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A b s t r a c t  

Multimedia databases usually deal with huge 
amounts of data and it is necessary to have an 
indexing structure such that efficient retrieval of 
data can be provided. R-Tree with its variations, 
is a commonly cited indexing method. In this pa- 
per we propose an improved nearest neighbor search 
algorithm on the R-tree and its variants. The im- 
provement lies in the removal of  two hueristics that 
have been used in previous R ~-tree work, which we 
prove cannot improve on the pruning power during 
a search. 

1 I n t r o d u c t i o n  

Multi-media data  is being generated at an enor- 
mous rate by a lot of applications. The traditional 
database can deal with text da ta  and provides 
mechanisms for exact information retrieval. Multi- 
media, data, such as image data, on the other hand. 
is quite different from text data. Many projects 
on multimedia databases have been reported e.g. 
[6, 13, 8]. For such a database, content-based re- 
trieval is typically useful. One major  advantage 
of content-based retrieval is that  it bypasses the 
difficult problem of specifying the desired multi- 
media objects in terms of formal query languages. 
A popular form of content-based queries employs 
the query-by-example paradigm. For example, in a 
collection of images, users can use existing images 
as query templates and ask the system for images 
similar to the query images. This is the so-called 
"like-this" query. Alternatively, user can sketch a 
picture that serves as the query template.  

To support content-based retrieval, often we 
have to rely on feature extraction capabilities to 
map each domain object into a point in some k- 
dimensional space where each object is represented 
by k chosen features. An example feature vector 
may be the color components of an image or shot 
cuts of a video clip. Hence, processing content- 
based queries typically requires some measurement 
of similarity between k-dimensional points. The. 
similarity (or distance) between two objects is mea- 
sured using some metric distance function over the 
k-dimensional space. The most common metric dis- 
tance function used is probably the Euclidean dis- 
tance d(x, y) = k/~-~in=l (x, - y, )2. The entire prob- 
lem is then formulated as storing and retrieving k- 
dimensional points. In general, these methods are 
called Multidimensional Indexing or Spatial Access 
Methods (SAMs)  [15]. 

Some examples of SAMs are [10, 16, 1, 7, 5, 4, 12, 
17]. Evidence that  nearest-neighbor search in high- 
dimensional space has inherently high complexity 
can be found in [9, 3]. Ill view of the inefficiency, 
there are a t tempts  to parallelize the processing to 
speed up the search [2]. Also there are a t tempts  to 
reduce the number of dimensions effectively [11]. 

For many indexing methods, the search struc- 
ture is built in the form of a tree. Inefficiency arises 
because a lot of tree nodes have to be accessed in 
order to get the desired objects. In this paper, we 
discover an enhancement on the nearest neighbor 
search algorithm for the R-tree and its variants that  
can speed up the CPU processing, while not in- 
creasing the amount  of disk I /O. The enhanced al- 
gorithm eliminates one computat ional ly expensive 
step from the previously known algorithm used in 
nearest neighbor search [14], while preserving the 
same pruning power. 
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Figure 1. Example of exact search 

2 S e a r c h i n g  i n  R - T r e e s  a n d  R * -  

T r e e s  

In this section, we give a brief overview of exact 
search and nearest neighbor search on R-trees and 
R*-trees. For exact search, we determine whether 
a given query object exists in the index tree or not. 
If it does, then the object is returned else a fail- 
ure message is returned. We assume data  objects 
are points in the multi-dimensional search space. 
In an R-tree or R*-tree, if the minimum bounding 
rectangle ( M B R )  of a node encloses the query ob- 
ject, then the node may contain the query object. 
Therefore, beginning from the root, a child node 
will be accessed if its MBR contains the query ob- 
ject, and the top-down traversal will be iterated 
until either the leaf level is reached or all minimum 
bounding rectangles of child nodes do not enclose 
the query. The process will be terminated when 
the query object is found, or all nodes whose mini- 
mum bounding rectangles enclose the query object 
are searched but the required object is not found. 
For example,  in Figure 1, for an exact search for a 
query point Q, the min imum bounding rectangles 
for B1, B2, BT, B3,  B s ,  may be searched. On the 
contrary, if query point R is to be searched in the 
same example,  the searching will only examine the 
root of tree, B1. 

