Mining Quantitative Association Rules in Large Relational
Tables

Ramakrishnan Srikant*

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120

Abstract

We introduce the problem of mining association rules in
large relational tables containing both quantitative and
categorical attributes. An example of such an association
might be “10% of married people between age 50 and 60 have
at least 2 cars”. We deal with quantitative attributes by fine-
partitioning the values of the attribute and then combining
adjacent partitions as necessary. We introduce measures of
partial completeness which quantify the information lost due
to partitioning. A direct application of this technique can
generate too many similar rules. We tackle this problem
by using a “greater-than-expected-value” interest measure
to identify the interesting rules in the output. We give
an algorithm for mining such quantitative association rules.
Finally, we describe the results of using this approach on a
real-life dataset.

1 Introduction

Data mining, also known as knowledge discovery in
databases, has been recognized as a new area for
database research. The problem of discovering asso-
ciation rules was introduced in [AIS93]. Given a set of
transactions, where each transaction is a set of items,
an association rule is an expression of the from X = Y,
where X and Y are sets of items. An example of an
association rule is: “30% of transactions that contain
beer also contain diapers; 2% of all transactions contain
both of these items”. Here 30% is called the confidence
of the rule, and 2% the support of the rule. The problem
1s to find all association rules that satisfy user-specified
minimum support and minimum confidence constraints.

Conceptually, this problem can be viewed as finding
associations between the “1” values in a relational
table where all the attributes are boolean. The

* Also, Department of Computer Science, University of
Wisconsin, Madison.

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made

or distributed for profit or commercial advantage, the copynght notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to

post on servers, or to redistribute to lists, requires prior specific permission

and/or a fee.

SIGMOD '96 6/96 Montreal, Canada
© 1996 ACM 0-89791-794-4/96/0006...$3.50

Rakesh Agrawal

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120

table has an attribute corresponding to each item
and a record corresponding to each transaction. The
value of an attribute for a given record is “1” if the
item corresponding to the attribute is present in the
transaction corresponding to the record, “0” else. In
the rest of the paper, we refer to this problem as the
Boolean Association Rules problem.

Relational tables in most business and scientific
domains have richer attribute types. Attributes can
be quantitative (e.g. age, income) or categorical (e.g.
zip code, make of car). Boolean attributes can be
considered a special case of categorical attributes.

In this paper, we define the problem of mining associ-
ation rules over quantitative and categorical attributes
in large relational tables and present techniques for dis-
covering such rules. We refer to this mining problem as
the Quantitative Association Rules problem. We
give a formal statement of the problem in Section 2. For
illustration, Figure 1 shows a People table with three
non-key attributes. Age and NumCars are quantitative
attributes, whereas Married is a categorical attribute.

A quantitative association rule present in this table is:
(Age: 30..39) and (Married: Yes) => (NumCars: 2).

1.1 Mapping the Quantitative Association
Rules Problem into the Boolean
Association Rules Problem

Let us examine whether the Quantitative Association
Rules problem can be mapped to the Boolean Asso-
ciation Rules problem. If all attributes are categori-
cal or the quantitative attributes have only a few val-
ues, this mapping is straightforward. Conceptually, in-
stead of having just one field in the table for each at-
tribute, we have as many fields as the number of at-
tribute values. The value of a boolean field correspond-
ing to (attributel, valuel) would be “1” if attribute! had
valuel in the original record, and “0” otherwise. If the
domain of values for a quantitative approach is large, an
obvious approach will be to first partition the values into
intervals and then map each (attribute, interval) pair to
a boolean attribute. We can now use any algorithm for
finding Boolean Association Rules (e.g. [AS94]) to find

People

Married

NumCars

RecordID | Age
100 23
200 25
300 29
400 34
500 38

No
Yes
No
Yes
Yes

DN O s

(minimum support = 40%, minimum confidence = 50%)

Rules (Sample) Support | Confidence
(Age: 30..39) and (Married: Yes) = (NumCars: 2) 40% 100%
(NumCars: 0..1) = (Married: No) 40% 66.6%

Figure 1: Example of Quantitative Association Rules

quantitative association rules.

Figure 2 shows this mapping for the non-key at-
tributes of the People table given in Figure 1. Age
is partitioned into two intervals: 20..29 and 30..39.
The categorical attribute, Married, has two boolean at-
tributes “Married: Yes” and “Married: No”. Since the
number of values for NumCars is small, NumCars is
not partitioned into intervals; each value is mapped to
a boolean field. Record 100, which had (Age: 23) now
has “Age: 20..29” equal to “1”, “Age: 30..39” equal to
“0” | etc.

Mapping Woes. There are two problems with this
simple approach when applied to quantitative at-
tributes:

e “MinSup”. If the number of intervals for a quan-
titative attribute (or values, if the attribute is not
partitioned) is large, the support for any single in-
terval can be low. Hence, without using larger in-
tervals, some rules involving this attribute may not
be found because they lack minimum support.

o “MinConf”. There is some information lost when-
ever we partition values into intervals. Some rules
may have minimum confidence only when an item in
the antecedent consists of a single value (or a small
interval). This information loss increases as the in-
terval sizes become larger.

For example, in Figure 2, the rule “(NumCars: 0)
= (Married: No)” has 100% confidence. But if
we had partitioned the attribute NumCars into
intervals such that 0 and 1 cars end up in the same
partition, then the closest rule is “(NumCars: 0..1)
=> (Married: No)”, which only has 66.6% confidence.

There is a “catch-22” situation created by these two
problems — if the intervals are too large, some rules may
not have minimum confidence; if they are too small,
some rules may not have minimum support.

Breaking the logjam. To break the above catch-22
situation, we can consider all possible continuous ranges
over the values of the quantitative attribute, or over the
partitioned intervals. The ““MinSup” problem now dis-
appears since we can combine adjacent intervals/values.
The “MinConf” problem is still present; however, the in-
formation loss can be reduced by increasing the number
of intervals, without encountering the “MinSup” prob-
lem.

