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Abstract. The syntax of comprehensions is very close to 
the syntax of a number of practical database query lan- 
guages and is, we believe, a better starting point than 
first-order logic for the development of database lan- 
guages. We give an informal account of a language based 
on comprehension syntax that deals uniformly with a va- 
riety of collection types; it also includes pattern match- 
ing, variant types and function definition. We show, 
again informally, how comprehension syntax is a natural 
fragment of structural recursion, a much more power- 
ful programming paradigm for collection types. We also 
show that a very small “abstract syntax language” can 
serve as a basis for the implementation and optimization 
of comprehension syntax. 

1 Introduction 

Ever since relational databases were first conceived [12], 
first-order logic, i.e., relational calculus/algebra has been 
taken as the starting point for the design of relational 
query languages. It has been an invaluable tool for for- 
mulating both semantics and syntax, as well as provid- 
ing deep insights into expressive power of database lan- 
guages. However, with the desire to increase the expres- 
sive power of query languages and with the need to com- 
municate with non-relational data structures - especially 
those that are provided by object oriented databases, we 
must ask whether it is appropriate to continue to stretch 
this once elegant paradigm of first-order logic as a pro- 
gramming language to cope with these richer domains. 

We want to propose an alternative strategy: to look 
at the operations that are naturally associated with the 
data structures involved, and to use this as a guiding 
principle for database language design. For example a 
database relation is a set of records. In this case, our ap- 
proach is to achieve more generality and flexibility by 
looking independently at the canonical operations for 
record types and for set types. An immediate conse- 
quence of this approach is that, with .the ability to com- 

bine set and record construction in an arbitrary fash- 
ion, we can build languages for “non-flat” relations, i.e. 
nested relations or, more generally, complex objects [2]. 
Such languages are important for several reasons, among 
them is the ability of object-oriented databases to sup- 
port objects that can themselves contain sets of objects. 
Another important reason is that the same principles 
apply to other collection types such as lists, bags (mul- 
tisets), arrays, indexed structures and certain kinds of 
trees. 

Our purpose in this paper is not to give a full account of 
the languages that can be developed by this approach, 
but to describe a simple language of comprehensions 
that bears close affinities with a number of practical 
database languages and to show informally how this lan- 
guage is just a restriction of the more general language 
of structural recursion - the language that arises from 
considering the canonical operations on collection type-s 
[8,7,9,32]. The authors are currently engaged in writing 
a book on the theory and practice of programming lan- 
guages for collection types, and the material presented 
here is based upon an introductory chapter of that book. 
Among the important topics we shall not cover are type- 
checking and inference, expressive power, optimization 
and implementation. We shall simply present a short 
“primer” on comprehension syntax together with an in- 
formal rationale for its development. In particular we 
shall 

l show how the language of comprehensions can nat- 
urally and uniformly express operations on various 
collection types including sets, bags and lists; 

l show how variant types, function declarations and 
pattern matching can also be uniformly supported 
in this language, and 

l provide an informal introduction to structural recur- 
sion and its relationship to comprehension syntax. 

Let us start by looking at a familiar query in SQL [15] 
that extracts all the pairs of employee names and man- 
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ager names from the relations Emp of employees and 
Dcpt of departments: 

SELECT Name, Mgr 

FROM Emp, Dept 

WHERE Emp.D# = Dept.D# 

A more verbose version of this query can also be written 
in SQL 

SELECT Name = p.Name, Mgr = d.Mgr 

FROM Emp p, Dept d 
WHERE p.D# = d.D# 

We can put a different interpretation on the syntax of 
this query. In SQL, the symbols p and d are simply 
aliases for the relation names Emp and Dept respectively. 
Instead we take them as tuple variables that are bound 
to successive tuples in the respective relations. Each 
pair of tuples that satisfies the WHERE . . . condition 
contributes to the output. The idea of having explicit 
tuple variables is not new; they are used in the (tuple) 
relational calculus and, more importantly, they are used 
in certain query languages for object-oriented databases 
[5, 23, 61. In fact, the 02 query language [5] has some 
interesting connections with what we shall develop. In 
our syntax this query is written: 

{[Name = p.Name, Mgr = d.Mgrl ] 
\P + Emp, 
\d <- Dept, 

p.DNum = d.DNum} 

The syntactic form {e ] cl, cg, . . . , c,} is a comprehen- 
sion. It is an expression that denotes a collection - in 
this case a set. It can be read as “the set of all e such 
that ci and c2 . . . and c,,“. The term “comprehension” 
comes from set theory and is used in certain program- 
ming languages [30]. The syntax closely resembles the 
second SQL query, but record construction is explicit: 
[Name = p.Name, Mgr = d.Mgr] denotes a record with 
Name and Mgr fields. There is also a close resemblance 
between comprehension syntax and relational calculus, 
but there is an important difference in that we explicitly 
introduce (or “bind”) the variables p and d by marking 
them with a backslash. Thus \p <- Emp is to be thought 
of as binding p to successive records in the Emp relation. 

