
David Lomet

Microsoft Research

Redmond. WA 98052

lomet @microsoft.com

1. Introduction

The recent article by Gray and Graefe in the
Sigmod Record [1] included a study of B-tree
page size and the trade-off between page size
and the cost of accessing B-tree data. Its goal
was to find the page size that would result in the
lowest access cost per record. This insightful
analysis showed how increasing page size
permitted the B-tree to be traversed faster while
increasing the amount of data that needed to be
read to perform the traversal. Their analysis
captures the trade-off between the cost (in time)
of each access and how many accesses are
needed to traverse the tree.

What the analysis in [1] does not capture is the
• impact on B-tree cost-performance that results

from caching parts of the index tree in main
memory. Substantial parts of a B-tree index
(above the leaves) will oftenbe memory
resident. It does not matter what the size of
those pages is. What does matter is how much
memory is required to hold that part of the B-
tree, and what the access cost is for the residual
accesses.

To account for the effect of main memory
caching of parts of the B-tree index, we proceed
in two steps. Section 2 determines how much of
the B-tree index can cost effectively be cached in
main memory. Section 3 then determines how
the size of the B-tree pages affects the cost-
performance of the residual accesses. Section 4
applies the analysis to the bounded disorder
access method. A short discussion section
concludes the paper.

Notation:

We introduce the following notation for this.

D
P
E
F
S
B

CM
Co
A
U

disk size in bytes
page size in bytes
index entry size in b2¢tes
index node fanout
disk latency in seconds
disk bandwidth (transfer rate)
in bytes/sec
$/Mbyte of main memory
$/Mbyte of disk memory
accesses/second per disk
storage utilization for B-tree

One has to purchase a disk in order to acquire A
accesses/second. Thus, we determine the cost
per A access/sec as Co*D.

2. How much of the Index to Cache

In this section, we want to show when it is cost
effective to provide some level of caching so as
to realize retrieval savings. Essentially, we
want to understand when the cost of memory for
improving our access rate to records of the B-
tree is less than the cost of purchasing additional
access arms. Of particular interest is how many
levels of the index we can reasonably anticipate
caching.

Now we narrow our focus to determining when it
is economically justified to keep the bottom level
of the index (just above the data) in main
memory. Our assumption continues to be that
the access pattern to the data is uniform. This
analysis easily extends to higher levels of the
index, where it is readily seen that keeping these
levels in main memory always pays off.

28 S I G M O D Reco rd , Vol. 27, No. 3, S e p t e m b e r 1998

We assume that the disk is processing our
requests for records at its maximum access rate
A. This rate involves two disk accesses per
record request, one for the page at the bottom
level of the index and one for the page
containing the data. The question to be asked is
"should we buy another disk or should we add
memory capacity so as to put the bottom level of
the index into our cache?" We want to avoid
being heavily subject to granularity issues here.
So we imagine that we can buy fractional
accesses/second capacity via disk purchasing as
well as via additional index caching.

We also assume here that our data fills the disk.
The index size (above the leaves) is less than 1%
of the size of the leaves). As the disk size
increases then, this will increase the memory size
needed for caching, e.g., the bottom level of the
index. It will also increase the access arm cost
compared with the cost/byte of disk storage.
Both these are assumed linear, and hence the
caching payoff is driven by the relative costs of
disk and main memory.

We understand that the above assumptions
(approximations) are crude. However, this
should not impact the main lessons to be learned
from our analysis.

Primary B-trees

We deal here with B-trees acting as primary
(clustered) indexes, and assume the disk is filled
with the indexed data. We assume further that
caching all levels of the B-tree but the bottom
two (i.e. the last index level plus the data level)
is cost effective. We then show that the
performance gain is sufficiently large from
caching the last index level to make caching that
level cost-effective as well.

The number of data pages (we ignore index
pages, which are less than 1% of the total) is
D/P. This is also the number of index terms
(<key,pointer> pairs) in the level of the index
just above the leaves. Each index term takes up
E/u bytes. We multiply the number of index
terms times the size of each term to determine
the amount of main memory taken up by the
index.

