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ABSTRACT

The volume of medica imaging data
produced per year is rapidly increasing, overtaxing
the capabilities of Picture Archivd and
Communication (PACS) systems. Image compression
methods can lessen the problem by encoding digital
images into more space-efficient forms. Image
compression is achieved by reducing redundancy in
the imaging data Existing methods reduce
redundancy in individual images. However, these
methods ignore an additional source of redundancy,
which is based on the common information stored in
more than one image in a set of similar images. We
use the term “set redundancy” to describe this type of
redundancy. Medical image databases contain large
sets of similar images, therefore they also contain
significant amounts of set redundancy.

This paper presents two methods that extract
set redundancy from medical imaging data: the Min-
Max Differential (MMD), and the Min-Max
Predictive (MMP) methods. These methods can
improve compression of standard image compression
techniques for sets of medical images. Our tests
compressing CT brain scans have shown an average
of as much as 129% improvement for Huffman
encoding, 93% for Arithmetic Coding, and 37% for
Lempel-Ziv compression when they are combined
with Min-Max methods. Both MMD and MMP are
based on reversible operations, hence they provide
lossless compression.

I. INTRODUCTION

Medical imaging is a field that has experi-
enced significant advances due to new computer
technologies. Digital systems have become an integral
part of CT, MRI, PET, SPECT, and Ultrasound
imaging and even traditionally non-digital techniques
(e.g. film X-rays) are gradually evolving into comput-
erized imaging. However, digital imaging requires
storing, communicating and manipulating large
amounts of digital data. Studies have shown that the
radiology department of a large hospital can produce
more than 20 terabits of image data per year [1]. This

is the result of the high image resolution used in
radiology, and the large number of images required
for each examination. For example, a CT exam
produces an average of 12 Mbytes of imaging data
(30 images, 512x512 pixels each, 12 bits/pixél),
whereas Digital Subtraction Angiography produces
21 Mbytes of imaging data (15 images/exam,
1024x1024 pixels each, 8 bits/pixel) [2]. In addition
to the inherently digital modalities, digital data are
also generated by digitizing X-ray images. A
digitized chest X-ray is 4096x4096 pixels, 12
bits/pixel, which requires 24 Mbytes of storage space
per image.

Overall, the amount of digital radiologic data
generated every year in the USA alone is on the order
of petabytes (10™) and is increasing rapidly [2]. This
stretches the capabilities of digital storage systems,
and imposes exceedingly high requirements on the
bandwidth of communication networks [3,4].

Digital image compression can address these
problems by reducing the data storage and
transmission requirements. Many compression
methods have been developed and have been
evaluated for the medical environment [2]. These
compression methods usually reduce the size of the
data 2-3 times with no information loss, and more
than 10 times with some information l0oss.

Despite the higher compression ratios of
lossy compression methods, their use in medica
imaging is limited because of concerns on losing
image details [5,6]. Even when the compression is
visually lossless, an unsuccessful diagnosis from an
image that has lost some information may lead to
legal implications [2]. Another reason for avoiding
lossy compression is the development of computer-
aided diagnosis techniques. Computerized analysis of
an image can use even the smallest details (e.g., very
smooth variations in pixel intensities) which are often
invisible to the eye. Compression methods should not
lose any of these potentially important image details.
For this reason, in medical imaging lossess
compression is more important than lossy
compression. The two methods presented in this
paper are both lossless compression methods.

In general, lossless compression can be
achieved by taking advantage of data redundancies.
Existing methods can efficiently reduce data
redundancies in individual images [7]. However,
medical image databases contain an additional type of
redundancy, the “set redundancy” [8], which can be
used to achieve even higher compression ratios. In the
next section, we will examine this type of
redundancy, and then we will present methods that
can exploit it for better compression.



II. SET REDUNDANCY

A. The Concept of “Set Redundancy”

As stated above, interpixel, psychovisua,
and coding redundancy are the three types of
redundancy found in still monochrome images.
However, in a set of similar images, one can observe
that there exists a significant additional amount of
inter-image redundancy. “ Similar images’ are images
that have:

a) similar pixel intensitiesin the same areas
b) comparable histograms

c) similar edge distributions

d) anaogous distributions of features

According to this definition, medical images that are
produced by the same modality and depict a particular
organ or part of the human body (e.g., brain CT
scans) are “similar” to each other. For example,
consider a set of 500 CT brain scans. There is a
statistical correlation between the images in this set,
and every one of these images contains some
information already stored in the other images. This
creates an inter-image redundancy, the “set
redundancy”, which we define as follows:

Definition: Set redundancy is the inter-image
redundancy that exists in a set of similar images, and
refers to the common information found in more than
oneimagein the set.