Variable bindings such as \d are simple examples of pat- 
terns, which serve both to bind variables and to match 
structures [22]. For example, 

{rr 1 [Name = \n, DNum = 12,. . .] <- Emp} 

extracts the names of employees in department 12. The 
pattern [Name = \n, DNum = 12,. . .] matches those 
tuples in Emp that have a DNum equal to 12. For 
each of these, the variable n is bound to the Name 

field. The ellipsis (. . .) matches the remaining fields 

of the records in Emp. This query is equivalent to 
{e.Name 1 \e <- Emp, e.DNum = 12). Our original SQL 
query can also be expressed using pattern matching: 

{[Name = n, Mgr = ml 1 

[Name = \n, DNum = \d, , . .I <- Emp, 

[DNum = d, Mgr = \m.. .I <- Dept} 

The variable d is introduced in the first pattern and then 
used in the second. Once a variable is introduced in this 
way, its scope extends to the end of the comprehension. 
It can also be used in the “head” of the comprehension. 
In complicated programs it is essential to distinguish be- 
tween the binding and use of a variable, which accounts 
for our need to make bindings explicit. The scoping rules 
and the meaning of comprehensions can be understood 
using nested for-loops. The comprehension from the pre- 
vious example can be understood as resulting in the set 
S obtained as follows: 

s := { }; 
foreach [Name = \n, DNum = \d, . . .I in Emp 

foreach [DNum = d, Mgr = \m.. .] in Dept 

S := sU{ [Name = n, Mgr = ml}; 

We should stress that this analogy is to clarify scoping 
rules; it is not the way to implement comprehensions 
efficiently. 

Two further examples show that we can easily deal with 
“non-flat” relations: 

{e.Name.LastName I \e <- Emp} 

{ [DNum = d, Project = pl I 
[DNum = \d, Projects = \s, . . .I <- Emp, 

b+ s) 

In the first of these, the Name field is assumed to be itself 
a record. In the second we have assumed that the Emp 

tuples have a Projects field which is itself a set. The query 
returns a (flat) relation that connects a department with 
a project if the department has an employee working on 
the project. Such queries are common in object-oriented 
databases. The second example is an example of un- 
nesting in nested relational algebra. We may conversely 
nest a relation with attributes A and B with 

{CA=a,B’={bI [A=a,B=\bl <--Ii?}] 1 
CA = \a,. ..I <-R} 
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2 Collect ions 

Until now we have tacitly assumed that the collections 
we have been dealing with are sets, but we cannot get far 
with this assumption. Consider a simple query involving 
aggregate functions: 

averuge{z.Salary 1 \z <- Emp} 

If the expression (c.Salary 1 \z <- Emp} denotes a set, 
this query may not give the expected result, for if two 
employees have the same salary, that value will only oc- 
cur once in the set. However, if we assume that the ex- 
pression denotes a multiset, or bag, then multiple occur- 
rences of the same salary will be allowed and the query 
should give the desired result. We use the syntax {2,3,4} 
to denote a set of values ({3,2,4,2} denotes the same 
set). Bags (multisets) allow multiple occurrences of the 
same element, so that the syntax (j3,2,4,20 represents 
a bag with two occurrences of 2 and is different from 
fl2,3,40. Finally, we use the notation (113,2,4,21() for 
sequences of values, i.e. lists. For example, (112,3,4,29) 
and (A3,2,4,2D represent different lists. 

The same principles of comprehension syntax make sense 
for all three collection types, but we shall different kinds 
of brackets, analogous to the brackets used above. It 
is possible to use the same brackets for all three types, 
but this puts an additional burden on type inference, 
and this is beyond the scope of our paper. The correct 
computation of the average salary is therefore: 

averzgeflt.Salary 1 \z <- Se2ToBag EmpD 

Set ToBag creates a bag from a set, giving each element 
a multiplicity of one. 

