
R e m i n i s c e n c e s on Inf luent ia l Papers

R icbard Snodgrass, cditor

This column, inaugurated in the March. 1998 issue, celebrates the process of scientific inquiry by
examining, in an anecdotal fashion, how ideas spread and evolve. I've asked a few well-known and
respected people in the database community to identify a single paper that had a major influence
on their research, and to describe what they liked about that paper and the impact it had on them.
The contributions in this issue evoke the heady 70's, as the now-accepted foundation of databases
was just start ing to be established, and serve to emphasize the debt our field owes to other areas
of computer science that have provided useful insights.

H e c t o r G a r c i a - M o l i n a . Stanlbrd [-niversity, hec'cor@db, s~canford, edu

[K. P. Eswaran, J. N. Gray. R. A. Lorie. and I. L. Traiger, "The Notions of Consistency and
Predicate Locks in a Database Swtem.'" (~bmmunications of the ACM. 19(11):624-633, November
1.976]

This paper highly influenced my early career. I was a graduate student at Stanford when I got a
copy of tile paper as an IBM Technical Report. I had just taken a graduate course on concurrent
programming, and had learned that proving almost anything about concurrent programs was really
hard. Yet. here was this way of looking at concurrency that was really neat and simple. I was also
impressed that there was a formal model for an important database systems problem. From that
point on. I took database systems more seriously, and did my thesis on concurrency control for
distributed databases, basically starting fl'om what I had read in that paper. Looking back, I see
that this paper influenced many others too. who star ted working in the area, extending, formalizing
further, and evaluating the performance of the basic ideas of that paper.

T o m a s z Imie l i n sk i . R utgers ['tfiversity. imielins@cs .rutgers .edu

[R. R eiter. "'On Closed '~\%rld Databases." in Logic a n d D a t a b a s e s . H. Gallaire and J. Minker
(eds), Symposium on Logic attd Data Bases. Centre d'6tudes et de recherches de Toulouse, 1977.
Advances in Data Base Theor.v. Plenum Press, New York. 1978, pp. 55-76]

I have chosen the paper which impressed me and influenced both mvself and a large number of
researchers who either were in the past (like myself) or currently are working on logical foundations
of databases. This paper and several other papers by Ray Reiter have started a new way of thinking
al)out da tabases - -wi th emphasis on precise logical formulatiou of the hidden assumptions which are
made about database content when answering database queries. It made a simple but fundamental
observation that there are two equally rea.sonable ways of interpreting the database content: closed
world assumption (facts not derivable fi'orn the database are false) and open world assumption
(we (:annot really say anything about facts which cannot be logically derived from the databases).
Reiter observed that SQL queries interpret the database according to the closed world a.ssumption
and provided the "'missing" axioms. His way of thinking influenced my research in my own PhD
thesis and the work which I (lid ~later on deductive databases. Although Reiter's paper have not
le(I lo any "'products" as il i> common today---it was a example of a fwn, damentnl paper which

S I G M O D Record, Vol. 27, No. 3, September 1998 33

iNflUeNced how people think aNd it, is still, after 20 years a very important reference for anybody
who studies databases and their logical foundations.

Reiter's work has been instrumental in subsequent research on nonmonotonic logics and different
forms of Negation by failure and contributed very significantly not only to databases but also to
logic programming and At.

David Maier , Oregon Graduate Institute. ma±er©cso.og±, edu

[M. P. Atkinson, P. J. Bailey, K. J. Chisholm. P. W. Cockshott and R. Morrison, "'An Approach to
Persistent ProgrammiNg," The ('ompoter Journal, 26(4):360-365, November 1983]

I first encountered the work of the Persist:ent Programming Group at Edinburgh and St. Andrews
around 1984. At that time I was CONsulting with GemStone Systems (then Servio Logic) on the
design of their database machine and system. A fundamental shift was going on at the company,
from implementing a nested-se! data model on custom hardware to producing an object-oriented
database that would run on standard workstations. I was trying to get nay head around object-
oriented programming in general and SmaIltalk-,~0 in particular, and figure out what the challenges
and advantages were for an object-oriented data model. Peter Buneman had visited the group in
Scotland, and he pointed me a t their work after hearing what I was working on with GemStone.

