sometimes more complete (PAT, p-
string). Operations usually concern the retrieval of items
from an immutable text (see below) and specialized func-
tions (statistical: PAT, document ranking: Containment,
li:guisﬁc: Bayan). Operators are sometimes combined to
define text views (TDM).

None but the Containment model allow for the defi-
nition of operations that are confined to specific text struc-
tures. Thus all operators apply to all textual objects: a sub-
};ct line has the same functxonalil?' as the body of a letter.

the TDM model the behavior of a paragraph is identical
;o that of a chapter, although its structure may be dif-
erent.

As stated, the models do not, or to a limited extent, sup-
port source updates. The p-string model does allow a
reparse of already parsed strings. However, this is done in
a 'batch’ fashion: the entire srrin? is reparsed on com-
mand. Edits to parts of the string (that may violate its in-
tegrity) are checked by explicit invocation of the parser.
As far as I can see, the operations defined by TDM are
transient and are only used to extract formatted informa-
tion from a fixed source.

Logical constraints. Integrity through structural or opera-
tional constraints is not described explicitly by any of the
models. However, structural integrity enforcement
through irammar definition is a natural part of all
grammar-based models (in PAT, constraints on text sec-
tioning are defined as part of the indexing process — this
is the only kind of integrity enforcement available). Con-
ditional rewriting (which could probably be used to de-
fine a context sensitive parser) is part of the p-string
model. This model only provides for the definition ot
operators that apply to parsed strings. No provision is
made for constraints on the elements recognized while
parsing the string. However, {TAGUE91] and [SALMI92]
extend the p-string grammar by defining constrained
schema’s, i.e. grammars that replace the right hand side of

105

the production by a set of properties that are treated as
constraints on the production.

In my view, integrity is part of a textual object type
and the a‘pgropriate rules should be actualized by the in-
stances of the type (including its possible structure). If (as
in most of the models) the textual objects are not ab-
stracted it will be very cumbersome to augment them
with such constraints.

Note. This article is an extended abstract of a chapter of the
PHD thesis of the author. The thesis entails the definition of a
textbase management system (TBMS) for humanities text-based
research. The system proposed models structural aspects of tex-
tual data, and con to SGML. The more fundamental
modularization strategy is object-oriented. Neither SGML nor
the TBMS itself will be discussed in this article. SGML does not
model behavioral aspects of texts, though the language high-
lights some important textual features mentioned in this
article. The TBMS 1 is still under develo, t. The the-
sis is due November 1994. The complete chapter on text models
is open for public comment.

12. References

BARNA91 D. T. Barnard et al: 'SGML documents and
non-linear text retrieval'. In: [LICHN91} pp
226-244
F.]J. Burkowsky: 'The use of retrieval filters
to localize information in a hierarchically
tagged text-dominated database’. In:
(LICHN91] pp 264-284
F.]J. Burkowski: 'Retrieval activities in a
database consisting of heterogeneous col-
lections of structured text. In: [SIGIR-5]
1992, pp. 112-125.
BURKO92b F. J. kowski: 'An algebra for hierar-
chically organized text-dominated
databases'. In: Information processing &
management. (Oxford) 1992
S. Deerwester et al: 'A textual object man-
agement system’. In: [SIGIR-5] pp. 126-139.
B. C. Desai, P. Goyal, S. Sadri: 'A data
model for use with formatted and textual
data'. In: [JASIS] 37 (3) 1986 Pg. 158-165
C. J. Doedens: Natural and formal lan-
age access to text databases. PhD Thesis,
niv. of Utrecht, Holland, 1994 (to appear).
G.. H. Gonnet, F. W. Tompa: ‘Mind your
grammar: a new approach to modellin
text’. In: [VLDB] 13 (1987). Brighton, 1987.
Pg. 339-346.
G. H. Gonnet et al: 'Lexicological indices
for text: inverted files vs. PAT trees'. Tech-
nical report OED-91-01, University of Wa-
terloo, 1991
M Gyssens,]. Paredaens, D. vd. Gucht: 'A
ammar based approach toward unifying
jerarchical data models’ Extended ab-
stract. In: [SIGMOD] 1989. Pp. 263-272
D. Harman, G. Candela: 'Retrieving records
from a gigabyte of text on a minicomputer
using statistical ranking'. In: [JASIS] 41 (8)
1990 Pg. 581-589
Information glrocessing - text and office
systems - office document architecture
(ODA) and interchange format. Interna-
ﬁ;)sr;al organization for standardization.
1
Information processing - Text and office
systems - Standard generalized markup
language (SGML). International organiza-
tion for standardization. 1986, with amend-
ment 1, 1988 (ISO 8879-1986/A1:1988 (E)).

BURKO91

BURKO92a

DEERW92
DESAI86

DOEDE%4

GONNES7

GONNE91

GYSSE89

HARMA90

ISO8613

1508879

106

JASIS

KING90

LICHN91

LUTZ89

QUINTS89

RAYMOB88

SALMI92

SIGIR-N

TAGUE91

WOODMS89

Journal of the American society for in-
formation science. Washington D.C.
(ASIS)
R King, A. Morfeq: ‘Bayan: an Arabic
database management system'. In:
[SIGMOD] 1990. Pp. 12-23.
Intelligent text and image handling. Pro-
ceedings of a conference on intelligent
text and image handling 'Raio 971,
Barcelona, Spain, 2-5 April 1991 Edited by
A. Lichnerowicz. Amsterdam et al, 1991
(Elsevier)
E. Lutz: 'Knowledge based classification of
office documents'. In: (WOODMS89] pp 353-
362
V. Quint, I. Vatton: ‘Modularity in struc-
tu7r7ed documents'. In: (WOODMS89] pp 170-
1
D. Raymond, F. Tompa: 'H ext and the
Oxford English dictionary”. In: {CACM] 31
(7) 1988. Pp. 871-879
A. Salminen, F. W. Tompa: 'PAT ex-
pressions: an algebra for text search’. Pa-
Eers in Computational Lexicography:
OMPLEX '92, Proc. 2nd Int. Conf. on
Computational Lexicography (F. Kiefer, G.
Kiss, J. Pajzs, ed.), Linguistics Inst., Hun-
arian Academy of Science, Budapest
October 1992), -332. (also available as
Technical Report OED-92-02).
Proceedings of the Nth annual interna-
tional A SIGIR conference on re-
search and development in information
refrieval.
J. Tague et al: 'Complete formal model for

information retrieval systems'. In:
[SIGMOD] 1991. Pp. 14-20
Woodman '89. Workshop on object-ori-

ented - document manipulation. Rennes,
France, 28-31 may, 1989. Preprints, edited
by J]. André, Bézivin. In the Bi-

e/Globule series, nr. 63-64, May 1989.
Afcet, Bigre, Ccett)

SIGMOD RECORD, Vol. 23, No. 1, March 1994

