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1. Introduction 

The recent article by Gray and Graefe in the 
Sigmod Record [ 1 ] included a study of B-tree 
page size and the trade-off between page size 
and the cost of accessing B-tree data. Its goal 
was to find the page size that would result in the 
lowest access cost per record. This insightful 
analysis showed how increasing page size 
permitted the B-tree to be traversed faster while 
increasing the amount of data that needed to be 
read to perform the traversal. Their analysis 
captures the trade-off between the cost (in time) 
of each access and how many accesses are 
needed to traverse the tree. 

What the analysis in [ 1] does not capture is the 
• impact on B-tree cost-performance that results 

from caching parts of the index tree in main 
memory. Substantial parts of a B-tree index 
(above the leaves) will oftenbe memory 
resident. It does not matter what the size of 
those pages is. What does matter is how much 
memory is required to hold that part of the B- 
tree, and what the access cost is for the residual 
accesses. 

To account for the effect of main memory 
caching of parts of the B-tree index, we proceed 
in two steps. Section 2 determines how much of 
the B-tree index can cost effectively be cached in 
main memory. Section 3 then determines how 
the size of the B-tree pages affects the cost- 
performance of the residual accesses. Section 4 
applies the analysis to the bounded disorder 
access method. A short discussion section 
concludes the paper. 

Notation: 

We introduce the following notation for this. 

D 
P 
E 
F 
S 
B 

CM 
Co 
A 
U 

disk size in bytes 
page size in bytes 
index entry size in b2¢tes 
index node fanout 
disk latency in seconds 
disk bandwidth (transfer rate) 
in bytes/sec 
$/Mbyte of main memory 
$/Mbyte of disk memory 
accesses/second per disk 
storage utilization for B-tree 

One has to purchase a disk in order to acquire A 
accesses/second. Thus, we determine the cost 
per A access/sec as Co*D. 

2. How much of the Index to Cache 

In this section, we want to show when it is cost 
effective to provide some level of caching so as 
to realize retrieval savings. Essentially, we 
want to understand when the cost of memory for 
improving our access rate to records of the B- 
tree is less than the cost of purchasing additional 
access arms. Of particular interest is how many 
levels of the index we can reasonably anticipate 
caching. 

Now we narrow our focus to determining when it 
is economically justified to keep the bottom level 
of the index (just above the data) in main 
memory. Our assumption continues to be that 
the access pattern to the data is uniform. This 
analysis easily extends to higher levels of the 
index, where it is readily seen that keeping these 
levels in main memory always pays off. 
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We assume that the disk is processing our 
requests for records at its maximum access rate 
A. This rate involves two disk accesses per 
record request, one for the page at the bottom 
level of the index and one for the page 
containing the data. The question to be asked is 
"should we buy another disk or should we add 
memory capacity so as to put the bottom level of 
the index into our cache?" We want to avoid 
being heavily subject to granularity issues here. 
So we imagine that we can buy fractional 
accesses/second capacity via disk purchasing as 
well as via additional index caching. 

We also assume here that our data fills the disk. 
The index size (above the leaves) is less than 1% 
of the size of the leaves). As the disk size 
increases then, this will increase the memory size 
needed for caching, e.g., the bottom level of the 
index. It will also increase the access arm cost 
compared with the cost/byte of disk storage. 
Both these are assumed linear, and hence the 
caching payoff is driven by the relative costs of 
disk and main memory. 

We understand that the above assumptions 
(approximations) are crude. However, this 
should not impact the main lessons to be learned 
from our analysis. 

Primary B-trees 

We deal here with B-trees acting as primary 
(clustered) indexes, and assume the disk is filled 
with the indexed data. We assume further that 
caching all levels of the B-tree but the bottom 
two (i.e. the last index level plus the data level) 
is cost effective. We then show that the 
performance gain is sufficiently large from 
caching the last index level to make caching that 
level cost-effective as well. 