The cited paper is a short introduction to PS-a.lgol, a persistent version of S-algol. It covers some
of the design decisions in converting a programming language into a database language (such as
how to iNdicate persistence and how to provide efficient access to large collections) and gives a brief
overview of its implementatioN. (A pair of companion papers in Software--Practice ~'~" Experience
around the same time go into detail on the implementation.) The paper affected nay thinking in
several ways. Firsl. it made me feel that trying to build a database system by adding persistence
to an existing pl'ogramming laaguage WaSN't such a nutso idea after all. Second. it showed me
which aspects of the GemStone approach arose from it being a persistent programming language
and which depended on ol)ject-orientation. For example, PS-algol had persistence orthogonal to
Lvpe and persistence by reachabilily, .~t) those aspects didn't require an object model. On the other
hand. logical data independence via. methods and extensibilit.v via subtyping did depend intimately
on having an object model. (llowever. the Scotland group showed later, by adding persistent
procedures and a ruN-time corn plier to PS-algol. tha,t there are non-object-oriented means to achieve
type extensibilit.v.) Third. the paper helped me realize that there are common problems in turning
any general-purpose progranmtiNg language into a database system, such as the need for a common
schema and associative query, and that there were implementation options I hadn't thought about,
such as swizzling reference of ol)jects in memory.

Pa t Selinger. IBM Almaden Research ('enter. pgs©us.ibra.com

lB. Wegbreit, S tud ies in Ex tens ib l e P r o g r a m m i n g Languages, Ph.D. Thesis. Harvard Uni-
versity. May 1970]

l.ioined tile IBM database team in the early sl ages of building System R. our first foray into proving
that a relational system could have a practical implementation while maiNtaiNing the data inde-
])(~uclelwe that the relational model a<lvorlises, using a, set-oriented query language. So I suppose

34 SIGMOD Record, Vol. 27, No. 3, September 1998

I should cite the famous 1971 ('odd paper about the relational data model, but that seemed to
be too obvious. And actually for ale there was a better choice, which you'll see in a moment. I
joined the System R project because it had smart people who were fun to talk to. I had done
my PhD thesis on a combination of operating systems and programming languages, and literally
knew nothing about database technology before joining IBM. where on day 1, they handed me
a copy of Chris Date's book and said "'read this". I thought I had little chance of being able to
contribute much. Well, it turned out I was wrong. Operating systems and programming language
technologies actually have a huge relevance to database systems: the concept of compilation, the
concept of examining alternatives for generating code and choosing the optimal one, concurrency,
multiprocessing and many others. While making the relational engine take shape, we applied
what had been learned ill these other areas and adapted many of those concepts for databases in
that first generation RDB.XIS.

One programming language technology stream, however, just didn't have a natural exploitation
back then. I had read a PhD thesis by Ben Wegbreit in the early 1970s (yes, I know that was a
very long time ago). This was some of the first research done on extensible programming languages,
function overloading, user-defined types and fllnctions. That work had a profound influence on my
thinking about what you c'ould do with l)rogramming languages: they could be living, active things,
not just static syntax in a maLlual that you use to get a task done. Having read that paper, and
having helped apply so nlanv other progranlming language concepts to database technology, I was
very intrigued with the possibility of exploiting language extensibility in database somehow without
destroying the simplicity of the relational model. In the mid-1980s, we had the opportunity. As
the R* distributed project finished up. we looked at new project ideas, including the possibility of
doing a second generation database system, built from the beginning to be extensible, an active,
living database engine. That concept of extensibility caught our interest enough to pursue more
deeply. The Sta.rburst project was born. and what we at that time called extensible databases
has now formed the foundatiol~ for the object-relational database systems that are products today,
nearly 30 years after the technology wa.s first applied to programming languages.

J e f f r ey Ul lman. Stanford I'lliversitv. ullman~db, s 'canford, edu

[P..k. Bernstein. "'Synthesizing "l'hird Normal I:orm Relations from Functional Dependencies,"
,t C M Transactio,, .~ on Databa.~t S!J.st~ m.¢ 1(.1):277--29s. 3larch. 1976]

In 1975. Ca.triel Beeri took a teaching position at Prince)on. after having spent a fellowship year at
Toronto working with Denni.~ Tsichritzis and his student Phil Bernstein on the theory of databases.
C.atriel taught a course in relational database systems, which I attended along with a number of
my students. That course had tremendous leverage in the database field; e.g., I can think of at
least five students (plus ('atriel himself) who later chaired major database conferences. One of
the principal topics of the course focused on tile above cited paper, including Phil's schema-design
technique and his observations about how earlier papers on flmctional dependencies, normal forms,
and keys contained flmdamenlal errors that he corrected by careflfi analysis and proofs. This work
convinced me there was something deep in tile theory of functional dependencies, and that it was
worth devoting effort to understanding its .~ubtleties and implications. Today, while the particular
algorithm presemed in the paper is not often used, the underlying concepts, presented with the
precision lha.t Phil and ("a~riel pioneered, a.re a staple of a CS undergraduate education, and so
co)nmou that they are uo h)nger viewed as "'theory."

SIGMOD Record, Vol. 27, No. 3, September 1998 35