Why is the function Se2ToBag needed here? The form 
p <- s inside a comprehension is called a generator. In- 
side a bag comprehension s must be a bag. Similarly all 
the generators in a set comprehension must use sets, and 
likewise for lists. 

An important observation is that the order in which the 
generators appear in a comprehension dictates the way in 
which the elements of the resulting collection are gener- 
ated. As pointed out earlier, a good analogy is to think 
of the generators as nested for-loops where outermost 
corresponds to leftmost. This is evident for list compre- 
hensions: 

UI(Z>Y) I \x <- ulL2lB7 \Y <- uJ10,20~ 301DID 

produces the list 

-ml, 1% (1,20), (1,30), (2, lo), (2,20), (2,3O)D 

Interchanging \z <- QI1,2b and \y <- {1110,20,3Ob 
produc= UP, 1% (2, lo), (L20), (2,20), (1,30), (2,3O)D. 

Had this particular comprehension been a bag compre- 
hension, or a set comprehension, interchanging the two 
generators would not have changed the resulting collec- 
tion because of the commutativitylaws that hold for bags 
and sets. 

Lists, bags and sets are usually available as distinguished 
types in object-oriented database systems [23]. In addi- 
tion, the semantics of SQL involves both sets and bags, 
though they are not cleanly separated in that language. 
There are, in fact other kinds of collections: indexed 
structures, arrays, or-sets and certain kinds of trees for 
which the syntax of comprehensions is also meaningful, 
but they are beyond the scope of this paper. 

3 Types 

Before proceeding further, it is worth reviewing the syn- 
tax of types. They have been implicit in our queries, but 
both our data and our queries have types and it is im- 
portant that there is a language to describe these types. 
The BNF for our data types is given by: 

T := boo1 I id I string I . . . I {T} I {ITD I QIT~ I 
<I1 : 71,. , .) i, : r,> 1 Cl1 : Tl, . . . (1, : r*l 

In this, boo1 1 in2 I string I . . . are the (built-in) base 
types. The other types are all conshctors - they build 
new types from existing types. C/l : ~1,. . . , I, : ml 
constructs record types from the types 71, . . . , r,. <II : 
Tl,...,& : r,,> constructs variant types from the types 
Tl,..., 7, - more on these in a moment. {T}, {lea, and 
{~TD respectively construct set, bag, and list types from 
the type r. 

For example, a type for the Emp relation (though it is 
certainly not a first normal form relation) could be: 

{ [Name:[FirstName:&ing,LastName: skingl, 
DNum:inl, 
Status:<ReguJar: CSalary:id Extension:stringl , 

Consultant: [Day-Rate:int, Phone:skingl>, 
Projects:{string}l} 

The varianl or “tagged union” type <Regular : 

“‘, Consultant : . . .> expresses disjoint possibilities for 
the Status field of this type. For example <Regular = 
[Salary = 25000, Extension = 26651> denotes the status 
of a regular employee, while <Consultant = [Day-Rate = 
750, Phone = 94412121> denotes that of a consul- 
tant. Variants are well known in programming lan- 
guages [16, 341, but are often overlooked in data models, 
where their absence creates needless fragmentation of the 
database and confusion over null values. Variants can be 
conveniently used in pattern matching: 
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{[Name = n, Phone = tl 1 

[Name = \n, 

Status = <Consultant = 

[Phone = \t, . . .I>, . . .I <- Emp} 

{[Name = n, NoProj = count(SetToBag(p))] ] 
[Name = \n, 

Status = <Regular = \r>, 
Projects = \p, . . .I <- Emp} 

The first query finds the names and telephone numbers 
of all consultants, because the pattern in this compre- 
hension only matches consultants. The second query re- 
turns, for each regular employee, the name and number 
of projects to which that employee is assigned. 

4 Declarations 

In composing a large query, it is useful to give names to 
intermediate results or auxiliary functions. Our language 
allows us to do this through declarations with which we 
can define both variables and functions. Suppose we 
want to find for each project, all regular employees work- 
ing on that project. It adds clarity if we first define a 
function emps which takes a project p, and returns the 
set of the names and salaries of the regular employees 
working on that project: 

define emps \p+ 

{EN ame = n, Salary = sl 1 

[Name = \n, 

Status = <Regular = [Salary = \s, . . .I>, 

Projects = \ps, . . .I <- Emp, 

P <- Ps) 

The parameters of functions are patterns 1221. In this 
example the variable p is bound in the simple pattern 
\p, which is the parameter of the function emps, but it 
is a constant in the pattern that occurs in p <- ps}. 

