A Hypertext Query Language for Iimages

Li Yang*
Institute of Software, Academia Sinica, P. O. Boz 8718, Beijing 100080, China

Abstract

HYPERQUERY is a hypertext query language for
object-oriented pictorial database systems. First,
we discuss object calculus based on term rewriting.
Then, example queries are used to illustrate language
facilities. This query language has been designed
with a flavor similar to QBE as the highly non-
procedural and conversational language for object-
oriented pictorial database management system OIS-
DBS.

1 Introduction

Most of database management systems that have
been implemented to manage pictorial information
were developed on top of conventional relational
DBMSs. In such systems, an image is represented
as physical image(the actual image data) and logical
image(image attributes). The logical image, some of
which is extracted from physical image by using im-
age processing algorithms, acts as the proxy of physi-
cal image in the relational database and provides the
only means to access the image data in physical image
storage. Obviously, this approach has no modeling
ability for physical image data.

This discrepancy of relational pictorial database
systems stimulates our motivation of developing an
object-oriented image database system OISDBS. By
providing formally clear mechanisms for the combi-
nation of data structures and operations in abstract
data types, OISDBS provides the possibility of image
data modeling by describing the structures and inter-
relationships of image entities. In this paper, we dis-
cuss object calculus by using rewrite expressions, and
propose a hypertext query language HYPERQUERY
which is a query language with the flavor of QBE([2]
and QPE (Query by Pictorial Example)[4] but using
hypertext forms instead of tables. Following a brief
description of object calculus, the language facilities

*Current address: Department of Intelligence Systems, In-
stitute of Automation, P. O. Box 2728, Beijing 100080, P. R.
China

of HYPERQUERY are illustrated through several ex-
amples.

2 Object calculus

To turn to the discussion of object query language,
we need a framework of object calculus. Bancilhon
et al [1] have proposed an object calculus for untyped
objects. In this section, we first define a partial order
on objects of a type, and show that this partial order
induces a lattice structure on the type which allows
us to define union and intersection of two objects.
Upon these two operations, we can define variables,
rewrite rules and rewrite expressions which form the
object calculus framework.

Definition 1 Let O,0’' be objects of type R, we can
define the fact that O is a sub-object of O’ (denoted
by O < O') recursively as follows:

1. IfO and O are tuple objects, O = [O1,...,0mj,
0’ =[04,...,0,], then O is a sub-object of o'
if every O; is a sub-object of O} for1 <i<m.

2. If O and O' are set objects, O = {Oy,...,0n},
0’ ={0},...,0'}, then O 1is a sub-object of O’
if every element of O is a sub-object of a corre-
sponding element of O' and there are no distinct
objects O; and O; in O such that O; < O;.

3. Every object is a sub-object of T and L s a sub-
object of every object.

It is clear that sub-object relationship is reflexive
(O < 0), transitive (if 01 < O3, O2 < O3, then 01 <
03), and anti-symmetric (if Oy < O3, O3 < Oy, then
0, = 0,). For a set of objects of type R, the sub-
object relationship < is a partial order. Obviously,
the following theorem holds:

Theorem 1 The set of objects of type R, together
with the sub-object relationship <, is a complete lat-
tice.

With this lattice structure, two basic operations,
the union and the intersection of objects, can be de-
fined as follows:

16 SIGMOD RECORD, Vol. 23, No. 1, March 1994

Definition 2 The unton of two objects of a type,
01 U Oa, s the smallest object that contains both
of them(their least upper bound). The intersection,
01N 004, is the largest abject that is contained n both
of them(their greatest lower bound).

With these two operations, object query can be
expressed as rewrite expressions. To define rewrite
expressions formally, we first introduce the term vart-
able. Variable which has the hierarchical structure as
object, is the reflection of object structure in object
calculus.