The number of data pages (we ignore index 
pages, which are less than 1% of the total) is 
D/P. This is also the number of index terms 
(<key,pointer> pairs) in the level of the index 
just above the leaves. Each index term takes up 
E/u bytes. We multiply the number of index 
terms times the size of each term to determine 
the amount of main memory taken up by the 
index. 

Index memory = (D/P)(E/u) 

Caching Cost = CM (Index memory.) 

Without caching the level of the index just above 
the leaves, the cost of accessing a record is two 

disk accesses, one for the level above the leaves, 
the second for accessing the leaf data node. 
Hence, caching the level of the index above the 
leaves doubles the number of record accesses 
that the combined system can support. This is 
equivalent to adding another disk at CoD dollars. 

We want caching cost to be less than disk arm 
cost if we are to justify caching the index in main 
memory. Thus, for caching of the lowest level of 
the index to be effective, it needs to cost less 
than the cost of a disk arm: 

o r  

CM ((D/P)(E/u)) <CoD 

CM/Co < u(P/E) 

o r  

P > (C~/Co)(E/u) 

So now let's look at some costs based on present 
day prices. [Costs change continually, so these 
are surely already out-of-date.] 

CM = $3/MB ($50for 16MB) 
Co = $.06/MB ($250 for 4GB) 

At those costs, C~/Co = 50. If E = 20 bytes and 
u = .667, then E/u is 30 bytes, and P must be 
larger than 1500 bytes. Obviously, this is 
satisfied by all B-trees of any interest. (Note here 
that index node size is actually irrelevant. It 
plays no role in determining what is the size of 
the bottom level of the index. Only data node 
size impacts the outcome.) 

Another way to look at this is that we are 
spending 30 bytes of main memory per page of 
disk that we are accessing to cut the number of 
disk accesses/page in half. 

Secondary B-trees 

When dealing with B-trees used as secondary 
(non-clustered) indexes, the argument for 
caching all but the leaf level nodes in main 
memory continues to hold. However, we are two 
disk accesses from the primary data, as the 
leaves contain not the records but <key, pointer> 
pairs with the pointer indicating where the record 
is. So the question here is, is it cost effective to 
cache the leaves of a non-clustered B-tree (so 
that essentially the entire tree is cached) in order 
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to be a single disk access from the primary 
records. The answer to that question will usually 
be "no". 

There is a <key, pointer> pair for every record. 
Thus, the ratio of  data size to index size is R/E 
where R is the size of  the records being indexed. 
This is much lower than the case for primary B- 
trees. Typically, R is of  the order of a couple of 
hundred bytes, say 240 bytes for easy arithmetic. 
With an E of  20 bytes, R/E = 12, which is less 
than C~/Co. The record size R must be of  size 
1000 bytes and a factor of  50 larger than the 
space consumed by an index term, for us to 
profitably cache this bottom B-tree level. Hence, 
we conclude that it is usually not worthwhile to 
store the bottom level o f  a non-clustered index. 
Note also that while we can control the fanout of 
a primary B-tree via changing the page size. that 
the fanout of  a non-clustered index is not under 
our control. 

3. The Residual Accesses 

Analysis 

In the analysis above, it was shown that it is 
A L W A Y S  profitable to keep all but the leaves in 
main memory, so long as page size is at least 
1500 bytes. However,  what was not shown was 
what page size minimized the total cost (memory 
plus disk) for accessing a record. Given the 
above results, we assume here that all of  the non- 
leaf levels of  the B-tree are in main memory. 
We then calculate the cost of  dedicating main 
memory for this part of  the tree. We balance this 
against the cost per accesses/sec that we can 
achieve with a given page size. Essentially, the 
trade-off is that the larger the page, the lower our 
supportable access rate, and hence the higher the 
cost of  our accesses/sec. However, the larger the 
page, the smaller the main memory needed to 
hold the upper part of  the index. So here the 
trade-off is between the cost of  memory for 
caching and the impact of  page size on disk 
access rate. 