N-Nearest  Neighbor search aims at searching 
for N objects which are the nearest ones to the 
query object among all da ta  objects. The meaning 
of nearest usually corresponds to the shortest Eu- 

clidean distance. Roussopoulos, Kelley and Vin- 
cent in [14] suggested an efficient nearest neigh- 
bor search algorithm on R-tree. In this algori thm, 
pruning heuristics are used to discard candidates 
subtrees, so that  less nodes will be accessed while 
the correct result can be guaranteed at the same 
time. Two metrics are introduced for the pruning. 
The first metric, MINDISTA,  is the min imum dis- 
tance from node A to the query Q = {ql, q2 ..... qn}. 
It serves as a lower bound on the distance from 
the nearest neighbor within the MBR of node A 
to the query. Tha t  means, if an object P (note 
that  P is at a leaf node in the R-tree) is near- 
est to the query among all objects in node A, 
then MINDISTA < DISTp must be true where 
DISTp is the distance from P to the query. The 
second metric, M I N M A X D I S T A ,  is the mini- 
m u m  of m a x i m u m  possible distances from a point 
P to a face of the minimum bounding rectangle 
A. M I N M A X D I S T A  serves as an upper bound 
of distance of the nearest neighbor in MBR of node 
A to the query. Therefore. if P is an object nearest 
to the query among all objects in A, then DISTp 
< M I N M A X D I S T A  must be true. 

Based on these metrics. [14] developed three 
heuristics to discard nodes which do not contain 
the nearest neighbor. We shall adopt  the following 
symbols in our discussion. 

Symbols  Definition 
M I N D I S T A  

M I N M A X D I S T A  

N N_D I STN 

D ISTp 

minimum distance from node A 
to the query 
min imum of m a x i m u m  possible 
distances from the query point  to 
a face of the MBR ,4. 
distance from the N - t h  nearest  
neighbor among  searched objects  
to the query 
distance from the object  P to the 
query 

H e u r i s t i c  1 If 
MINDISTA  > M I N M A X D I S T B ,  then node A 
will be discarded. 

H e u r i s t i c 2  If DISTp > M I N M A X D I S T B ,  
then the object P will be discarded. 

H e u r i s t i c  3 If MINDISTA > NN_DISTN, 
then node A will be discarded. 
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Let us call the single nearest neighbor search algo- 
r i thm in [14] A l g o r i t h m  N N .  In this algorithm, 
pruning depends on Heuristics 1, 2 and 3 in which 
NN_DI: ;TN is restricted to N N _ D I S T 1 .  A gen- 
eralization to N-nearest  neighbor search is also 
described in [14]. The generalized algori thm will 
make use of Heuristics 1, 2 and 3 in the pruning 
process. 

3 A n  I m p r o v e d  N e a r e s t  N e i g h b o r  

S e a r c h  A l g o r i t h m  f o r  R - T r e e  

Although the pruning heuristics described in the 
previous section can reduce the number  of node ac- 
cess on an R-tree, extra CPU t ime overhead is in- 
troduced by the process of calculating the two met-  
rics. The calculation of M I N M A X D I S T  is compu- 
tat ionally expensive and has a complexity of O(d) 
where d is the number of dimensions. Heuristics 
1 and 2 make use of MINMAXDIST .  The over- 
head is large especially when a large amount  of 
high dimensional data  has to be dealt  with. It  
turns out that  these two heuristics do not actu- 
ally increase the pruning power, and so calculation 
of M I N M A X I S T  is indeed not necessary. In this 
section, an improved algorithm tha t  does not make 
use of M I N M A X D I S T  and Heuristics 1, 2 will be 
proposed. The new algorithm will be shown to be 
as least as powerful as the original one in prun- 
ing so that  the number of disk accesses during the 
searching will not be increased. 