Unfortunately, increasing the number of intervals
while simultaneously combining adjacent intervals in-
troduces two new problems:

e “EzecTime”. If a quantitative attribute has n values
(or intervals), there are on average O(n?) ranges
that include a specific value or interval. Hence the
number of items per record blows up, which will blow
up the execution time.

o “‘ManyRules”. If a value (or interval) of a quan-
titative attribute has minimum support, so will any
range containing this value/interval. Thus, the num-
ber of rules blows up. Many of these rules will not
be interesting (as we will see later).

There is a tradeoff between faster execution time with
fewer intervals (mitigating “ExecTime”) and reducing
information loss with more intervals (mitigating “Min-
Conf”}. We can reduce the information loss by increas-
ing the number of intervals, at the cost of increasing the
execution time and potentially generating many unin-
teresting rules (“ManyRules” problem).

It is not meaningful to combine categorical attribute
values unless unless a taxonomy (is-a hierarchy) is
present on the attribute. In this case, the taxonomy
can be used to implicitly combine values of a categorical
attribute (see [SA95], [HF95]}. Using a taxonomy in this
manner is somewhat similar to considering ranges over
quantitative attributes.

RecID | Age: 20..29 | Age: 30..39 | Married: Yes | Married: No | NumCars: 0 { NumCars: 1 | NumCars: 2
100 1 0 0 1 0 1 0
200 1 0 1 0 0 1 0
300 1 0 0 1 1 0 0
400 0 1 1 0 0 0 1
500 0 1 1 0 0 0 1

Figure 2: Mapping to Boolean Association Rules Problem

1.2 Our Approach

We consider ranges over adjacent values/intervals of
quantitative attributes to avoid the “MinSup” problem.
To mitigate the “ExecTime” problem, we restrict
the extent to which adjacent values/intervals may be
combined by introducing a user-specified “maximum
support” parameter; we stop combining intervals if their
combined support exceeds this value. However, any
single interval/value whose support exceeds maximum
support 1s still considered.

But how do we decide whether to partition a quantita-
tive atiribute or not? And how many partitions should
there be in case we do decide to partition? We intro-
duce a partial completeness measure in Section 3 that
gives a handle on the information lost by partitioning
and helps make these decisions.

To address the “ManyRules” problem, we give an
wnterest measure in Section 4. The interest measure is
based on deviation from expectation and helps prune
out uninteresting rules. This measure is an extension of
the interest-measure introduced in [SA95].

We give the algorithm for discovering quantitative
association rules in Section 5. This algorithm shares
the basic structure of the algorithm for finding boolean
association rules given in [AS94]. However, to yield a
fast implementation, the computational details of how
candidates are generated and how their supports are
counted are new.

We present our experience with this solution on a
real-life dataset in Section 6.

1.3 Related Work

Since the introduction of the (Boolean) Association
Rules problem in [AIS93], there has been considerable
work on designing algorithms for mining such rules
[AS94] [HS95] [MTV94] [SON95] [PCY95]. This work
was subsequently extended to finding association rules
when there is a taxonomy on the items in [SA95] [HF95].

Related work also includes [PS91], where quantitative
rules of the from z = ¢, = y = ¢, are discovered. How-
ever, the antecedent and consequent are constrained to
be a single (attribute,value) pair. There are suggestions
about extending this to rules where the antecedent is
of the from | < = < u. This is done by partitioning
the quantitative attributes into intervals; however, the
intervals are not combined. The algorithm in [PS91]

is fairly straightforward. To find the rules comprising
(A = a) as the antecedent, where a is a specific value
of the attribute A, one pass over the data is made and
each record is hashed by values of A. Each hash cell
keeps a running summary of values of other attributes
for the records with the same A value. The summary
for (A = a) is used to derive rules implied by (A = a)
at the end of the pass. To find rules for different at-
tributes, the algorithm is run once on each attribute.
Thus if we are interested in finding all rules, we must
find these summaries for all combinations of attributes,
which is exponentially large.

2 Problem Statement and
Decomposition

We now give a formal statement of the problem of
mining Quantitative Association Rules and introduce
some terminology.

We use a simple device to treat categorical and quan-
titative attributes uniformly. For categorical attributes,
the values of the attribute are mapped to a set of con-
secutive integers. For quantitative attributes that are
not partitioned into intervals, the values are mapped to
consecutive integers such that the order of the values is
preserved. If a quantitative attribute is partitioned into
intervals, the intervals are mapped to consecutive inte-
gers, such that the order of the intervals is preserved.
These mappings let us treat a database record as a set
of {attribute, integer value) pairs, without loss of gen-
erality.

Now, let T = {1,142, ...,%m} be a set of literals, called
attributes. Let P denote the set of positive integers.
Let 7y denote the set Z x P. A pair {(z,v) € Iy
denotes the attribute z, with the associated value v.
Let T denote the set {{z,l,u) € TxP xP |l <
u, if z is quantitative;l = u, if z is categorical }. Thus,
a triple {(z,!,u) € Tr denotes either a quantitative at-
tribute z with a value in the interval [I,u], or a cate-
gorical attribute = with a value . We will refer to this
triple as an item. For any X C g, let attributes(X)
denote the set {z | (z,l,u) € X}.

Note that with the above definition, only values
are associated with categorical attributes, while both
values and ranges may be associated with quantitative
attributes. In other words, values of categorical

attributes are not combined.

Let D be a set of records, where each record R
is a set of attribute values such that R C Zy. We
assume that each attribute occurs at most once in a
record. We say that a record R supports X C Ig, if
V(z,l,u) € X (I=z,q) € R such that | < ¢ <u).

A quantitative association rule is an implication of
the form X = Y, where X C 7, Y C Ip, and
attributes(X) N attributes(Y) = @ The rule X = Y
holds in the record set D with confidence ¢ if ¢% of
records in D that support X also support Y. The rule
X =Y has support s in the record set D if s% of records
in D support X UY.