Now we can answer the original query by: 

define assignments + 
{[Project = p, Empls = emps(p)l 1 

[Projects = \ps, . . .I <- Emp, 

b -c- PSI 

Here emps is a function with input p, while assignments 
is a variable. The following delta function makes more 
extensive use of pattern matching. The rule is that if 
the first pattern matches the input then the value of the 
corresponding expression is returned; if not, the next 
pattern is matched, and so on. Thus the delta function 

returns 1 when its input is 0, and 0 when its input is 
anything else: 

define delta 0 + 1 

I delta \x =+ 0 

We can use arbitrary patterns, including records and 
variants, in function declarations. Function with pat- 
terns are very useful when dealing with variants. Sup- 
pose we want to compute, for each project p, the to- 
tal weekly pay of employees working on that project. 
We start by defining a function wage that computes the 
weekly income of an employee, as determined by Status: 

define wage <Regular : [Salary = \s, . . .I> =+ s/52 

I wage <Consultant : [Day-Rate = \d, . . .I> + d * 5 

Using that, we define a function WageTotal which com- 
putes the total weekly pay of employees attached to the 
project p: 

define WageTotal \p + sum((lwage(s) 1 
[Status = \s, 

Projects = \ps, . . .I <- SetToBag(Emp), 

P <- psi)) 

A simple comprehension then allows us to find the wage 
expenses for every project. 

5 Comprehensions and the Rela- 
t ional Algebra 

We have already seen that the general form of a com- 
prehension is {e 1 cl, . . . , c,} in which each ci is either a 
generator or a condition (a boolean valued expression). 
A generator has the form p <- s, where p is a pattern 
and s some expression that denotes a collection. A con- 
dition can be a simple condition, like v in s, in which v 
and s are expressions and which holds iff v is in s, v = v’, 
v < v’, a conjunction C and C’, a disjunction C or C’, 

a negation not C, or a quantifier forall (p <- s).C or 
exists (p <- s).C, where p is a pattern, s is an expres- 
sion denoting a collection, and C is a condition. Note 
that the quantifier exists (p <- s).C is just a shorthand 
for the condition not({ I: 1 1 p <- s, C} = { }). In 
this, we could use any constant in place of the empty 
record I: 1. Finally, forall (p <- s).C is a shorthand for 
not(exists (p <- s).(not C)). 

In the following example we compute the set AlUmps of 
employees working at all projects on which John Smith is 
working, while Some-Emps is the set of employees having 
at least one project in common with John Smith: 
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define JS j 6 Comprehension Language 
[FirstName = “John”, LastName = “Smith”] 

define P-JS =+ {p 1 
[Name = J-S, Projects = \ps] <- Emp, 

b <- PSI 

In this section we put the pieces together and define a 
functional programming language for collection types, 
which we call the comprehension language (CL). A pro- 
gram is a sequence of declarations of variables and/or 
functions: 

define All-Emps a {e 1 \e <- Emp, 

forall (\p <- P-JS).p in e.Projects} 

define Some-Emps + {e 1 \e <- Emp, 

exists (\p <- P-JS).p in e.Projects} 

define id1 . . 
define id2 . . 

All operations from the relational algebra [31] can be where idl, id2, . . . , are variable or function identifiers. 
expressed using comprehensions: A variable declaration has the form: 

define union(\x,\y) + {u 1 \.z <- {z, y},\u <- z} define z =ke 

define diflerence(\x,\y) j {u 1 \u <- z, not(u in y)} where e is some expression, while a function declaration 
has the form: 

define product(\x,\y) =+ 
{CA = u, I3 = u’, C = u, D = v’l I 

CA = \u, 0 = \u’l <- x, 
CC = \u, D = \u’l <- y} 

define f pl j el 
I f~2 * e2 

define sekctA=C(\x) + {u I \u <- z, u.A = u.C} 

define pro&t(A,C)(\x) a 

{CA=u,C=ul I CA=\u,B=\v,...l <-I} 

Here pl, p2, . . . are patterns, while el, e2, . . . , are ex- 
pressions. Recursively defined functions are not allowed 
within CL. 