As discussed in Section 2, we denote by Al -  
g o r i t h m  N N  the original single nearest neighbor 
search algori thm in [14] using Heuristics 1, 2 and 3, 
and using MINDIST ordering in the Active Branch 
List (see [14]). The improved nearest neighbor 
search algorithm is given as A l g o r i t h m  I N N  and 
is shown in Figure 2. Algorithm INN is similar to 
Algori thm NN. The major  difference between the 
new and the original search algori thms is tha t  the 
use of Heuristics 1, 2 and 3 have been replaced by 
using only Heuristic 3 in the new algorithm. 

In the following subsection, we show that  the 
number  of node accesses will not be increased by 
the new algorithm by showing that  if a node is 
pruned by the old algorithm, then it will also be 
pruned by the new algorithm. We assume that  
node access corresponds to disk access. Once this 

ALGORITHM INN: 
Procedure NN_Search 
Input : NODE /* node to be visited "/ 

NN-DISTtemp /~ distance from temporary 
nearest neighbor to the query */ 

Begin 
I f  current node P is at leaf level 
Then 

If DISTp < NN.-DISTtemp 
Set current node to be nearest neighbor 
Update N N--D I STtemp 

Else 
Generate Active Branch List of NODE 
Calculate M I N D I ST 
Sort the Active Branch List by ascending 

ordering of MIND IS T  
For i := 1 to no. of entries in the Active Branch List 

Apply Heuristic 3 to do pruning 
Call NN..Search 

End 

Figure 2. New nearest neighbor search al- 
gorithm for R-tree 

is established, we can see tha t  with the new al- 
gorithm, the computa t iona l  cost can be decreased 
without increasing the amount  of disk accesses. 

3.1 Efficiency of Algorithm INN 

The following lemmas  help to establish the effi- 
ciency of the new Algori thm INN. 

L e m m a  1 I f  P is the nearest neighbor among all 
objects in node A to the query Q, then 
M I N D I S T A  < D I S T p  < M I N M A X D I S T A .  

Proof." By definition, M I N D I S T A  is the mini- 
m u m  distance from A to the query Q. From the 
minimal bounding region face property shown in 
[14], if P is an object nearest to the query among all 
objects in ,4, then D I S T p  < M I N M A X D I S T A .  
Therefore, M I N D I S T A  and M I N M A X D I S T A  
serve as a lower bound and a upper  bound to the 
distance from the nearest neighbor in node A to 
the query respectively. [] 

L e m m a 2  I f  A is an ancestor node of B in a R- 
tree, then M I N D I S T A  < M I N D I S T B .  
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P r o o f :  This follows from the definition of 
M I N D I S T .  [] 

We assume tha t  in both  algorithms, a tight- 
est upper bound on the distance to the near- 
est object discovered so far is kept in a variable 
NN-DISTt~mp. Next we show that  if a node is 
pruned by the heuristics in Algori thm NN. then it 
will also be pruned by Algori thm INN. 

The first heuristic to be considered is Heuris- 
tic 2. Heuristic 2 says tha t  if DISTp is greater 
than M I N M A X D I S T A ,  then the object P will 
be discarded. Note that  no node access is saved in 
this case, since the discarded object P is already 
searched. (Effectively, if P is the nearest object dis- 
covered so far, then the NN-DISTt~mp is updated 
to be M I N M A X D I S T A  .) Since we are interested 
here only in the reduction of node access. Heuris- 
tic 2 need not be considered. The second heuristic 
we consider is Heuristic 3. Heuristic 3 says that  
if NN_DIST1 is smaller than M I N D I S T A .  then 
node A will be discard. 

L e m m a  3 If a node is pruned by Heuristic 3 us- 
ing Algorithm NN, it can be also be pruned by Al- 
gorithm INN. 

A has a greater M I N D I S T  than P ' s  ancestors. 

C a s e  2: Node P is searched after node A 
is searched. A basic depth-first traversal with 
M I N D I S T  ordering is followed in the nearest 
neighbor search for both algorithms, and since P is 
searched before A in Algorithm NN, it is not possi- 
ble that  A is searched before P in Algorithm INN. 
Therefore, this case cannot happen. 