Definition 3 Given a type R, there ezists an infinite
set of symbols Varg, R# R' — VargNVarg = ¢,
Let Var = |Jg Varg denotes the set of all symbols,
Variables are defined recursively as follows:

1. Each object of type T is a variable of type T.
2. Fach element of Varr is a variable of type T

3. LetT=I[T1,...,
able of type T; for 1 < i < n, then [Xy,...
ts a vartable of type T.

Ty] be a tuple type, X; is a vari-
) Xn]

4. LetT = (Ty,...,Ty) be a union type(every object
of type T; (1 <4 < n) is an object of type T), X
is a variable of type T, 1 < i < n, then {X;) s
a variable of type T.

5. Let T = {T'} is a set type. N; is a variable of
type T for 1 < i < n, then {Xy,.... Xy} is a
variable of type T.

6. If X s a vartable of type T, then > X, < X,
> X, < X. =X are also variables of type T'.

The semantics of variables is embodied by the as-
signment of variables to objects.

Definition 4 An assignment o 1s a mapping which
maps variables into objects of appropriate types in the
following way:

1. o(0) = O for each object.

2. o(IX1,. .o Xa]) = [0(X1). -, o(Xn)]
3. o((X)) = (a(X))

o o({X1. L Xad) = {o(X1)e - (Xn))

5. Let X be a variable of type T, then each assz’gn-
ment of o(> X), o(< X), o(> X), o(< X),
a(—~X) is an object O of type T which satisfies
0 > a(X), 0 <a(X), O>ca(X), O<oa(X),
O # o(X) respectively.

SIGMOD RECORD, Vol. 23, No. 1, March 1994

Because variables have the hierarchical structure
similar to objects, the assignment of variables can be
a part of query language. Consider a variable V' of
type T with variables Vi, ..., V, in it, and an assign-
ment ¢ of objects Oy, ..., Oy, to variables Vi, ..., V},,
o will also assign an object of type T to the variable
V. More generally, we have:

Definition 5 Let V be a variable of type T, O an
object of T, the effect of V on O is a set which is the
union of all assignments of V that are sub-object of
0.
V(0) = JleW)la(V) < 0}

Therefore, the problem with variables to represent
a query Is that it only selects a set of sub-objects
and not allow object restructuring. To overcome this,
we introduce the notion of rewrite rules and rewrite
expressions.

Definition 6 Let X be a variable of lype S, rewrite
rules and rewrite expressions are defined recursively
in the following way.

1. Let' Y be a variable of type T,

(a) X =Y is arule from S toT.

(b) if p is a rewrite expression from T to T,
X —p(Y) is a rule from S to T'.

2 (a) if X — Y1,...,.X — Y, are rules from
S to Ty...., T, respeclively, then X —
Y1,..., Y] is a rule from S to [Th, ..., Ty).

) if X — Y is a rule from S to some T in
Ty,... . then X — (Y) is a rule from S
to (Tl,..., n)-

(c) if X —Y1,...,X =Y, are rules from S to
T, then X — {¥1,...,Y,} is a rule from S

to {T}.

(d) f X —Yi,..., X — Y, are rules from S to
{T}, then X\ — Y1 U...UY, is a rule from
S to {T}.

3. a rewrite expression from {S} to {T} has the
form rew(A), where A is a set of rules from S
to T.

In Definition 4, we have defined the assignment
of variables to objects of appropriate types, and in-
dicated that it can be a part of object query lan-
guage. In the following, we will indicate that this
kind of assignment can be extended to the assign-
ment of rewrite expressions which forms the entire
object calculus framework.

17

Definition 7 Let ¢ be an assignment of variables,
then

1. 6(0) = O for each object O.