Given a set of records D, the problem of mining
quantitative association rules is to find all quantitative
association rules that have support and confidence
greater than the user-specified minimum support (called
minsup) and minimum confidence (called mincony)
respectively. Note that the fact that items in a rule
can be categorical or quantitative has been hidden in
the definition of an association rule.

Notation Recall that an item is a triple that repre-
sents either a categorical attribute with its value, or
a quantitative attribute with its range. (The value of
a quantitative attribute can be represented as a range
where the upper and lower limits are the same.) We use
the term itemset to represent a set of items. The sup-
port of an itemset X C g is simply the percentage of
records in D that support X. We use the term frequent
itemset to represent an itemset with minimum support.

Let Pr(X) denote the probability that all the items
in X C TIg are supported by a given record. Then
support{ X = Y) = Pr(X UY) and confidence(X = Y)
= Pr(Y | X). (Note that Pr(X UY) is the probability
that all the items in X UY are present in the record.)
We call X a generalization of X (and X a specialization
of)?) if attributes(X) = attributes()?) and Vz €
attributes(X) [(z,l,u) € X A{z,l',v) € X= <
I < wu < u']. For example, the itemset { (Age: 30..39),
(Married: Yes) } is a generalization of { (Age: 30..35),
{Married: Yes) }.

2.1 Problem Decomposition

We solve the problem of discovering quantitative asso-
ciation rules in five steps:

1. Determine the number of partitions for each quanti-
tative attribute. (See Section 3.)

2. For categorical attributes, map the values of the at-
tribute to a set of consecutive integers. For quantita-
tive attributes that are not partitioned into intervals,
the values are mapped to consecutive integers such
that the order of the values is preserved. If a quan-
titative attribute is partitioned into intervals, the

intervals are mapped to consecutive integers, such
that the order of the intervals is preserved. From
this point, the algorithm only sees values (or ranges
over values) for quantitative attributes. That these
values may represent intervals is transparent to the
algorithm.

3. Find the support for each value of both quantitative
and categorical attributes. Additionally, for quan-
titative attributes, adjacent values are combined as
long as their support is less than the user-specified
max support. We now know all ranges and val-
ues with minimum support for each quantitative at-
tribute, as well as all values with minimum support
for each categorical attribute. These form the set of
all frequent items.

Next, find all sets of items whose support is greater
than the user-specified minimum support. These are
the frequent itemsets. (See Section 5.)

4. Use the frequent itemsets to generate association
rules. The general idea is that if, say, ABCD and
AB are frequent itemsets, then we can determine if
the rule AB = CD holds by computing the ratio
conf = support(ABCD)/support(AB). If conf >
manconf, then the rule holds. (The rule will have
minimum support because ABCD is frequent.) We
use the algorithm in [AS94] to generate rules.

5. Determine the interesting rules in the output. (See
Section 4.)

Example Consider the “People” table shown in Fig-
ure 3a. There are two quantitative attributes, Age and
NumCars. Assume that in Step 1, we decided to parti-
tion Age into 4 intervals, as shown in Figure 3b. Con-
ceptually, the table now looks as shown in Figure 3c.
After mapping the intervals to consecutive integers, us-
ing the mapping in Figure 3d, the table looks as shown
in Figure 3e. Assuming minimum support of 40% and
minimum confidence of 50%, Figure 3f shows some of
the frequent itemsets, and Figure 3g some of the rules.
We have replaced mapping numbers with the values in
the original table in these two figures. Notice that the
item (Age: 20..29) corresponds to a combination of the
intervals 20..24 and 25..29, etc. We have not shown the
step of deterrmining the interesting rules in this example.

3 Partitioning Quantitative Attributes

In this section, we consider when we should partition
the values of quantitative attributes into intervals, and
how many partitions there should be. First, we present
a measure of partial completeness which gives a handle
on the amount of information lost by partitioning.
We then show that equi-depth partitioning minimizes
the number of intervals required to satisfy this partial

Minimum Support = 40% = 2 records
Minimum Confidence = 50%

People -
RecordID | Age | Married | NumCars Partitions for Age
100 23 No 1 Interval
200 2% | Yes 1 20..24
300 29 | No 0 25..29
400 34 | Yes 9 30..34
500 38 | Yes 2 35..39

(a)

After partitioning Age

Mapping Age

(b)

RecordID | Age | Married | NumCars Interval | Integer Mapping Married
100 20..24 No 0
20..24 1 Value Integer
200 25..29 Yes 1
25..29 2 Yes 1
300 25..29 No 1 30..34 3 N 5
400 30.34 | Yes 2 35 30) °
500 35..39 Yes 2 -

(c)

After mapping attributes

(d)

Frequent Itemsets: Sample

RecordID | Age | Married | NumCars Ttemset Support
100 1 3 0 { (Age: 20..29) } 3
200 5 1 1 { (Age: .30..39> } 2
300 9 5 1 { (Ma.rrlled: Yes) } 3
400 3 1 9 { {(Married: No) } 2
500 4 1 5 { (NumCars: 0..1) } 3

{ (Age: 30..39), (Married: Yes) } | 2
(¢) §
Rules: Sample
Rule Support | Confidence
(Age: 30..39) and (Married: Yes) = (NumCars: 2} 40% 100%
(Age: 20..29) = (NumCars: 0..1) 60% 66.6%

(8)

Figure 3: Example of Problem Decomposition

completeness level. Thus equi-depth partitioning is, completeness given below.

in some sense, optimal for this measure of partial
completeness.

The intuition behind the partial completeness mea-
sure is as follows. Let R be the set of rules obtained
by considering all ranges over the raw values of quan-
titative attributes. Let R’ be the set of rules obtained
by considering all ranges over the partitions of quanti-
tative attributes. One way to measure the information
loss when we go from R to R’ is to see for each rule in
R, how “far” the “closest” rule in R’ is. The further
away the closest rule, the greater the loss. By defin-
ing “close” rules to be generalizations, and using the
ratio of the support of the rules as a measure of how
far apart the rules are, we derive the measure of partial

3.1 Partial Completeness

We first define partial completeness over itemsets rather
than rules, since we can guarantee that a close itemset
will be found whereas we cannot guarantee that a
close rule will be found. We then show that we can
guarantee that a close rule will be found if the minimum
confidence level for R’ is less than that for R by a certain
(computable) amount.