Set redundancy can be used to improve compression.
A limit to compression is imposed by the image
entropy. In the next section we will show how set
redundancy can be used to decrease the average
image entropy in a set of similar images.

B. Image Entropy and Set Redundancy

The concept of entropy is defined in
information theory as a measure of information [9].
The image entropy measures the amount of
information an image contains, and it is also used as
a measure of the compressibility of the image (lower
entropy means better compressibility). The entropy of
an individua image is calculated by using the
histogram distribution of its pixel values, which
represent “individual image statistics’. However, in a
set of images, “set statistics’ can be used instead of
“individual image statistics’, resulting in smaller
average image entropy. The reason is that in sets of
similar images every pixel position [x,y] is associated
with its own histogram distribution of gray values. By
the definition of similarity among images (similar

values at similar positions), these distributions will be
highly non-uniform. If these distributions are used to
encode the pixel values, then the entropy will be very
small. In the following, we will study theoretically the
decrease of image entropy due to the use of “set
statistics” and then we will present two methods to
implement these ideas in practice.

Consider a set of similar images with S%
similarity among the images. For example, if S=0.4
then, on the average, for every pixel position, 40% of
the pixel values across all images will have the same
value. Note that some areas of the image may have
higher variability than others; however, on the
average the similarity will be 40%. In every pixel
position there is variability V% among the images.

Similarity : S
Variability : V =1.00-S
Suppose that there are (n+1) symbols in the alphabet
{ag, &, @, ..., &} and & is the symbol with the
highest frequency S:
Pla) =S

For simplicity, assume that the other symbols appear
with equal probability, V/n
P(ap) = ... = P(ay) = P(&+1) = ... = P(ay) = V/n

so that,

P(ap) + P(ay) +... + P(a,) =
§100+ nV/(100n) = S+V =1.0

Then, theentropy H is

H == Slog(S) ~ (V/n) log(V/n) — ... - (V/n) log(V/n)
n times
or,
H = —Slog(S) - Vlog(V/in) (1)

where n =255 for 8-bit gray-scale images. Figure 1
presents the values of entropy H resulting from (1) for
different values of S. The entropy clearly decreases as
the similarity increases among the images in the set.
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Fig. 1: Entropy vs. similarity in sets of similar images



Based on “individual image statistics’, the first-order
entropy for 8-bit gray-scale natural images is usually
5-7 bits/pixel [7]. However, figure 1 shows that the
first-order entropy estimate can be smaller than this
when “set statistics’ are used. When similarity is
more than 40%, the average entropy of the images in
the set isless than 6 bits/pixel. For 80% similarity the
entropy is 2.32 bits/pixel, and for 90% similarity it is
1.27 bits/pixel. If higher-order entropy estimates are
used, then these numbers will be even smaller. This
clearly suggests that for sets of images with high
similarity, it is advantageous to use set statistics
instead of individual image statistics in compressing
the images. Implicitly, the use of set statistics reduces
the set redundancy from the images, resulting in
better compression ratios.

The entropy can be further reduced if set
statistics are coupled with individual image statistics.
In this case, each image in the set can be compressed
using the “locally optimal” distribution; in other
words, the statistics that produce the best
compression.

The problem with the above schemes is that
they require storage of a histogram table for every
pixel position. For images with 8 bits per pixdl, thisis
a 256-entry table. Clearly, it is not practical to keep
so much statistical data for every pixel position. A
practical method must reduce set redundancy using
only limited set statistics. The Min-Max Differential
method [10] is a method that reduces set redundancy
using only the minimum and maximum values
instead of the whole histograms. Section I11(A) will
review the Min-Max Differential (MMD) method and
in section 111(B) the new Min-Max Predicted (MMP)
method will be presented which is based on predictive
coding using the minimum and maximum values.

. IMAGE COMPRESSION BASED ON
SET REDUNDANCY

In order to incorporate the concept of set
redundancy reduction for compressing sets of similar
images, a two-step procedure can be used (figure 2).
In the first step, the images are decorrelated from the
set by extracting the set redundancy; in the second
step, the images are compressed by using any
compression method. Note that set redundancy
extraction is a completely independent step, therefore
there are no restrictions about which compression
method to be used in the second step.