Index memory = (D/P)(E/u)

Caching Cost = CM (Index memory.)

Without caching the level of the index just above
the leaves, the cost of accessing a record is two

disk accesses, one for the level above the leaves,
the second for accessing the leaf data node.
Hence, caching the level of the index above the
leaves doubles the number of record accesses
that the combined system can support. This is
equivalent to adding another disk at CoD dollars.

We want caching cost to be less than disk arm
cost if we are to justify caching the index in main
memory. Thus, for caching of the lowest level of
the index to be effective, it needs to cost less
than the cost of a disk arm:

o r

CM ((D/P)(E/u)) <CoD

CM/Co < u(P/E)

o r

P > (C~/Co)(E/u)

So now let's look at some costs based on present
day prices. [Costs change continually, so these
are surely already out-of-date.]

CM = $3/MB ($50for 16MB)
Co = $.06/MB ($250 for 4GB)

At those costs, C~/Co = 50. If E = 20 bytes and
u = .667, then E/u is 30 bytes, and P must be
larger than 1500 bytes. Obviously, this is
satisfied by all B-trees of any interest. (Note here
that index node size is actually irrelevant. It
plays no role in determining what is the size of
the bottom level of the index. Only data node
size impacts the outcome.)

Another way to look at this is that we are
spending 30 bytes of main memory per page of
disk that we are accessing to cut the number of
disk accesses/page in half.

Secondary B-trees

When dealing with B-trees used as secondary
(non-clustered) indexes, the argument for
caching all but the leaf level nodes in main
memory continues to hold. However, we are two
disk accesses from the primary data, as the
leaves contain not the records but <key, pointer>
pairs with the pointer indicating where the record
is. So the question here is, is it cost effective to
cache the leaves of a non-clustered B-tree (so
that essentially the entire tree is cached) in order

S I G M O D Reco rd , Vol . 27, No. 3, S e p t e m b e r 1998 29

to be a single disk access from the primary
records. The answer to that question will usually
be "no".

There is a <key, pointer> pair for every record.
Thus, the ratio of data size to index size is R/E
where R is the size of the records being indexed.
This is much lower than the case for primary B-
trees. Typically, R is of the order of a couple of
hundred bytes, say 240 bytes for easy arithmetic.
With an E of 20 bytes, R/E = 12, which is less
than C~/Co. The record size R must be of size
1000 bytes and a factor of 50 larger than the
space consumed by an index term, for us to
profitably cache this bottom B-tree level. Hence,
we conclude that it is usually not worthwhile to
store the bottom level o f a non-clustered index.
Note also that while we can control the fanout of
a primary B-tree via changing the page size. that
the fanout of a non-clustered index is not under
our control.

3. The Residual Accesses

Analysis

In the analysis above, it was shown that it is
A L W A Y S profitable to keep all but the leaves in
main memory, so long as page size is at least
1500 bytes. However, what was not shown was
what page size minimized the total cost (memory
plus disk) for accessing a record. Given the
above results, we assume here that all of the non-
leaf levels of the B-tree are in main memory.
We then calculate the cost of dedicating main
memory for this part of the tree. We balance this
against the cost per accesses/sec that we can
achieve with a given page size. Essentially, the
trade-off is that the larger the page, the lower our
supportable access rate, and hence the higher the
cost of our accesses/sec. However, the larger the
page, the smaller the main memory needed to
hold the upper part of the index. So here the
trade-off is between the cost of memory for
caching and the impact of page size on disk
access rate.