In these definitions we have used (\x,\y) as shorthand 
for the record pattern [#l = \z, #2 = \yl . Thus two- 
argument functions, such as union are, strictly speaking, 
functions of a two-field record pattern 1221. 

It is also possible to express the GROUP-BY construct of 
SQL using nested collections (i.e. by doing the grouping 
explicitly). E.g., consider some relation R(A, B, C) with 
attributes A, B and C, of which B is an integer, and 
consider the following SQL query: 

SELECT A, sum(B) 
FROM R 

GROUP-BY C 

We assume that R satisfies the functional deperidence 
C+A (else the SQL program is not correct). This query 
can be expressed with comprehensions as: 

define group-by-c(\c) + (Ir.B I \r <- R, r.C = CD 

The syntax of expressions depends on their type. We 
consider some built-in operations associated with the 
base types, and allow numeric expressions such as el+e2, 
boolean expressions such as el and e2, and a condi- 
tional if e then el else e2 where e is a boolean expres- 
sion and el, e2 have the same type. Some given set of 
aggregate functions and conversion functions between 
the three different collection types is assumed. Thus 
SetToBag(s) is an expression of type {lob, provided that 
s is some expression of type {T}, and sum(e) is an ex- 
pression of type int, when e is an expression of type 
{Ii&D. The more interesting syntactic constructs for ex- 
pressions are associated with collection types, record and 
variant types. Thus we can (1) construct a record, by 
[Al = el,..., An = en] where el, . . . , en are expres- 
sions, and (2) extract from a record, by e.A. Also we 
can (1) construct a collection, e.g. a set {el, . . . , en}, 
or (2) inspect a collection, using comprehension syntax. 
We can construct variants using expressions like <A = e> 

and take them apart with pattern matching. 

define response + 
(I CA = r.A, SB = sum(group-by-c(r.C))l 1 \r <- Rb 

It is then straightforward to add a generic group-by op- 
erator as a shorthand for this program. 

The patterns are of four kinds: (1) a variable binding \x, 
(2) a constant pattern (which may an arbitrary expres- 
sion, but recall that expressions do not contain variable 
bindings), (3) a record pattern, possibly with trailing el- 
lipsis meaning that additional fields might be present, 
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[Al = ~1,. . .An = pn, . . .I (here the trailing “. . .” are 
part of the syntax), where ~1,. . . , pn are pattern, and 
(4) a variant pattern <A = p>, where p is a pattern. 

Through examples we have given enough evidence that 
the comprehension language can express everything SQL 
can, provided that the same built-in functions are avail- 
able. A legitimate question to ask is whether its addi- 
tional features, such as nested collections, variants, and 
functions, make it too powerful. Is it still possible to 
compile it and execute it with a decent performance? 
The answer is surprisingly yes. The language CI, has 
some intersting “conservativity” properties. Suppose, 
first, we consider CL with no aggregate functions and no 
conversion functions, and consider only those functions 
that have “flat” (i.e. first-normal-form) relations as in- 
put and output. Those queries are precisely the queries 
that are expressible in the (standard) relational algebra. 
Suppose further that we add some aggregate functions, 
but still restrict the input and output to have the flat 
relational types. Queries expressible in this language are 
exactly those that are expressible in the relational alge- 
bra with a GROUP-BY operator and the same aggregate 
functions - essentially SQL. This has two implications: 
first relational algebra and SQL both occur as natural 
fragments of CL. Second, on those queries that have 
flat relational type, we can exploit the same optimiza- 
tion techniques that are used in SQL and the relational 
algebra. CL d ea s 1 with a much richer variety of data 
structures and non-flat input and output types, and op- 
timization is an interesting issue; however we know that 
CL queries can be evaluated in PTIME. 

As evidence for its potential of clean and efficient im- 
plementation, we give in section 8 an abstract syntax 
language, into which the comprehension language can 
be translated. 

7 Structural Recursion 

It can be shown [35] that there are queries such as tran- 
sitive closure that are not expressible in CL. This is 
one reason for considering an extension of the compre- 
hension language with a new construct called structural 
recursion. On the other hand, these forms of recursions 
are not ad hoc programming constructs, but natural it- 
erators associated with the collection types: part of their 
very definitions as mathematical objects [8]. Moreover, 
as we will see, a basic restriction of these iterators has 
exactly the expressive power of comprehensions. 