Let C denote the set of all frequent itemsets in D. For
any K > 1, we call P K-complete with respect to C if

s PCC,

e XcPand X' CX= X' €P,and

e VX ([352 € P such that

(1) X is a generalization of X and support()?) <
K x support{X), and

(i1) VY C X 3y C X such that ¥ is a generalization
of ¥ and support(Y) < K x support(Y)].

The first two conditions ensure that P only contains
frequent 1temsets and that we can generate rules from
P. The first part of the third condition says that
for any itemset in C, there is a generalization of
that itemset with at most K times the support in
‘P. The second part says that the property that the
generalization has at most K times the support also
holds for corresponding subsets of attributes in the
itemset and its generalization. Notice that if K = 1,
P becomes identical to C.

For example, assume that in some table, the following
are the frequent itemsets C:

Number | Itemset Support
T | { {Age: 20.30) 5%
2 { (Age: 20..40) } 6%
3 | {(Age: 20..50) } 8%
4 {{(Cars: 1..2) } 5%
5 {(Cars: 1..3) } 6%
6 { (Age: 20..30), (Cars: 1..2) } 4%
7 { (Age. 20..40), (Cars: 1..3) } 5%

The itemsets 2, 3, 5 and 7 would from a 1.5-complete
set, since for any itemset X, either 2, 3, 5 or 7 is a
generalization whose support is at most 1.5 times the
support of X. For instance, itemset 2 1s a generalization
of itemset 1, and the support of itemset 2 is 1.2 times
the support of itemset 1. Itemsets 3, 5 and 7 do not
form a 1.5-complete set because for itemset 1, the only
generalization among 3, 5 and 7 is itemset 3, and the
support of 3 is more than 1.5 times the support of 1.

Lemma 1 Let P be a K-complete set w.r.t. C, the
set of all frequent itemsets. Let R¢ be the set of
rules generated from C, for a mimimum confidence level
minconf. Let Rp be the set of rules generated from P
with the minimum confidence set to minconf/K. Then
for any rule A = B wmn R¢, there 1s a rule A= Bwm
Rp such that

e Asa generalization of A, Bsa generalization of
B,

o the support off/f = B 15 at most K times the support
of A= B, and

e the confidence ofle\ = B 15 at least 1/K times, and
at most K times the confidence of A = B.

Proof: Parts 1 and 2 follow directly from the definition
of K-completeness. We now prove Part 3. Let A = B

be arulein Rc. Then there is an itemset AUB in C. By
definition of a K-complete set, there is an itemset AUB
in P such that (i) support(AUB) < K xsupport{AUB),
and (ii) support(A) < K x support(A) The confidence
of the rule A = B (generated from AU B) 18 given by
support(A U B)/support(A). Hence

N support(4uB) support(AuB)

confidence(4 = B) _ support(4) _ support(aus)
confidence(A = B support(4uB) ~ support(a
() support(4) ﬁ;;n};&'t_(%&l)
- support(AuB) support(4) ;.
Since both SUppOTL(AUE) Suppori() lie between 1

and K (inclusive), the confidence of A = B must be
between 1/K and K times the confidence of A = B. O

Thus, given a set of frequent itemsets P which 1s K-
complete w.r.t. the set of all frequent itemsets, the
minimum confidence when generating rules from P must
be set to 1/K times the desired level to guarantee that
a close rule will be generated.

In the example given earlier, itemsets 2, 3 and 5
form a 1.b-complete set. The rule “(Age: 20..30) =
(Cars: 1..2)” has 80% confidence, while the correspond-
ing generalized rule “(Age: 20..40) = (Cars' 1..3)” has
83.3% confidence

3.2 Determining the number of Partitions

We first prove some properties of partitioned attributes
(w.r.t. partial completeness), and then use these prop-
erties to decide the number of intervals given the partial
completeness level.

Lemma 2 Consider a quantitative attribute z, and
some real K > 1. Assume we partition = wnto wntervals
(called base wntervals) such that for any base interval B,
erther the support of B 1s less than minsup x (K —1)/2
or B consists of a single value. Let P denote the set of
all combinations of base wntervals that have minimum
support. Then P s K-complete w.r.t, the set of all
ranges over ¢ with minimum support.

Proof: Let X be any interval with minimum support,
and X the smallest combination of base intervals which
is a generalization of X (see Figure 4). There are at
most two base intervals, one at each end, which are
only partially spanned by X. Consider either of these
intervals. If X only partially spans this interval, the
interval cannot be just a single value. Hence the support
of this interval, as well as the support of the portion
of the interval not spanned by X, must be less than
mansup X (K —1)/2. Thus

support(X) < support(X) + 2 x mansup x (K—1)/2
< support(X) + support(X) x (K —1)
(since support(X) > minsup)
< support(X) x K

-

Base X
Interval

Figure 4: Tllustration for Lemma 2

Figure 5: Example for Lemma 3

0

Lemma 3 Consider a set of n quantitative attributes,
and some real K > 1. Assume each quantitative
attribute is partitioned such that for any base interval B,
either the support of B is less than minsupx (K —1)/(2x
n) or B consists of a single value. Let P denote the set
of all frequent itemsets over the partitioned attributes.
Then P is K-complete w.r.t the set of all frequent
itemsets (obtained without partitioning).

Proof: The proof is similar to that for Lemma 2.
However, the difference in support between an itemset
X and its generalization X may be 2m times the
support of a single base interval for a single attribute,
where m 1s the number of quantitative attributes in X.
Since X may have upto n attributes, the support of each
base interval must be at most minsupx (K —1)/(2 x n),
rather than just minsup x (K — 1)/2 for P to be K-
complete. A similar argument applies to subsets of X.