2. o([X1,.... Xu]) = [0(X1), .., 0(X))
3. a({X)) = (o(.X))

4. o({Xy, .., X)) = {a(X1), ..., 0(Xn)}
5. 0(X1U...UX,) = o(X1)U...Ua(X,)
6. o(rew(A)(X)) = {8

o(X)}

The semantics of rewrite expressions can be defined
as follows:

Definition 8 Lel p = rew(A) be a rewrite expression
for type S, O an object of S, then the effect of p on
O is defined as

p(0) = {o(Y)|X =Y € A,and 0(X) <O}

3 The language

Obviously, rewrite rules and rewrite expressions can
be used as a kind of query language, but it is not
very user friendly. To meet the requirements for user
friendness, rewrite expressions should be converted
into more acceptable forms. In relational databases,
the tabular query language QBE{2] based on do-
main relational calculus provides a brief, easy to un-
derstand guidance in query formulation. Query by
Diagram[3] is a query language directly on the E-R
graph. Query by Pictorial Example(QPE)[4] which
adopts the QBE approach is a tabular query language
for pictorial database system. In the design of HY-
PERQUERY, we wish to adopt this flavor to express
a query by entering an example in the appropriate
location on screen.

Compared with QBE and QPE, HYPERQUERY
uses hypertext form in the formulation of query in-
stead of tables. It is easy to formulate a query in
hypertext form for object-oriented databases because
hypertexts are just the user’s view of the database.
In HYPERQUERY, each operation is specified by us-
ing one or more hypertext forms. Each form is built
up on screen with the entire structure being supplied
by the system and other parts by the user. Ezample
elements which are marked underlining are variables
specified by the user and solved by the system during
query processing.

Queryl: Print all forest farms of which the area is
above 100 hectares and the managersinclude a person

named WANG.

18

FFARM

[w0 | [mame | | arEa |

FTYPE

[
7

Figure 1: The structure of FFARM supplied by the
system in Query 1

(VWU — V e A BU) €

X
P. _|FFARM
[mo | | same | | area
100
FTYPE(}) MANAGER|
NANG

Figure 2: The formulation of Query 1

Initially, the user, knowing the answer to the query
is in type FFARM, enters FFARM as the type name,
the system will then respond by giving the structure
of type FFARM, as in Figure 1.

Once the user enters a type name, the system only
gives the structure of a type till the next level x-
vertex in depth. Now the user can express the query
on the terminal by moving the cursor to the appropri-
ate position, clicking the mouse button to push out
a small window, and filling it. The query is shown in
Figure 2.

In Figure 2, “P.” stands for “PRINT”, an output
operator. This query can also be formulated as vari-
ables:

[NO:X, NAME:Y, AREA:> 100, {FTYPE:Z},
>{MANAGER:WANG}]

Query 2: Display all forest types in No. 2 forest
farm.

First, the user enters FFARM as the type name,
the system then responds the same as in Query 1.
Because this query is about the type FTYPE, the

SIGMOD RECORD, Vol. 23, No. 1, March 1994

FFARM

a0 | [maME | | aREa | O
2
FTYPE

[so | [area | | vex | | imacE

Figure 3: The formulation of Query 2

RAILWAY

lHIGHHAYI EATERHA!
X

Figure 4: The formulation of Query 3

user moves cursor to the node FTYPE and clicks the
button, the structure of type FTYPE will appear. By
the appropriate positions being filled, this query can
be expressed in Figure 3.

Query 2 can also be formulated in rewrite expres-
sion as follows:

rew([NO:2, NAME, AREA,
(FTYPE:[NO, AREA, LEN, IMAGE:X]},
{MANAGER}] — IMAGE:X)

Query 3: Print all transport lines except the rail-
way.

The type TRANSPORT is the generalization of
RAILWAY, HIGHWAY and WATERWAY. HIGH-
WAY is the generalization of types ARTERIAL and
BRANCH. When the user specifies the name of a
generalized type and an asterisk(*), the system will
display all its direct subtypes. In this example, the
user enters “TRANSPORT”, and the query can be
expressed in Figure 4.

The “+” in operator “P+” means that the query 1s
applied to all of the subtypes of TRANSPORT.

Query 4: Print and display all the rivers whose
discharge is above 100 cubic meter per second.

