Reminiscences on Influential Papers

Richard Snodgrass; editor

This column, inaugurated in the March. 1998 issue. celebrates the process of scientific inquiry by
examining. in an anecdotal fashion. how ideas spread and evolve. I've asked a few well-known and
respected people in the database community to identify a single paper that had a major influence
on their research. and to describe what they liked about that paper and the impact it had on them.
The contributions in this issue evoke the headyv 70’s, as the now-accepted foundation of databases
was just starting to be established. and serve to emphasize the debt our field owes to other areas
of computer science that have provided useful insights.

Hector Garcia-Molina. Stanford University, hector@db.stanford.edu

[K. P. Eswaran, J. N. Grav. R. A. Lorie. and I. L. Traiger, “The Notions of Consistency and
Predicate Locks in a Database Svstem.” Communications of the ACM. 19(11):624-633, November
1976] '

This paper highly influenced my early career. I was a graduate student at Stanford when I got a
copy of the paper as an IBM Technical Report. I had just taken a graduate course on concurrent
programming, and had learned that proving almost anything about concurrent programs was really
hard. Yet. here was this way of looking at concurrency that was really neat and simple. [was also
impressed that there was a formal model for an important database systems problem. From that
point on. I took database svstems more seriously, and did my thesis on concurrency control for
distributed databases. basically starting from what [had read in that paper. Looking back, I see
that this paper influenced many others too. who started working in the area, extending, formalizing
further. and evaluating the performance of the basic ideas of that paper.

Tomasz Imielinski. Rutgers Universitv. imielins@cs.rutgers.edu

[R. Reiter. “On Closed World Databases.” in Logic and Databases. H. Gallaire and J. Minker
(eds). Symposium on Logic and Data Bases. Centre d'études et de recherches de Toulouse., 1977.
Advances in Data Base Theory. Plenum Press, New York. 1978, pp. 55-76]

[have chosen the paper which impressed me and influenced both mvself and a large number of
researchers who cither were in the past (like myself) or currently are working on logical foundations
of databases. This paper and several other papers by Rav Reiter have started a new way of thinking
about databases—with emphasis on precise logical formulation of the hidden assumptions which are
made about database content when answering database queries. It made a simple but fundamental
observation that there are two equally reasonable ways of interpreting the database content: closed
world assumption (facts not derivable from the database are false) and open world assumption
(we cannot really say anvthing about facts which cannot be logically derived from the databases).
Reiter observed that SQL queries interpret the database according to the closed world assumption
and provided the “missing” axioms. His way of thinking influenced mv research in my own PhD
thesis and the work which I did later on deductive databases. Although Reiter’s paper have not
led to any “products™ as it i~ common today—it was a example of a fundamental paper which

SIGMOD Record, Vol. 27, No. 3, September 1998 33

34

influenced how people think and it is still. after 20 vears a very important reference for anybody
who studies databases and their logical foundations.

Reiter's work has been instrumental in subsequent research on nonmonotonic logics and different
forms of negation by failure and contributed very significantly not only to databases but also to
logic programming and Al

David Maier. Oregon Graduate Institute. maier@cse.ogi.edu

[M. P. Atkinson. P. J. Bailey. K. J. Chisholm. P. W. Cockshott and R. Morrison, “An Approach to
Persistent Programming.” The Computer Journal, 26(4):360-365, November 1983]

[first encountered the work of the Persistent Programming Group at Edinburgh and St. Andrews
around 1984. At that time I was consulting with GemStone Systems (then Servio Logic) on the
design of their database machine and system. A fundamental shift was going on at the company,
from implementing a nested-set data model on custom hardware to producing an object-oriented
database that would run on standard workstations. I was trving to get my head around object-
oriented programming in general and Smalltalk-80 in particular. and figure out what the challenges
and advantages were for an object-oriented data model. Peter Buneman had visited the group in
Scotland, and he pointed me at their work after hearing what I was working on with GemStone.