First, we introduce some further notation: slus2 de- 
notes the union of two sets, bl@b2 is bag sum in which 
one adds the multiplicity of elements, and 11@12 is the 
result of appending lists 11 and 12. Also, another re- 
lated group of operators inserts elements into collections: 

ins(z, s) dgf {z}Us for sets, add(z, b) dzf {IzD@b for bags, 

and cons(z, 1) dGf (IlzI@@l for lists, 

Structural recursion comes in two different flavors, cor- 
responding to two different ways of viewing sets, bags, 
and lists. First we view a collection, say a bag, as be- 
ing obtained from the empty bag by repeatedly adding 
its elements, one by one. E.g., the bag (1z1,x2,zso is 
viewed as add(xl, add(x2, add(xs, 0 D))). This suggests 
the following form of iteration to compute the sum of 
the elements of a bag of numbers: 

define sum({l D) *O 

1 sum(add(\x, \s)) a t + sum(s) 

Even though this uses the syntax of general recursive 
definitions with patterns of collection type we mean it 
only as syntactic sugar, as an instance of the following 
specific template: 

define h(U D> 

I h(aW\x, \s)) : :(x, h(s)) 

In this case, we say that the function h is defined on bags 
by structural recursion on the insert presentation (SRI), 
with parameters e and i . In order for the definition to 
make sense on bags, i must be “commutative”, i.e. sat- 
isfy the condition i(cl, i(xg, u)) = i(z2, i(zl, v)), because 
the decomposition of some nonempty bag as add(\x, \s) 
is not unique. Similarly, we define SRI for sets and lists, 
replacing add(z, s) and (I D by their counterparts for lists 
and sets. In the case of sets, i must be in addition “idem- 
potent”, i.e. satisfy i(z, i(z, v)) = i(z, v), while for lists, 
no conditions have to be imposed on i. In fact, structural 
recursion over lists has been known under the name fold 
or reduce in textbooks of functional programming [l]. 

SRI is a specific program template. We stress once again 
that none of the languages considered in this paper al- 
lows general recursion, nor do they allow general pattern 
matching on collection types. In contrast with general 
recursion, structural recursion always terminates. 

In the example of the function sum, the constant e is 0, 
while the function i is i(z, w) = Z+V, so it is commutative 
but not idempotent: therefore sum is correctly defined on 
bags, and could be defined on lists as well in the same 
way, but not on sets. A trick is necessary to compute 
the sum of elements of some set through structural re- 
cursion, namely to compute successive pairs (s, sum(s)) 
using structural recursion. We leave the details as an 
exercise. 

For a more elaborate example, consider the Components 

relation, of type: 
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Components : { [Part:slring, Subpart:siring]} 

But Components only gives us the direct subparts of each 
part. To find the indirect subparts, we apply the fol- 
lowing function computing the transitive and reflexive 
closure, trc: 

define AlLNames 3 
union({p.Part 1 \p <- Components}, 

{p.Subpart 1 \p <- Components}) 

define compose(s1, s2) 3 
{ [Part = p, Subpart = rl 1 

[Part = \p, Subpart = \q] <- sl, 
[Part = q, Subpart = \r] <- s2) 

define trc({ }) + 

{ [Part = p, Subpart = p] 1 \p <- AllJames} 
I trc(ins(\z,\s)) * 

i!rc(s)Ucompose(lrc(s), compose({c}, trc(s))) 

For the second form of structural recursion we view a 
collection, say a bag, as a sum of smaller bags, these 
as sums of even smaller bags, and so on, until singleton 
bags, or the empty bag is reached. This suggests a dif- 
ferent kind of recursion for adding up the elements of a 
bag of numbers: 

define sum((l D) +O 

I sdQbD> *z 
1 sum(\sl@\s2)* sum(s1) + sum(s2) 

In a similar fashion, we can define the function reverse 
on lists: 

define reverse((ll ID) =a ID 
I ~ve4ll\4U) =4blB 
I reverse(\sl@\s2)Jreverse(s2)@reverse(sl) 

In its general form, the structural recursion over the 
union presentation, SRU, allows us to define a function 
h, with the following template: 

define h((l D) 

I W{l\4) %B, 
1 h(\slCB\s2) *u(h(sl), h(4) 

Again, some conditions have to be imposed on e and 
on the functions u. For lists we have to impose (1) 
identity: u(v,e) = u(e, v) = v, and (2) associativity: 
u(v~,u(v~, us)) = u(u(v1, vz), us). For bags, we have 
to impose, in addition, (3) commutativity: u(v1, ~2) = 

~(02, VI), while for sets, we also have to impose (4) idem- 
potence: u(z), v) = 21. 