As before, (E/u)(D/P) is the size of  our main 
memory buffer, and memory cost is 
C~E/u) (D/P) .  This memory must be dedicated 
to serving the B-tree. It saves accesses at 
whatever the rate is that the disk can sustain. We 
have set things up so that it takes one disk access 

to get to a record. Thus, the record access rate is 
the disk access rate. It is 

Access rate = l /(access time) = 
1/(S+P/B) 

Note that this access rate is dependent upon page 
size. 
We need now to compute the cost of  
ac, cesses/second. Both memory and disk 
contribute to providing this access rate. 
Our cost for accessing the disk via a B-tree 
whose index levels are all in main memory is the 
main memory cost of  caching the index plus the 
cost of  the disk. This is 

Cost = CM (E/u)(D/P) + CoD 

Cost/(accesses/sec ) = 
Cost/( l / (  S + P/B ) ) = 

CM (E/u) (D/P) S + 
{CM (E/u) D/B + CoDS} + 
(CoD/B) e 

This is of  the form kl /P + k2 + k3 *P 

To find the minimum cost as a function of  P, we 
can differentiate with respect to P and set the 
derivative to zero. This yields 

- k l / P  2 + k3 = 0 o r P  = (kt/k3) 1/'2 

Substituting original quantities back in yields 

P = ((CtJCo)(E/u) SB) 1/2 

Values for cost and performance are constantly 
changing. However, the ratio of  main memory 
to disk cost changes more slowly than do the 
individual values. The entry size E is little 
affected by technology changes. It may have to 
be a bit larger as disks become larger, but this 
too changes very slowly. Thus, the greatest 
sensitivity on the optimal page size comes from 
the disk transfer rate. Below we provide some 
representative values. 

CM = $3/MB ($50 for  16MB) 
Co = $.06/MB ($250 fo r  4GB) 
B = 107 MB/sec 
S =  l O m s =  10 2 s e c  
E = 20 bytes (E/u = 30 bytes at u 

= .667) 

So 
P = (50"30"102"10 7) I'r2 bytes 
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= (1.5,108) 1,7 bytes 

= 1.25"104 = 12 .5Kby t e s  

The variability in this optimal value of P 
depends primarily on S ' B ,  which is currently 
10 s. This does change with technology because 
B, the transfer rate increases faster than S, the 
seek time, decreases. It was not so long ago that 
disks had seek times of 20 milliseconds and 
transfer rates o f  .5"106 bytes/sec, for a product 
S*B of 104. This yields a decrease in page size 
by a factor of three. This means that in that era, 
4KB pages were the optimal. (This depends on 
the assumption that the entire upper levels of the 
index were in main memory.) Indeed, 4KB 
pages were quite common then. 

It is surely worth noting that the "answer" here 
for page size, i.e. 12.5KB, is consistent with the 
result reported in [1]. This is somewhat 
fortuitous as at least some of the elements going 
into the analysis (e.g., cost and size of main 
memory buffers) are different. It does mean, 
however, that it is possible to choose a page size 
that is well tuned for both the caching and non- 
caching cases. 

Calculating Costs 

To calculate costs, we compute the values of our 
cost coefficients. We further assume here that 
we are dealing with a 4 G B  disk, i.e., one with 
4000  M B  capacity. 

kl = CM (E/u)DS = $3600 bytes-secs 

Thus, 

k2 = C~ (E/u)D/B + C o D S  = $2.44secs 

k3 = Co D/B = $ .24"10 .4 sec/byte 

Cost/(Accesses/s){in $-secs}= 
3600/P + 2.44 + .24"10 .4 P 

For 12KB pages, this is .29 + 2.44 + .29 = $3.02 

Note that the variable cache cost and variable 
disk cost are "equal". 