C a s e  3: The object P is searched before node A is 
either searched or pruned. Hence P has been con- 
sidered as a possible candidate for the temporary  
nearest neighbor. Let NN_DISTt~,~p be the dis- 
tance of the nearest neighbor discovered immedi-  
ately before the search of node A. Since updates in 
the temporary  nearest neighbor can only get closer 
to the query point, NN--DISTt~mv < DISTR must  
be true. Since M I N D I S T A  > DISTR, has been 
given, NN_DISTt~mv < M I N D I S T A  can be de- 
rived and the node A will be pruned by Heuristic 
3 . •  

It remains to show that  every node which is 
pruned by Heuristic 1 in Algorithm NN will also 
be pruned by Algorithm INN. In order to do so, 
we would make use of the following lemmas. 

P r o o f i  Assume that  during the execution of 
Algorithm NN, there is a node A such that  
M I N D I S T A  > NN_DISTt~mp, so that node 
A will be pruned by Heuristic 3. Note that  
NN_DISTt~,~v is obtained either from a searched 
object P so that  NN-DISTtemp = DISTp,  or 
from the 
tains an 
DISTR. 
DISTR. 
there are 

M I N M A X D I S T  of a MBR that con- 
object P such that  NN-.DIST,.,_mv >_ 
Tha t  is, we know tha t  M I N D I S T A  > 
Next suppose Algori thm INN is used, 

three possibilities: 

C a s e  1: Node P is pruned (we say that  a node 
P is pruned if either it is pruned or an ancestor 
node of P is pruned). Since P and A have a com- 
mon root, and A is not the root, then an ancestor 
of P must be searched before A, let this ancestor 
be C. By L e m m a  2, the ancestor C must have 
a M I N D I S T  smaller than DISTR, and also the 
nodes in the pa th  in the tree from C to P must 
all have M I N D I S T  smaller than DISTR. If P is 
pruned before being searched, then A would also 
be pruned since the pruning is via Heuristic 3. and 

L e m m a  4 If there are two nodes A and B with the 
condition M I N D I S T A  <_ M I N D I S T B ,  then 
M I N M A X D I S T B  ~ M I N D I S T A .  

P r o o f :  From L e m m a  1, M I N D I S T B  < 
M I N M A X D I S T B  must  be true for all nodes 
B. Since the precondition M I N D I S T A  <_ 
M I N D I S T B  is provided, we have M I N D I S T A  <_ 
M I N D I S T B  < M I N M A X D I S T B .  Hence 
M I N M A X D I f f T B  ~ M I N D I S T A .  [] 

L e m m a  5 If a node B is searched before a sibling 
node A using Algorithm INN, and 
M I N M A X D I S T B  < M I N D I S T A ,  
then the distance of the temporary nearest neighbor, 
NN-DISTt~mv, just before A is either searched or 
pruned is less than or equal to M I N M A X D I S T B .  

P r o o f :  Let a be tile set of nodes that  are 
searched after B and before the search or prun- 
ing of ,4. (We say that  A is pruned when either it. 
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is pruned or an ancestor node of A is pruned.) Let 
Bc be the object in B that  is closest to the query 
point. There  are two possible cases: 

C a s e  1: Bc is in a.  In this case, Bc has been 
considered as a candidate for the temporary  near- 
est neighbor, then since we know that  its distance 
is less than or equal to MINMAXDISTB,  hence 
NN_DISTt~,nv < MINMAXDISTB.  

C a s e  2: Bc is not in a.  Since DISTBc < 
M I N M A X D I S T B  < MINDISTA, by L e m m a  1 
and 2, all ancestor nodes of Bc have M I N D I S T  < 
MINDISTA.  As Be is not in a,  one ancestor node 
of B, let it be B ' ,  must  have been in a and has been 
pruned by Heuristic 3. Tha t  is, node B '  is dis- 
carded because MINDISTB, > NN--DIST[~mv. 
Hence N N-DISTtemp < M IN DISTB, <_ 
M I N M A X D I S T A .  [] 

L e m m a  6 If a node is pruned by Heuristic 1 using 
Algorithm NN, it will be pruned by Algorithm INN. 