SRI is naturally associated with sequential processing of 
collections: the elements of some collection s are pro- 
cessed one by one. In contrast, SRU is naturally as- 
sociated with the parallel processing of collections, in a 
divide and conquer manner: to compute f(s), one di- 
vides s into two components sl@s2, computes f(s1) and 
f(s2) in parallel and independently, then compose the 
two results. 

The structural recursion over the insert presentation SRI 
is at least as expressive as SRU. Indeed, consider the 
definition of the function h above using SRU. We can 
define the same function using SRI: 

define h({ D) 

I NaW\z, \s)> =W+ h(s)) 

The side conditions imposed on the functions used in 
both SRI and SRU are annoying. As the functions i 
or u become more complicated, it becomes impossible 
for a compiler to check them: in fact, checking them is 
undecidable [8,28]. However, there are important special 
cases of SRU where these equations are automatically 
satisfied. Namely when e = {I D, u = @ (or e = { }, u = 
U for sets, and e = (II ID, u = @ for lists). Then, the 
more restrictive form of structural recursion is given by 
the following template: 

define h(Q D) *{I D 
I h(U\4I) *f({lxD) 
1 h(\sl @ \s2) =kh(sl) $ h(s2) 

In this restricted form, the structural recursion is always 
well defined. Since in this definition the only function 
we are able to chose is f, we abbreviate the function 
h with ext(f). Its meaning is ext(f)({]xr,. . . , z~D) = 
f(Xl)@ . . . @f(+n> ( similarly for sets and lists). 

8 An Abstract Syntax Language 

We are now going to define a language that stands in 
the same relation to comprehension syntax as relational 
calculus does to practical relation query languages. The 
salient point is that this language is built around the 
restricted form of structural recursion ext defined in sec- 
tion 7 and that, as we will show below, ext is equivalent 
to comprehensions (this connection was first observed by 
Wadler [32]). N amely, in one direction we have: 

eW>(s> = Uv I \x <- s, \v <- f(x)D 
Conversely, ext can be used to “compile away” compre- 
hension syntax by the following simple rules: 
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1. 

2. 

{e ( \z <- S, G} dsf ext(f)S, where f is a function 
defined by f(\z) = {e ] G} 

[FUN-I] 
e : r2 

Xx" .e : rl -+ r2 

{e 1 C,G} dsf if C then {E 1 G} else { }, when C is 
a condition. 

[FUN-E] 
f: Tl - 72 e : rl 

f(e) : 72 

In this, G stands for the remaining components (genera- 
tors and conditions) of the comprehension. By repeated 
application of these rules we can remove successive com- 
ponents of the comprehension until we are left with the 
simple comprehension {e 1 ), which is trivially equivalent 
to {e}. 

To present this abstract syntax language built around 
ext we make some simplifications: we will ignore vari- 
ant types and collection types other than sets. While 
they are very important as data structures and they can 
easily be added to this presentation, their addition does 
not fundamentally affect the language. Hence, in what 
follows, “object-types” are the types of structures that 
can be built from the base types b using record and set 
construction: 

T ::= b 1 Cl1 : q, . . . ,1, : T,I 1 {T} 

where b stands for the built-in types. The language de- 
fines two different syntactic categories: terms e, having 
some type r as defined above, and functions f, having 
some type CT -+ r, where 6, r are types as defined above. 
This constrains our functions to be first order, i.e. they 
cannot take functions as inputs or return functions as 
results. 

Now to the language. We assume that all variables 
are tagged with their type; that is x7 is a variable x 
whose type is 7. The following typing rules express 
both the syntax and the properly typed expressions for 
the language. For example read the rule [REC-I] as “If 
el . . . e, are expressions of the language with respective 
types 71 . . . r,, then we can form the expression [Ii = 
el,..., I,, = e,] whose type is [/I : ri, . . . , I,, : r,J .” 

[“AR] Z7 : T 

ECONSTI 7 

[REC-I] 
el :71 . . . e, :'I;, 

Cll=el,. 1 v-1 n =e,l : Cl1 :T~,...,I~:~J 

[REC-E] 
e: [...I:T...l 

e.1 : r 

[SET-I] 
el : r, . . . , e, : T 

{a,... , enI : (~1 

[SET-E] 
f:71--+{72) 

-t(f) : {T)-+ (72) 

[EQUALI efll I2 ef C lo) 

A few comments on this language: 

1. 