Changes from optimal page size skew these 
costs, smaller page size increasing cache costs, 
larger page size increasing disk costs. Compare 
this with the following: 

• 4 K B  p a g e . . 8 8  + 2.44 + .098 = $3.42 

• 8 K B p a g e ,  .46 + 2.44 + .20 = $3.10 

• 16KB page, .23 + 2.44 + .39 = $3.06 

• 3 2 K B p a g e ,  .11 + 2.44 + .78 = $3.33 

• 6 4 K B p a g e ,  .06 + 2.44 + 1.56 = $4.06 

Thus one can see that the page size range from 
8KB to 16KB bytes all have costs very near the 
minimum, and surely well within the uncertainty 
associated with this kind of analysis. However, 
it is pretty clear that outside of that range, that 
one is paying more per access/sec than is 
necessary or desirable. 

4. Bounded Disorder Analysis 

BD files[2] are B-trees in which the leaves of the 
tree are multi-block nodes. Only one block of 
the multi-block node needs to be read on a 
random access, and that is selected via hashing. 
Thus, each BD file leaf node is a small hash file. 
The effect of this that to determine the number of 
index terms (formerly D/P) ,  one now has (D/bP) 
while the disk transfer size remains P where b is 
the number of buckets (pages) per leaf node. 

Cost/(accesses/sec) then becomes: 
CM (E/u) (D/bP)S+ 

{CM (E/u)D/bB + Co DS]  + 

Co D P / B  

This makes kt = C• (E/bu)DS.  

The optimal value for page size P becomes 

P = ((CM/Co)(E/u)/(bSB)) 1• 
= (1/bt '7)*(B-treeopt .  page size) 

where 12.5KB is the B-tree optimal page size. 

With b = 64, 

P = 12 .5KB/8  = 1600B 

The constant term is now 

k2 = {CM (E/u)D/bB + Co DS]  = $2.40 

And cost becomes 

Cost  =3600/ (bP)  + $2.40 + .24"10 .4 *P 

= .035 + $2.40 + .038 = $2;47 

This cost is dominated by the cost of the disk. 
One could set the caching cost to zero and 
change the cost by only three cents per accesses 
per second. So further improvements in caching 
effectiveness will not change the access rate to 
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data until a substantial part of the data itself can 
be cached in main memory, not just the index. 

The situation will change only with substantial 
reductions in seek Iatency. Indeed, the cost per 
access/sec is dominated by the term CoDS. This 
is the cost of disk seek latency. 

Bounded disorder indexing continues to have a 
pay-off, though with current technology, its 
advantage is only very marginally in its access 
rate, which will be only slightly higher because it 
can tolerate a smaller page size. What started 
out as an access method intended to save disk 
accesses has become an access method to reduce 
caching costs. (It saves cpu processing time as 
well by reducing the number of nodes that need 
to be searched on the path from root to leaf, a 
cost not included in our analysis.) 

,One should regard the preceding analysis in the 
vein suggested by the title in [1]. It has 
produced a rule of thumb. This is useful for 
guiding your intuition and for making system 
trade-offs. But this analysis does not capture 
fine differences in performance. It is intended to 
be suggestive, not definitive. 
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5. Discussion 

The above analysis for B-trees suggests that 
either 8KB or 16KB pages should be fine. 
Further, the trend is for gradually increasing 
page size because S*B looks like it will continue 
to increase gradually over time. Only the chance 
that main memory cost might become closer to 
disk memory costs would alter this course, 
permitting a larger cache and reducing disk 
transfer costs. But this by itself will not 
dramatically shrink the cost of disk accesses/sec. 
Only a dramatic improvement in disk seek time 
will accomplish that. 

In closing, let me give some caveats with respect 
to this analysis. We have assumed the following. 

• The disk is filled with B-tree data. This 
is not a large difficulty. 

• The disk access arm cost is a function 
of disk size. This is not true and it 
matters. Smaller disks have higher cost 
per byte, and hence result in a lower 
CM/Co ratios. This pushes P toward 
smaller sizes. The reverse is true as 
disk size increases. 

• At start up, larger pages (in the size 
range indicated by [1]) will have an 
advantage since the B-tree must be 
traversed when the cache is cold. 

• I/O bandwidth is not the limiting 
resource. If it is, then smaller pages are 
preferred since they take less time on 
the bus. 
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