An illustration of this proof for 2 quantitative at-
tributes is shown in Figure 5. The solid lines correspond
to partitions of the attributes, and the dashed rectangle
corresponds to an itemset X. The shaded areas show
the extra area that must be covered to get its gener-
alization X using partitioned attributes. Each of the 4
shaded areas spans less than a single partition of a single
attribute. (One partition of one attribute corresponds
to a band from one end of the rectangle to another.) O

For any given partitioning, we can use Lemma 3
to compute the level of partial completeness for that
partitioning. We first illustrate the procedure for a
single attribute. In this case, we simply find the
partition with highest support among those with more
than one value. Let the support of this partition be s.
Then, to find the partial completeness level K, we use
the formula s = minsup x (K — 1)/2 from Lemma 2
to get K = 14 2 X s/minsup. With n attributes, the
formula becomes

K:1+2xnxs (1)

minsup

where s is the maximum support for a partition
with more than one value, among all the quantitative
attributes. Recall that the lower the level of partial
completeness, the less the information lost. The formula
reflects this: as s decreases, implying more intervals, the
partial completeness level decreases.

Lemma 4 For any specified number of intervals, equi-
depth partitioning minimizes the partial completeness
level.

Proof: From Lemma 3, if the support of each base in-
terval is less than minsup x (K — 1)/(2 x n), the partial
completeness level is K. Since the maximum support
of any base interval is minimized with equi-depth par-
titioning, equi-depth partitioning results in the lowest
partial completeness level. O

Corollary 1 For a given partial completeness level,
equi-depth partitioning minimizes the number of inter-
vals required to satisfy that partial completeness level.

Given the level of partial completeness desired by
the user, and the minimum support, we can calculate
the number of partitions required (assuming equi-
depth partitioning). From Lemma 3, we know that
to get a partial completeness level K, the support
of any partition with more than one value should be
less than minsup * (K — 1)/(2 x n) where n is the
number of quantitative attributes. Ignoring the special
case of partitions that contain just one value!, and
assuming that equi-depth partitioning splits the support
identically, there should be 1/s partitions in order to get
the support of each partition to less than s. Thus we
get

2
Number of Intervals = E—><(;(+l) (2)
where
n = Number of Quantitative Attributes
m = Minimum Support (as a fraction)
K = Partial Completeness Level

If there are no rules with more than n’ quantitative
attributes, we can replace n with n’ in the above formula
(see proof of Lemma 3).

4 Interest

A potential problem with combining intervals for quan-
titative attributes is that the number of rules found may
be very large. [ST95] looks at subjective measures of in-
terestingness and suggests that a pattern is interesting if

1'While this may overstate the number of partitions required,
it will not increase the partial completeness level.

it is unexpected (surprising to the user) and/or action-
able (the user can do something with it). [ST95] also
distinguishes between subjective and objective interest
measures. [PS91] discusses a class of objective interest
measures based on how much the support of a rule devi-
ates from what the support would be if the antecedent
and consequent of the rule were independent.

In this section, we present a “greater-than-expected-
value” interest measure to identify the interesting rules
in the output. This interest measure looks at both
generalizations and specializations of the rule to identify
the interesting rules.

To motivate our interest measure, consider the fol-
lowing rules, where about a quarter of people in the age
group 20..30 are in the age group 20..25.

(Age: 20..30) =
(Age: 20..25) =

(Cars: 1..2) (8% sup., 70% conf.)
(Cars: 1..2) (2% sup., 70% conf.)

The second rule can be considered redundant since
1t does not convey any additional information and is
less general than the first rule. Given the first rule,
we expect that the second rule would have the same
confidence as the first and support equal to a quarter
of the support for the first. Even if the confidence of
the second rule was a little different, say 68% or 73%, it
does not convey significantly more information than the
first rule. We try to capture this notion of “interest” by
saying that we only want to find rules whose support
and/or confidence is greater than expected. (The user
can specify whether it should be support and confidence,
or support or confidence.) We now formalize this idea,
after briefly describing related work.

Expected Values. Let Eo) [Pr(Z)] denote the
“expected” value of Pr(Z) (that 1s, the support of Z)
based on Pr(Z), where Z is a generalization of Z. Let

Z be the itemset {{z1,11,u1}, ..., {zn,ln, un)} and 7 the
set {(z1,17,u4), ..., (zn, 1, ul,)} (Where I < I; < u; <
u}). Then we define

EPr(E) [PI‘(Z)] =

Pr((z1 , ll, u1>)
Pr(<zl) li? u/1>)

Pr({2n,ln, un))
Pr((zn,1;,, up))
Similarly, we E

o (YIX)[Pr(Y | X)] denote the “ex-
pected” confidence of the rule X = Y based on
the rule X = ¥, where X and ¥ are general-
1zations of X and Y respectively. Let Y be the
itemset {{y1,l1,u1), ..., (Un,ln,un)} and Y the set
{{y1, 11, u1), .., {yn, 1, ur)}. Then we define
By, Pr(Y | X)] =
Pr({yi, 11, w1))
Pr({y1, 11, ul))

x Pr(Z)

Pr{(yn, ln, un))

Prllm o wn)) o3
X Brllum Ty < FTY1X)

[Support for Values —
9 10 "Whole" -o--
= "Interesting” -+
- "Decoy" &~
5 8t "Boring” -x--
x
8
et 8 F PO b 4
Q
Q.
g @
D 4r : .
D
[=)]
o
2 2 1
<

5 6 7 8 9 10
Attribute x

1 2 3

Figure 6: Example for Interest

A Tentative Interest Measure. We first introduce
a measure similar to the one used in [SA95].

An itemset Z is R-interesting w.r.t an ancestor Z if
the support of Z is greater than or equal to R times
the expected support based on Z Arule X = Y is
R-interesting w.r.t an ancestor X = Vifthe support of
the rule X = Y is R times the expected support based
on X = Y or the confidence is R times the expected
confidence based onX =Y.