As before, (E/u)(D/P) is the size of our main
memory buffer, and memory cost is
C~E/u) (D/P) . This memory must be dedicated
to serving the B-tree. It saves accesses at
whatever the rate is that the disk can sustain. We
have set things up so that it takes one disk access

to get to a record. Thus, the record access rate is
the disk access rate. It is

Access rate = l /(access time) =
1/(S+P/B)

Note that this access rate is dependent upon page
size.
We need now to compute the cost of
ac, cesses/second. Both memory and disk
contribute to providing this access rate.
Our cost for accessing the disk via a B-tree
whose index levels are all in main memory is the
main memory cost of caching the index plus the
cost of the disk. This is

Cost = CM (E/u)(D/P) + CoD

Cost/(accesses/sec) =
Cost/(l / (S + P/B)) =

CM (E/u) (D/P) S +
{CM (E/u) D/B + CoDS} +
(CoD/B) e

This is of the form kl /P + k2 + k3 *P

To find the minimum cost as a function of P, we
can differentiate with respect to P and set the
derivative to zero. This yields

- k l / P 2 + k3 = 0 o r P = (kt/k3) 1/'2

Substituting original quantities back in yields

P = ((CtJCo)(E/u) SB) 1/2

Values for cost and performance are constantly
changing. However, the ratio of main memory
to disk cost changes more slowly than do the
individual values. The entry size E is little
affected by technology changes. It may have to
be a bit larger as disks become larger, but this
too changes very slowly. Thus, the greatest
sensitivity on the optimal page size comes from
the disk transfer rate. Below we provide some
representative values.

CM = $3/MB ($50 for 16MB)
Co = $.06/MB ($250 fo r 4GB)
B = 107 MB/sec
S = l O m s = 10 2 s e c
E = 20 bytes (E/u = 30 bytes at u

= .667)

So
P = (50"30"102"10 7) I'r2 bytes

30 S I G M O D R e c o r d , Vol. 27 , N o . 3, S e p t e m b e r 1 9 9 8

= (1.5,108) 1,7 bytes

= 1.25"104 = 12 .5Kby t e s

The variability in this optimal value of P
depends primarily on S ' B , which is currently
10 s. This does change with technology because
B, the transfer rate increases faster than S, the
seek time, decreases. It was not so long ago that
disks had seek times of 20 milliseconds and
transfer rates o f .5"106 bytes/sec, for a product
S*B of 104. This yields a decrease in page size
by a factor of three. This means that in that era,
4KB pages were the optimal. (This depends on
the assumption that the entire upper levels of the
index were in main memory.) Indeed, 4KB
pages were quite common then.

It is surely worth noting that the "answer" here
for page size, i.e. 12.5KB, is consistent with the
result reported in [1]. This is somewhat
fortuitous as at least some of the elements going
into the analysis (e.g., cost and size of main
memory buffers) are different. It does mean,
however, that it is possible to choose a page size
that is well tuned for both the caching and non-
caching cases.

Calculating Costs

To calculate costs, we compute the values of our
cost coefficients. We further assume here that
we are dealing with a 4 G B disk, i.e., one with
4000 M B capacity.

kl = CM (E/u)DS = $3600 bytes-secs

Thus,

k2 = C~ (E/u)D/B + C o D S = $2.44secs

k3 = Co D/B = $.24"10 .4 sec/byte

Cost/(Accesses/s){in $-secs}=
3600/P + 2.44 + .24"10 .4 P

For 12KB pages, this is .29 + 2.44 + .29 = $3.02

Note that the variable cache cost and variable
disk cost are "equal".

Changes from optimal page size skew these
costs, smaller page size increasing cache costs,
larger page size increasing disk costs. Compare
this with the following:

• 4 K B p a g e . . 8 8 + 2.44 + .098 = $3.42

• 8 K B p a g e , .46 + 2.44 + .20 = $3.10

• 16KB page, .23 + 2.44 + .39 = $3.06

• 3 2 K B p a g e , .11 + 2.44 + .78 = $3.33

• 6 4 K B p a g e , .06 + 2.44 + 1.56 = $4.06

Thus one can see that the page size range from
8KB to 16KB bytes all have costs very near the
minimum, and surely well within the uncertainty
associated with this kind of analysis. However,
it is pretty clear that outside of that range, that
one is paying more per access/sec than is
necessary or desirable.