As usual, rivers are classified into two kinds, single
line rivers and double line rivers, which are stored

SIGMOD RECORD, Vol. 23, No. 1, March 1994

the database differently. A single line river, which is
perhaps a small river or a stream, is stored as one
line in the database while a double line river is stored
as two lines which represent two sides of the river. In
this example, the type RIVER is the union of types
SINGLELINE and DOUBLELINE. To formulate this
query, the user must specify DISCHARGE for SIN-
GLELINE and DOUBLELINE separately(Figure 5).

Query 5: To illustrate the query about more than
one type and the use of image operators, let us con-
sider another example: In order to know how many
bridges are needed in the design of a railway and the
type of each bridge, we must know all the rivers across
this railway. This query involves two types, RAIL-
WAY and RIVER, and can be expressed as in Figure
6.

In this query, these two types are connected
by common ezample element X. In addition,
intersect(X) is an image operator which deter-
mines two line objects intersect or not. In the sys-
tem, the image part of each pictorial object con-
tains its MBR(Maximum Boundary Rectangle). The
intersect operator first compares MBRs of these
lines rather than performs point-to-point matching
directly which 1s very time-consuming.

4 Implementation issues

HYPERQUERY is designed as the query lan-
guage for OISDBS (Object-oriented Intelligent Spa-
tial DataBase System). OISDBS is built on ISDBS[5].
a relational spatial database system. It adds an Ob-
Ject Manager on top of ISDBS which supports object-
oriented database schema design, storage manage-
ment, indices, and the mapping from object schema
to relational schema. OISDBS is currently being im-
plemented on a VAX 8700 under the VMS operating
system. The user interacts with the system via a
VT340 graphic terminal.

5 Summary

The object-oriented database query language HY-
PERQUERY is introduced. Object calculus based
on term rewriting is also discussed. In query formula-
tion, queries about pictorial entities can be expressed
just as the user’s view of the object database. Pic-
torial operations are introduced for the manipulation
regarding pictorial entities. Queries about a type can
be expressed as a kind of hypertext, while queries
about more than one type can be formulated by in-
troducing ezample elements. All these features make
HYPERQUERY a very attractive and versatile query

19

X)SINGLELINE

[LENGTH| O

ISCHARGE | IMAGE |

>100

Figure 5: The for

RIVER

X)DOUBLELIBE

ISCHARG
>100

(-EAHE

| LENGTH | I E | IMAGE |

mulation of Query 4

RAILWAY

NAME

| LENGTH |

XYZ

[LENGTH] f1scHaRGE

LENGTH | JISCHARGE

IMAGE

intersegt(X)

interse

et (X)

Figure 6: The formulation of Query 5

language for the manipulation of pictures by decision
makers, resource managers, and image processing en-
gineers.

A subset of HYPERQUERY has been illustrated
through examples. It is clear that HYPERQUERY
approach is a rather open ended language which can
be extended to accommodate additional or new func-
tions that may be of particular interest to specific ar-
eas. It provides a basis upon which further language
operations for pictorial data may be easily built.

References

[1] F. Bancilhon, S. Khoshafian, A calculus for
complex objects, in Proc. dth ACM SIGACT-
SIGMOD Symp. on Principles of Database Sys-
tems, Cambridge, Mass., Mar. 1986, 53-59

20

[2] M. Zloof, Query-by-example: a datahase lan-
guage, IBM System Journal, 16, 1977, 324-343

[3] G. Santucci, P. A. Sottile, Query by Diagram: a
visual environment for querying databases, Soft-
ware - Practice and Experience, 23(3), 1993,
317-340

(4] N. S. Chang, K. S. Fu, Query-by-pictorial ex-
ample, IEFE Trans. on Software Engineering,
SE-6(6), 1980, 519-524

[5] 3. K. Wu, T. Chen. L. Yang, A knowledge-
based image database system(ISDBS), Science
. China(Series A), 34(1), 1991, 87-93

SIGMOD RECORD, Vol. 23, No. |, March 1994