. Set Individual image
Original <« 7] redundancy [q™] compression <_> Compressed
Image extraction (any method) image

——  »  Compressing
D SRRRREREEEL Decompressing

Fig. 2: Coupling set redundancy extraction with
image compression

Ideally, set redundancy extraction must satisfy the
following reguirements:

(@ it must reduce (idedly, eliminate) the set
redundancy from all imagesin the set

(b) it must not be computationally expensive because
its computations are in addition to the
computations required in the compression of the
second step

(c) it must enable the compression and
decompression of individual images from the set,
without requiring global calculations on the
whole set

(d) it must belossless

Min-Max Differential encoding (MMD) is a
method that satisfies all the requirements for practical
set redundancy extraction. Specificaly, it reduces set
redundancy with only a small amount of calculations,
it is easy to implement, it compresses or
decompresses individual images from the set, and it is
lossless. The next section will review this method,
and in section B another new method will be pre-
sented, the Min-Max Predictive (MM P) method.

A. The “Min-Max Differential” (MMD) Method

The MMD method stores statistical infor-
mation from a set of similar images in the form of a
“min” and a “max” image. To create the “min”
image, MMD compares for every pixel position the
pixel values across all images, and chooses the
smallest. Similarly, the “max” image is created by
selecting the largest pixel value for every pixel
position. Then, MMD processes every image in the
set by replacing the original pixel values with the
differences from either the “min” or the “max” image
(whichever is smaller). This reversible operation
reduces the dynamic range of pixel values, so that any
standard compression method can be used on the
MM D-processed images with improved results.

Figure 3 presents graphically the MMD
operation. The abscissa represents the pixel positions
and the ordinate the pixel values. Every curve



describes an image. The curves for the “min”, the
“max”, and a random image from the set are
depicted. The difference vaues that replace the
original image values are shown as dotted lines. Note
that the differences are calculated from either the
“min” or the “max” curves, depending on which one
yields the smaller difference value. When the
difference is larger than  (max-min)/2, MMD
switches to the other curve. In this way the decoder is
synchronized with the encoder, while the smallest
possible difference values are selected and used.
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Fig. 3: The Min-Max Differential method

B. The “Min-Max Predictive” (MMP) Method

The MMP method also uses “min” and
“max” images. For every pixel position P, the “min”
image gives the minimum value min; across al
images in the set. Similarly, the “max” image
provides the maximum value max. These two values
are the limits on the range of possible values that
pixel P may assume. Furthermore, neighboring
pixels tend to fall in approximately the same area
between the minimum and the maximum values
(figure 4). By dividing the range between the
minimum and maximum valuesinto N levels, we can
represent the position of every pixel between its
corresponding minimum and maximum values as a
“level” L;
UP-min L
O——=-F[
Cmax; — min, [

L=N

Neighboring pixels usually have approximately the
same “level”, even though their actual values may
differ considerably. For example, consider the
following values:

Max value|192 205 211 197 183 190 199 204

Pixelvalue| 71 78 89 85 69 80 87 95

Minvalue| 54 60 71 68 51 64 70 78

Pixel
values

For every pixel position, the range between its
maximum and minimum values can be divided into
N=256 “levels’, where O represents the minimum
value, and 255 the maximum value. According to this
definition, the above pixel values correspond to the
following “levels’:

Pixelvalue| 71 78 89 85 69 80 87 95
Leve 3232 33 34 34 33 33 3#4

As this example demonstrates, the “level”
values have smaller variation than the pixel values.
Therefore the “levels’ are better predictors for the
next pixel values than the pixel values themselves.
This observation led to the development of the MMP
method. The MMP method predicts the value of a
pixel P by using the “level” information from its
previous pixel P.;. Pixel P; and its min.; and max;_,
are used to determine its level Li;. This can be used
directly as a predictor for the level of the current pixel
(Li = Li.1). A variation with slightly better resultsisto
set L = (Lupper + Lieit) / 2 Where Lypper isthe level of
the upper neighbor pixel and L the level of the left
neighbor. L; , min; and max are used to calculate a
predicted value for pixel P. The difference between
this predicted value and the original value is stored in
the image replacing the original value. This
concludes the encoding process. To recover the
original image from its “difference image”, the
decoding process follows the same steps to calculate
the predicted values, and then it adds the difference
values obtained from the “difference image”.
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Fig. 4: The Min-Max Predictive method (N=20)