4. Bounded Disorder Analysis

BD files[2] are B-trees in which the leaves of the
tree are multi-block nodes. Only one block of
the multi-block node needs to be read on a
random access, and that is selected via hashing.
Thus, each BD file leaf node is a small hash file.
The effect of this that to determine the number of
index terms (formerly D/P) , one now has (D/bP)
while the disk transfer size remains P where b is
the number of buckets (pages) per leaf node.

Cost/(accesses/sec) then becomes:
CM (E/u) (D/bP)S+

{CM (E/u)D/bB + Co DS] +

Co D P / B

This makes kt = C• (E/bu)DS.

The optimal value for page size P becomes

P = ((CM/Co)(E/u)/(bSB)) 1•
= (1/bt '7)*(B-treeopt . page size)

where 12.5KB is the B-tree optimal page size.

With b = 64,

P = 12 .5KB/8 = 1600B

The constant term is now

k2 = {CM (E/u)D/bB + Co DS] = $2.40

And cost becomes

Cost =3600/ (bP) + $2.40 + .24"10 .4 *P

= .035 + $2.40 + .038 = $2;47

This cost is dominated by the cost of the disk.
One could set the caching cost to zero and
change the cost by only three cents per accesses
per second. So further improvements in caching
effectiveness will not change the access rate to

S I G M O D Record , Vol . 27, No . 3, S e p t e m b e r 1998 31

data until a substantial part of the data itself can
be cached in main memory, not just the index.

The situation will change only with substantial
reductions in seek Iatency. Indeed, the cost per
access/sec is dominated by the term CoDS. This
is the cost of disk seek latency.

Bounded disorder indexing continues to have a
pay-off, though with current technology, its
advantage is only very marginally in its access
rate, which will be only slightly higher because it
can tolerate a smaller page size. What started
out as an access method intended to save disk
accesses has become an access method to reduce
caching costs. (It saves cpu processing time as
well by reducing the number of nodes that need
to be searched on the path from root to leaf, a
cost not included in our analysis.)

,One should regard the preceding analysis in the
vein suggested by the title in [1]. It has
produced a rule of thumb. This is useful for
guiding your intuition and for making system
trade-offs. But this analysis does not capture
fine differences in performance. It is intended to
be suggestive, not definitive.

Acknowledgments

Paul Larson and Goetz Graefe made helpful
comments during the preparation of this
technical note.

5. Discussion

The above analysis for B-trees suggests that
either 8KB or 16KB pages should be fine.
Further, the trend is for gradually increasing
page size because S*B looks like it will continue
to increase gradually over time. Only the chance
that main memory cost might become closer to
disk memory costs would alter this course,
permitting a larger cache and reducing disk
transfer costs. But this by itself will not
dramatically shrink the cost of disk accesses/sec.
Only a dramatic improvement in disk seek time
will accomplish that.

In closing, let me give some caveats with respect
to this analysis. We have assumed the following.

• The disk is filled with B-tree data. This
is not a large difficulty.

• The disk access arm cost is a function
of disk size. This is not true and it
matters. Smaller disks have higher cost
per byte, and hence result in a lower
CM/Co ratios. This pushes P toward
smaller sizes. The reverse is true as
disk size increases.

• At start up, larger pages (in the size
range indicated by [1]) will have an
advantage since the B-tree must be
traversed when the cache is cold.

• I/O bandwidth is not the limiting
resource. If it is, then smaller pages are
preferred since they take less time on
the bus.

References

[1] Gray, J. and Graefe, G. The Five-Minute
Rule Ten Years Later, and Other Computer
Storage Rules of Thumb. ACM Sigmod Record
26,4 (Dec. 1997) 63-68.

[2] Litwin, W. and Lomet, D. The Bounded
Disorder Access Method. Intl. Conf. on Data
Engineering, Los Angeles (1985) 38-48.

32 S I G M O D Record , Vol. 27, No. 3, S e p t e m b e r 1998