Given a set of rules, we call X = ¥ a close ancestor
of X = Y if there is no rule X’ = Y” such that X = ¥
1s an ancestor of X’ = ¥’ and X’ = Y’ is an ancestor
of X =Y . A similar definition holds for itemsets.

Given a set of rules S and a minimum interest R, a
rule X = Y is interesting (in S) if it has no ancestors
or it is R-interesting with respect to its close ancestors
among its interesting ancestors.

Why looking at generalizations is insufficient.
The above definition of interest has the following
problem. Consider a single attribute z with the range
[1,10], and another categorical attribute y. Assume the
support for the values of ¢ are uniformly distributed.
Let the support for values of z together with y be
as shown in Figure 6. For instance, the support of
({z,5),y) = 11%, and the support for ((z,1),y) =
1%. This figure also shows the “average” support
for the itemsets ((z,1,10),y), ({z,3,5),y), ((z,3,4)y)
and ((z,4,5),y). Clearly, the only “interesting” set
is {(z,5,5),y}. However, the interest measure given
above may also find other itemsets “interesting”. For
instance, with an interest level of 2, interval “Decoy”,
{(z,3,5),y} would also be considered interesting, as
would {(z, 4, 6),y} and {(z,5, 7),y}.

If we had the support for each value of z along with v,
it is easy to check that all specializations of an itemset
are also interesting. However, in general, we will not
have this information, since a single value of z together
with y may not have minimum support. We will only

have information about those specializations of z which
(along with y) have minimum support. For instance,
we may only have information about the support for
the subinterval “Interesting” (for interval “Decoy”).

An obvious way to use this information is to check
whether there are any specializations with minimum
support that are not interesting. However, there are
two problem with this approach. First, there may not be
any specializations with minimum support that are not
interesting. This case is true in the example given above
unless the minimum support is less than or equal to 2%.
Second, even if there are such specializations, there may
not be any specialization with minimum support that
are interesting. We do not want to discard the current
itemset unless there is a specialization with minimum
support that is interesting and some part of the current
itemset is not interesting.

An alternative approach is to check whether there
are any specializations that are more interesting than
the itemset, and then subtract the specialization from
the current itemset to see whether or not the difference
i1s interesting. Notice that the difference need not
have minimum support. Further, if there are no such
specializations, we would want to keep this itemset.
Thus this approach is clearly preferred. We therefore
change the definitions of interest given earlier to reflect
these ideas.

Final Interest Measure. An itemset X is R-inter-
esting with respect to X if the support of X is greater
than or equal to R times the expected support based
on X and for any specialization X’ such that X’ has
minimum support and X — X' C 7z, X — X' is R-
interesting with respect to X.

Similarly, a rule X => Y is R-wnteresting w.r.t an
ancestor X = Y if the support of the rule X = Y
i1s R times the expected support based on X = Y , or
the confidence is R times the expected confidence based
on X =Y, and the itemset X UY is R-interesting w.r.t
XUY.

Note that with the specification of the interest level,
the specification of the minimum confidence parameter
can optionally be dropped. The semantics in that case
will be that we are interested in all those rules that have
interest above the specified interest level.

5 Algorithm

In this section, we describe the algorithm for finding
all frequent itemsets (Step 3 of the problem decompo-
sition given in Section 2.1). At this stage, we have al-
ready partitioned quantitative attributes, and created
combinations of intervals of the quantitative attributes
that have minimum support. These combinations, along
with those values of categorical attributes that have
minimum support, form the frequent items.

Starting with the frequent items, we generate all
frequent itemsets using an algorithm based on the
Apriori algorithm for finding boolean association rules
given in [AS94]. The proposed algorithm extends the
candidate generation procedure to add pruning using
the interest measure, and uses a different data structure
for counting candidates.

Let k-itemset denote an itemset having k items. Let
Ly, represent the set of frequent k-itemsets, and O
the set of candidate k-itemsets (potentially frequent
itemsets). The algorithm makes multiple passes over
the database. Each pass consists of two phases. First,
the set of all frequent (k—1)-itemsets, Lx_1, found in the
(k—1)th pass, is used to generate the candidate itemsets
Cx. The candidate generation procedure ensures that
C}; is a superset of the set of all frequent k-itemsets. The
algorithm now scans the database. For each record, it
determines which of the candidates in Cj are contained
in the record and increments their support count. At the
end of the pass, Cj is examined to determine which of
the candidates are frequent, yielding Ly. The algorithm
terminates when Ly becomes empty.

We now discuss how to generate candidates and count
their support.

5.1 Candidate Generation

Given Lj._1, the set of all frequent k- 1-itemsets, the
candidate generation procedure must return a superset
of the set of all frequent k-itemsets. This procedure has
three parts:

1. Join Phase. Lj_; is joined with itself, the join
condition being that the lexicographically ordered
first k —2 items are the same, and that the attributes
of the last two items are different. For example, let
L; consist of the following itemsets:

{ (Married: Yes) (Age: 20..24) }

{ (Married: Yes) (Age: 20..29) }

{ (Married: Yes) (NumCars: 0..1) }
{ (Age: 20..29) (NumCars: 0..1) }

After the join step, C3 will consist of the following
itemsets:

{(Married: Yes) (Age: 20..24) (NumCars: 0..1) }
{(Married: Yes) (Age: 20..29) (NumCars: 0..1) }

2. Subset Prune Phase All itemsets from the join
result which have some (k — 1)-subset that is not
in Lg..; are deleted. Continuing the earlier ex-
ample, the prune step will delete the itemset
{ (Married: Yes) (Age: 20..24) (NumCars: 0..1) }
since its subset { (Age: 20..24) (NumCars: 0..1) }
1s not in Lj.