IV. EXPERIMENTAL RESULTS

A test database of 51 brain CT images was
used to evaluate the performance of our methods. All
these images were obtained at MD Anderson Cancer
Center in Houston, Texas. Each of these images
contained 512x512 pixels, 8 bitg/pixel, and were
randomly selected from different patients. From this
test database, a set of images with high set
redundancy was formed using the ten most similar
images, and the “min” and “max” images were
created for that set:

“max” image

“min” image

Note that although registration in a standard position
and size helps to create the “min” and “max” images,
there is no need to store the registered versions of the
original images. Once the registration parameters
(rotation, translation, and scaling) are known, the
“min” and “max” images can be registered directly on
the original images using these parameters. Then the
proposed methods can be used to extract set
redundancy. An example of the effect of MMD- and
MMP-processing on one of the original images is the
following :

Original image MM D-processed ‘MM P-processed

As the above example shows, both MMD and MMP-
processed images have a significantly smaller range
of gray-scale values than the origina image. In
principle, this leads to improved compression ratios
for any compression method. To measure the
improvement in compression, we used three different
compression methods that are widely used in practice.
These are the Huffman [11], Arithmetic [12], and
Lempel-Ziv compression [13]. Huffman compression
was implemented with the Unix command pack.
Lempel-Ziv compression was implemented with the
Unix command compress, which is the LZW version
[14] of the Lempel-Ziv method. For Arithmetic

coding, the publicly available software based on [12]
was used.

To test the MMD method, all images were
compressed by the three compression methods
mentioned, with and without using MMD pre-
processing. The results are presented in Table 1. As
this table shows, MMD method improved Huffman
compression by 48%, Arithmetic compression by
28%, and Lempel-Ziv compression by 13%. These
improvements are due to the extraction of set
redundancy from the images, before individual image
compression removes other types of redundancies.

The MMP method was tested in the same
way. All images were compressed using the three test
compression methods, with and without MMP pre-
processing. The results are presented in Table 3. It is
clear that MMP, which is more sophisticated than
MMD, resulted in higher improvement on al three
methods: 129% for Huffman, 93% for Arithmetic,
and 37% for Lempel-Ziv method. MMP performed
better than MMD because for every pixel position it
uses both the min and max values, whereas MMD
uses either the min or max. The minor increase in
implementation complexity for MMP is easlly
justified by the payoff of better compression. Both
methods required less than 2 seconds of computation
time on a Sun SPARC 20 computer to compress or
decompress an image file of 262 Kbytes.

Table 1: Experimental results from implementing the
MMD method on the CT images

Average
Compression lossless Compression
technigue compression | improvement
Huffman 1.379:1
MMD + Huffman 2047:1 +48 %
Arithmetic 1701:1
MMD + Arithmetic | 2.183:1 +28 %
Lempel-Ziv 2449:1
MMD + Lempel-Ziv| 2.758:1 +13 %

Table 2: Experimental results from implementing the
MMP method on the CT images

Average
Compression losdess | Compression
technique compression| improvement
Huffman 1379:1
MMP + Huffman 3.157:1 +129 %
Arithmetic 1701:1
MMD + Arithmetic | 3.275:1 +93%
Lempel-Ziv 2449:1
MMD + Lempel-Ziv | 3.359:1 +37 %




V. CONCLUSION

As radiology becomes increasingly digital,
the amount of digital imaging data for storage or
transmission grows rapidly. This imposes a serious
problem to the realization of an all-digital radiologic
environment. Efficient compression methods help
alleviate this problem by reducing the size of imaging
data. After more than half century of research in data
compression, many good compression methods have
emerged. However, all of these methods have been
designed to compress individual images, rather than
sets of images.

Compression is based on the elimination of
data redundancies. Sets of similar images contain a
specia type of redundancy, the “set redundancy”,
which is defined as the common information found in
more than one image of the set. Medical image
databases usually store large sets of similar images,
and therefore contain large amounts of set
redundancy. We developed two new methods, the
Min-Max Differential  (MMD) and Min-Max
Predictive (MMP) methods that increase compression
in sets of similar images by targeting set redundancy.
Both methods can be combined with any compression
method, because set redundancy extraction is
independent of individual image compression. Tests
with three widely used losdess compression
techniques, Huffman, Arithmetic, and Lempe-Ziv
compression, have shown compression improvement
of as much as 129% when set redundancy is
extracted. Both MMD and MMP methods are fast,
lossless, and easy to implement. Future research will
investigate the combination of set redundancy
extraction with lossy compression techniques, as well
as ways to integrate set redundancy extraction into
medical image database systems.
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