B is searched before node A. Let N N-DISTt~,~v 
be the distance of the t empora ry  nearest neigh- 
bor just  before A is either searched or pruned. By 
Lemma 5, 

NN_DISTt~,nv <_ M I N M A X D I S T A  

Since the condition 
MINMAXDISTB < MINDISTA is given, the 
relation 

NN-DISTt~,,w < MINDISTA 

can be derived from the above inequalities. There- 
fore, node ,4 will be pruned by Heuristic 3. 

The above show that  all nodes pruned by Heuristic 
1 in Algorithm NN will be pruned by Algori thm 
INN. [] 

T h e o r e m  1 If node access corresponds to disk ac- 
cess, then Algorithm INN requires no extra disk ac- 
cess compared to Algorithm NN. 

P r o o f :  Heuristic 1 says that  if MINDISTc  
is greater than MINMAXDISTD then node C 
is discarded. Without  loss of generality, suppose 
there are two nodes A and B so that  Node A is dis- 
carded by Heuristic 1 because of Node B in Algo- 
r i thm NN. Hence A and B are sibling nodes (in the 
same active branch list) and M I N M A X D I S T B  < 
MINDISTA.  There are three cases to consider: 

C a s e  1: MINDISTA < MINDISTB. 

According to Lemma 1, we have inequal- 
ities MINDISTA < MINMAXDISTA and 
MINDISTB < MINMAXDISTB.  Since 
MINDISTa < MINDISTB,  by Lemma  4, we 
have M[NM.x~XDISTB ~ MINDISTA. There- 
fore, it is impossible that  MINMAXDISTB  < 
MINDISTA so tha t  node A is pruned by Heuris- 
tic 1. 

C a s e  2: MINDISTA > MINDISTB,  and Node 
A is searched before node B in Algorithm INN. 
This is not possible since the search is ordered by 
the values of MINDIST .  

C a s e  3: MINDISTA > MINDISTB, and node 

P r o o f i  Under our assumption,  for a given R- 
tree, disk access is required if a node is searched for 
the first time. Hence the theorem follows directly 
from Lemmas 3 and 6. [] 

3.2 N-Nearest Neighbor Search 

An improved N-nearest  neighbor algori thm for 
the R-tree can be derived based on the new single 
nearest neighbor search algori thm. Algori thm INN. 
In the algorithm, we shall store a list of up to N 
nearest neighbors. The search is s tar ted f rom the 
root node. The current node will first be checked 
to see whether it is at the leaf level or not. If  it is 
a leaf, then its distance to the query will be calcu- 
lated, and if the distance is less than the distance 
from the N th nearest neighbor discovered so far, 
NN_DISTN, we insert the object into the nearest 
neighbor list and then NN_DISTN is updated  if 
necessary. On the other hand, if the current node 
is not at the leaf level, then the Active Branch List 
for further search will be generated. The  Active 
Branch List is a list which contains all child nodes 
of current node that  will be accessed in order to get 
the nearest neighbors. The Active Branch List is 
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sorted by ascending order of M I N D I S T .  Next, it 
iterates through the Active Branch List and recur- 
sively access child nodes by calling NN_Sea~'ch. In 
NN_Search pruning will be performed by apply- 
ing Heuristic 3. Therefore, the pseudo-code for the 
algorithm will be very similar to that  of Algorithm 
INN, except we would replace NN-DIST temv  by 
N N _ D I S T N ,  which is the distance of the query 
point to the N-th  nearest neighbor that  have been 
found so far. 

The proof of the efficiency of the modified N- 
nearest neighbor search algorithm will be similar 
to that  for the single nearest neighbor case. 

4 C o n c l u s i o n  

The commonly used content-based index struc- 
tures of R-tree and R*-tree are studied. An en- 
hanced nearest neighbor search algorithm have 
been derived. It is shown that  the new algorithm 
can preserve the pruning power of the original al- 
gorithm while reducing computat ional  cost. 
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