The cited paper is a short introduction to PS-algol. a persistent version of S-algol. It covers some
of the design decisions in converting a programming language into a database language (such as
how to indicate persistence and how to provide efficient access to large collections) and gives a brief
overview of its implementation. (\ pair of companion papers in Software—Practice & Experience
around the same time go into detail on the implementation.) The paper affected my thinking in
several ways. First. it made me feel that trving to build a database system by adding persistence
to an existing programming language wasn't such a nutso idea after all. Second. it showed me
which aspects of the GemStone approach arose from it being a persistent programming language
and which depended on object-orientation. For example. PS-algol had persistence orthogonal to
type and persistence by reachability, so those aspects didn’t require an object model. On the other
hand. logical data independence via methods and extensibility via subtvping did depend intimately
on having an object model. (llowever. the Scotland group showed later. by adding persistent
procedures and a run-time compiler to PS-algol. that there are non-object-oriented means to achieve
tvpe extensibility.) Third. the paper helped me realize that there are common problems in turning
any general-purpose programming language into a database system, such as the need for a common
schema and associative query. and that there were implementation options I hadn’t thought about,
such as swizzling reference of objects in memory.

Pat Selinger. IBM Almaden Research (enter. pgs@us.ibm.com

{B. Wegbreit, Studies in Extensible Programming Languages, Ph.D. Thesis. Harvard Uni-
versity. May 1970]

I joined the IBM database team in the early stages of building Svstem R. our first foray into proving

rhat a relational system could have a practical implementation while maintaining the data inde-
peudence that the relational model advertises. using a set-oriented querv language. So I suppose

SIGMOD Record, Vol. 27, No. 3, September 1998

I should cite the famous 1971 (‘odd paper about the relational data model. but that seemed to
be too obvious. And actually for me there was a better choice. which vou’ll see in a moment. I
joined the Svstem R project because it had smart people who were fun to talk to. I had done
my PhD thesis on a combination of operating syvstems and programming languages, and literally
knew nothing about database technology before joining IBM. where on day 1. they handed me
a copy of Chris Date’s book and said “read this”. I thought I had little chance of being able to
contribute much. Well, it turned out I was wrong. Operating systems and programming language
technologies actuallv have a huge relevance to database svstems: the concept of compilation, the
concept of examining alternatives for generating code and choosing the optimal one, concurrency,
multiprocessing, ... and many others. While making the relational engine take shape, we applied
what had been learned in these other areas and adapted many of those concepts for databases in
that first generation RDB)IS.

One programining language technology stream. however. just didn’t have a natural exploitation
back then. I had read a PhD thesis by Ben Wegbreit in the early 1970s (yes, I know that was a
very long time ago). This was some of the first research done on extensible programming languages,
function overloading. user-defined types and functions. That work had a profound influence on my
thinking about what vou could do with programming languages: they could be living. active things,
not just static svntax in a manual that vou use to get a task done. Having read that paper. and
having helped apply so many other programming language concepts to database technology, I was
very intrigued with the possibility of exploiting language extensibility in database somehow without
destroying the simplicity of the relational model. In the mid-1980s. we had the opportunity. As
the R* distributed project finished up. we looked at new project ideas, including the possibility of
doing a second generation database system. built from the beginning to be extensible, an active,
living database engine. That concept of extensibility caught our interest enough to pursue more
deeply. The Starburst project was born. and what we at that time called extensible databases
has now formed the foundation for the object-relational database systems that are products today,
nearly 30 vears after the technologyv was first applied to programming languages.

Jeffrey Ullman. Stanford Universitv. ullman@db.stanford.edu

[P. A. Bernstein. “Synthesizing Third Normal Form Relatious from Functional Dependencies.”
ACM Transactions on Database Systems 1(4):277-298. March. 1976]

In 1975. Catriel Beeri took a teaching position at Princeton. after having spent a fellowship yvear at
Toronto working with Dennis Tsichritzis and his student Phil Bernstein on the theory of databases.
Catriel taught a course in relational database svstems. which I attended along with a number of
my students. That course had tremendous leverage in the database field; e.g., I can think of at
least five students (plus C'atriel himself) who later chaired major database conferences. One of
the principal topics of the course focused on the above cited paper. including Phil’s schema-design
technique and his observations about how earlier papers on functional dependencies, normal forms,
and kevs contained fundamental errors that he corrected by careful analysis and proofs. This work
convinced me there was something deep in the theory of functional dependencies. and that it was
worth devoting effort to understanding its subtleties and implications. Today. while the particular
algorithm presented in the paper is not often used. the underlving concepts. presented with the
precision that Phil and Catriel pioneered. are a staple of a ('S undergraduate education, and so
commoun that theyv are no longer viewed as “theory.”

SIGMOD Record, Vol. 27, No. 3, September 1998 35