3. Interest Prune Phase. If the user specifies an
interest level, and wants only itemsets whose support

and confidence is greater than expected, the interest
measure is used to prune the candidates further.
Lemma 5, given below, says that we can delete
any itemset that contains a quantitative item whose
(fractional) support is greater than 1/R, where R
is the interest level. If we delete all items whose
support is greater than 1/R at the end of the first
pass, the candidate generation procedure will ensure
that we never generate candidates that contain an
item whose support is more than 1/R.

Lemma 5 CoAnszder an itemset X, with a quantitative
item z. Let X be the generalization of X where ¢ is
replaced by the item corresponding to the full range of
attribute(z). Let the user-specified interest level be R.
If the support of x 1s greater than 1/ R, then the actual
support of X cannot be more than R times the ezpected
support based on X.

Proof: The actual support of X cannot be greater than
the actual support of X. The expected support of X
wrt. X is Pr(X) x Pr(z), since Pr(%) equals 1. Thus
the ratio of the actual to the expected support of X is
Pr(X)/(Pr(X)xPr(z)) = (Pr(X)/Pr(X)) x (1/ Pr(z)).
The first ratio is less than or equal to 1, and the second
ratio is less than R. Hence the ratio of the actual to the

expected support is less than R. D

5.2 Counting Support of Candidates

While making a pass, we read one record at a time and
increment the support count of candidates supported by
the record. Thus, given a set of candidate itemsets C
and a record t, we need to find all itemsets in C that
are supported by t.

We partition candidates into groups such that candi-
dates in each group have the same attributes and the
same values for their categorical attributes. We replace
each such group with a single “super-candidate”. Each
“super-candidate” has two parts: (1) the common cate-
gorical attribute values, and (ii) a data structure repre-
senting the set of values of the quantitative attributes.

For example, consider the candidates:

{(Married: Yes) (Age: 20..24), (NumCars: 0..1) }
{ (Married: Yes) {Age: 20..29), (NumCars: 1..2)}
{(Married: Yes) (Age: 24..29), (NumCars: 2..2) }

These candidates have one categorical attribute, “Mar-
ried”, whose value, “Yes” is the same for all three candi-
dates. Their quantitative attributes, “Age” and “Num-
Cars” are also the same. Hence these candidates can
be grouped together into a super-candidate. The cat-
egorical part of the super-candidate contains the item
(Married: Yes). The quantitative part contains the fol-
lowing information.

10

Age | NumCars
20..24 0..1
20..29 1.2
24..29 2.2

We can now split the problem into two parts:

1. We first find which “super-candidates” are sup-
ported by the categorical attributes in the record.
We re-use a hash-tree data structure described in
[AS94] to reduce the number of super-candidates
that need to be checked for a given record.

2. Once we know that the categorical attributes of a
“super-candidate” are supported by a given record,
we need to find which of the candidates in the
super-candidate are supported. (Recall that while
all candidates in a super-candidate have the same
values for their categorical values, they have different
values for their quantitative attributes.) We discuss
this issue in the rest of this section.

Let a “super-candidate” have n quantitative at-
tributes. The quantitative attributes are fixed for a
given “super-candidate”. Hence the set of values for
the quantitative attributes correspond to a set of n-
dimensional rectangles (each rectangle corresponding
to a candidate in the super-candidate). The values of
the corresponding quantitative attributes in a database
record correspond to a n-dimensional point. Thus the
problem reduces to finding which n-dimensional rectan-
gles contain a given n-dimensional point, for a set of
n-dimensional points. The classic solution to this prob-
lem is to put the rectangles in a R*-tree [BKSS90].

If the number of dimensions i1s small, and the range of
values in each dimension is also small, there is a faster
solution. Namely, we use a n-dimensional array, where
the number of array cells in the j-th dimension equals
the number of partitions for the attribute corresponding
to the j-th dimension. We use this array to get support
counts for all possible combinations of values of the
quantitative attributes in the super-candidate. The
amount of work done per record is only O(number-of-
dimensions), since we simply index into each dimension
and increment the support count for a single cell. At
the end of the pass over the database, we iterate over
all the cells covered by each of the rectangles and sum
up the support counts.

Using a multi-dimensional array is cheaper than using
an R*-tree, in terms of CPU time. However, as the
number of attributes (dimensions) in a super-candidate
increases, the multi-dimensional array approach will
need a huge amount of memory. Thus there is a tradeoff
between less memory for the R*-tree versus less CPU
time for the multi-dimensional array. We use a heuristic
based on the ratio of the expected memory use of the
R*-tree to that of the multi-dimensional array to decide
which data structure to use.

6 Experience with a real-life dataset

We assessed the effectiveness of our approach by ex-
perimenting with a real-life dataset. The data had 7
attributes: 5 quantitative and 2 categorical. The quan-
titative attributes were monthly-income, credit-limit,
current-balance, year-to-date balance, and year-to-date
interest. The categorical attributes were employee-
category and marital-status. There were 500,000
records in the data.

Our experiments were performed on an IBM RS/6000
250 workstation with 128 MB of main memory running
AIX 3.2.5. The data resided in the AIX file system
and was stored on a local 2GB SCSI 3.5” drive, with
measured sequential throughput of about 2 MB/second.

Partial Completeness Level. Figure 7 shows the
number of interesting rules, and the percent of rules
found to be interesting, for different interest levels as the
partial completeness level increases from 1.5 to 5. The
minimum support was set to 20%, minimum confidence
to 25%, and maximum support to 40%. As expected,
the number of interesting rules decreases as the partial
completeness level increases. The percentage of rules
pruned also decreases, indicating that fewer similar rules
are found as the partial completeness level increases and
there are fewer intervals for the quantitative attributes.

Interest Measure. Figure 8 shows the fraction of
rules identified as “interesting” as the interest level was
increased from 0 (equivalent to not having an interest
measure) to 2. As expected, the percentage of rules
identified as interesting decreases as the interest level
increases.

Scaleup. The running time for the algorithm can be
split into two parts:

(i) Candidate generation. The time for this is indepen-
dent of the number of records, assuming that the
distribution of values in each record is similar.