2. 

3. 

We have used lambda terms (anonymous function 
definition). Read Xx’.e as “that function of xr 
whose value is e”. In general e will be an expression 
involving x7. 

We have given an explicitly typed language. How- 
ever polymorphic type inference is possible [22, 24, 
26, lo], which justifies our presentation of a practi- 
cal language without type annotations. 

The boolean values true and false are represented by 
{C 1) and {} respectively, where [ 1 is the empty 
record. These are the two values of type ( [: 3 }. This 
simplifies translation from comprehensions, because 
a condition C in a comprehension can be replaced by 
\x <- C where x is a new variable. Thus conditions 
are generators. 

We claim that CL can be effectively translated into this 
abstract syntax. A full justification of this fact is beyond 
the scope of this paper. However, we have seen that com- 
prehensions can be translated into expressions involving 
ext, the remaining translations (e.g. the removal of pat- 
terns) is not hard. As an example, union at any type is 
the function (omitting type annotations): 

xz.ext(xx.x){x.#l, +.#2) 

That is, the union operation works on a tuple - a record 
with two fields labelled #l and #2 - by placing these 
fields in a set and applying ext of the identity function 
to this set. 

The abstract syntax language has been the subject of 
several studies (see the discussion in section 9) and is 
now well understood. This makes it extremely useful in 
understanding both the expressive power and optimiza- 
tion strategies for comprehension syntax. 

One might ask if there is a variable-free presentation of 
comprehension syntax - just as the relational algebra 
serves as a variable-free presentation of relational calcu- 
lus. In fact there is one, but it is an algebra of functions 
on complex objects rather than on the objects them- 
selves; and it is an algebra that is well known to math- 
ematicians as a (categorical) monad with products and 
sums [32, 91. It was this construct that suggested the 
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abstract syntax language to the authors. Category the- 
ory has been a useful tool in generalizing mathematical 
structures, and it is unsurprising that it should be useful 
in generalizing database structures. 

9 Conclusions 

Let us try to summarize our results by reversing, more or 
less, the development of this paper. Structural recursion 
on sets, bags and lists together with the canonical opera- 
tions on records and variants provide us with a powerful 
programming paradigm for database structures. By us- 
ing a natural, but restricted form of structural recursion 
we obtain a language that is equivalent to comprehen- 
sion syntax; in fact it is a language into which one can 
readily compile comprehension syntax. This language 
has an associated functional algebra. Comprehension 
syntax itself can be further restricted by constraining 
the input and output types to be (flat) relational types 
(sets of records). This language expresses precisely those 
queries that are definable in the relational algebra. By 
adding fixed set of aggregate operations such as sum, 
count, max to comprehension syntax and again restrict- 
ing it to those queries whose input and output are flat 
relations, we obtain a “rational reconstruction” of SQL. 
Perhaps the most surprising observation is that these 
well-known database languages are natural fragments of 
a simple and powerful functional language; and there are 
many more connections with known database languages 
that are beyond the scope of this paper. 

For further reading on this subject, the idea of using 
structural recursion for database languages was sug- 
gested in [4, 24, 71, and the properties of well-defined 
programs using structural recursion were examined in 
[S]. Comprehension syntax and its associated algebra 
was studied in 132, 33, 91 and its connection with struc- 
tural recursion and complex-object algebras was studied 
in [9]. That comprehension syntax at relational types 
gives us a language equivalent to the relational algebra 
was shown in [25, 351, even if nesting is used in interme- 
diate results. Another result of this kind [27] shows that 
by adding a bounded fixed-point construct to compre- 
hension syntax gives us, again at relational types, infla- 
tionary datalog, and in [19,21] it is shown that nesting at 
intermediate types does not add expressiveness in pres- 
ence of aggregate functions and certain generic queries. 
Other results on expressive power are to be found in 
[19, 20, 211. Our approach can be used for different col- 
lections: languages for or-sets were studied in [17, 131 
and bag languages in [18]. [29] shows that transitive 
closure, which is efficiently expressible using structural 
recursion, has a necessarily exponential implementation 
in complex-object algebra [3]. [14] show how to encode 

related database languages in the simply-typed lambda- 
calculus. The possibility of using comprehension syntax 
for arrays is examined in [ll]. Connections with parallel 
complexity classes are studied in [28]. 
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