(i1) Counting support. The time for this is directly pro-
portional to the number of records, again assuming
that the distribution of values in each record is sim-
ilar. When the number of records is large, this time
will dominate the total time.

Thus we would expect the algorithm to have near-linear
scaleup. This is confirmed by Figure 9, which shows the
relative execution time as we increase the number of
input records 10-fold from 50,000 to 500,000, for three
different levels of minimum support. The times have
been normalized with respect to the times for 50,000
records. The graph shows that the algorithm scales
quite linearly for this dataset.

11

10000 .
Interest Level 1.1 ——
Interest Level 1.5 -+~
8 Interest Level 2.0 o
g 1000 | ™~
jo)]
£
@)
o -
b3 100
£
k]
g
E 10
=3
P4
1 L 1
1.5 2 3 5
Partial Completeness Level
90 .
8o | Interest Level 1.1 —~—

Interest Level 1.5 -+
Interest Level 2 -«

% of Rules Found Interesting

2 3
Partial Completeness Level

Figure 7: Changing the Partial Completeness Level

7 Conclusions

We introduced the problem of mining association rules
in large relational tables containing both quantitative
and categorical attributes. We dealt with quantitative
attributes by fine-partitioning the values of the attribute
and then combining adjacent partitions as necessary.
We introduced a measure of partial completeness which
quantifies the information lost due to partitioning. This
measure is used to decide whether or not to partition a
quantitative attribute, and the number of partitions.

A direct application of this technique may generate
too many similar rules. We tackled this problem by
using a “greater-than-expected-value” interest measure
to identify the interesting rules in the output. This
interest measure looks at both generalizations and
specializations of the rule to identify the interesting
rules.

We gave an algorithm for mining such quantitative
association rules. Our experiments on a real-life dataset
indicate that the algorithm scales linearly with the
number of records. They also showed that the interest
measure was effective in identifying the interesting rules.

Future Work:

100 S . ——
N
90 | g 20% sup 50% conf ~e— References
- *£0% sup, 25% conf - [AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun
£ 80 T Swami. Mining association rules between sets of
$ 70 | x ~ items in large databases. In Proc. of the ACM
£ 60 SIGMOD Conference on Management of Data,
= 50 | pages 207-216, Washington, D.C., May 1993.
E 40 [AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast
2 30 Algorithms for Mining Association Rules. In
% I Proc. of the 20th Int’l Conference on Very Large
2 20 ¢ Databases, Santiago, Chile, September 1994.
07 [BKSS90] N. Beckmann, H.-P. Kriegel, R. Schneider, and
0 b B. Seeger. The R*-tree: an efficient and robust
0 02 04 08 :)riteeare;t Le1\/ézl 1416 18 2 access method for points and rectangles. In Proc.
of ACM SIGMOD, pages 322-331, Atlantic City,
Figure 8: Interest Measure NJ, May 1990.
[HF95] J. Han and Y. Fu. Discovery of multiple-
10 . level association rules from large databases. In
9 30% support ~— Proc. of the 21st Int’l Conference on Very Large
i ?gz" zﬂgggg “ Databases, Zurich, Switzerland, September 1995.
‘ag’ 8¢ . [HS95] Maurice Houtsma and Arun Swami. Set-oriented
- 7r mining of association rules. In Int'l Conference on
;% 6l ; Data Engineering, Taipei, Taiwan, March 1995.
L%E 5| [JD88] A. K. Jain and R. C. Dubes. Algorithms for
0 clustering data. Prentice Hall, 1988.
= 4t
g / [MTV94] Heikki Mannila, Hannu Toivonen, and A. Inkeri
o 37 - Verkamo. Efficient algorithms for discovering
o association rules. In KDD-94: AAAI Workshop
. ‘] . ‘ on Knowledge Discovery in Databases, pages 181~
50 100 200 300 ’ 400 500 192, Seattle, Washington, July 1994.
Number of Records ('000s) [PCY95] Jong Soo Park, Ming-Syan Chen, and Philip .
. ‘ Yu. An effective hash based algorithm for mining
Figure 9: Scale-up : Number of records association rules. In Proc. of the ACM-SIGMOD
Conference on Management of Data, San Jose,
A California, May 1995.
XVe gresente};l a measure fthpartliﬂ cornji)lleteness [PS91] G. Piatetsky-Shapiro. Discovery, analysis, and
ased on the support of the ru es. ; ternate presentation of strong rules. In G. Piatetsky-
measures may be useful for some applications. For Shapiro and W. J. Frawley, editors, Knowl-
instance, we may generate a partial completeness edge Discovery in Databases, pages 229-248.
measure based on the range of the attributes in the AAAI/MIT Press, Menlo Park, CA, 1991.
rules. (For any rule, we will ha.ve a generahzation [SA95] Ramakrishnan Srikant and Rakesh Agrawal. Min-
SPCh that the range of each attrl.bute ls.at m(")st K ing Generalized Association Rules. In Proc. of the
times the range of the corresponding attribute in the 21st Int’l Conference on Very Large Databases,
original rule.) Zurich, Switzerland, September 1995.
[SON95} A. Savasere, E. Omiecinski, and S. Navathe. An
Equi-depth partitioning may not work very well on efficient algorithm for mining association rules in
highly skewed data. It tends to split adjacent values large databases. In Proc. of the VLDB Confer-
with high support into separate intervals though ence, Zurich, Switzerland, September 1995.
their behavior would typically be similar. It may [ST95] Avi Silberschatz and Alexander Tuzhilin. On

be worth exploring the use of clustering algorithms
[JD88] for partitioning, and their relationship to
partial completeness.

Subjective Measures of Interestingness in Knowl-
edge Discovery. In Proc. of the First Int’l Confer-
ence on Knowledge Discovery and Data Mining,
Montreal, Canada, August 1995,

Acknowledgment We wish to thank Jeff Naughton
for his comments and suggestions during the early stages
of this work.

12

