
Workshop Report on Experiences Using
Object Data Management in the Real-World

Akmal B. Chaudhri
Interoperable Systems Research Centre

Computer Science Department
The City University

Northampton Square, London EC1V 0HB, UK

akmal@soi.city.ac.uk

Abstract

The OOPSLA ’97 Workshop on Experiences Using
Object Data Management in the Real-World was held
at the Cobb Galleria Centre in Atlanta, Georgia on
Monday 6 October 1997. This report summarises
some of the commercial case-study presentations
made by workshop participants.

Introduction

This workshop was organised in an attempt to bring
together academics, users and vendors from the object
database community, following the previous success-
ful workshop on Object Database Behavior, Bench-
marks, and Performance at OOPSLA ’95 [Zorn95].
The workshop Call for Papers (CFP) attracted a mix-
ture of submissions from academics and users and 16
position papers were selected for presentation. There
were several main themes to the submitted papers:

• Object Database Applications and Design.
• Benchmarks and Standards.
• Architectures and Frameworks.
• Object to Relational Mapping.

The position papers were organised into short and
long presentations, with an opportunity for workshop
participants to pose questions and raise issues for dis-
cussion after each presentation.

The remainder of this paper is organised as follows.
The next section describes some of the commercial
case-study presentations in the order that they were
presented, (due to space constraints, however, other
workshop presentations cannot be summarised in this
paper). This is followed by the major conclusions.

In the Trenches with ObjectStore

This paper was written by David Hansen, Daniel
Adams and Deborah Gracio and presented at the work-
shop by David Hansen. All three authors are with the
Information Systems Department, Pacific Northwest
National Laboratory (PNNL).

David’s presentation focused on experiences that his
group has had using ObjectStore for a Scientific Data
Management (SDM) system.

Fast performance is provided by ObjectStore through
its Virtual Memory Mapping Architecture (VMMA),
but at the expense of pointer safety and increased bur-
dens on the programmer. David concluded that safe
pointers, at the expense of a little overhead, would
have been better to avoid some of the design com-
promises that needed to be made for SDM.

The second issue discussed by David was that of
physical database organisation. In ObjectStore, ob-
jects that are likely to be referenced together can be
placed in clusters (fixed-size containers) which reside
in segments (expandable storage containers). Cluster
size can only be set at creation-time. Similarly, seg-
ments need to be carefully sized. David argued that
such physical considerations should be the responsi-
bility of a Database Administrator (DBA), rather than
hard-coding them directly into each application.

The third issue raised by David was that of vendor
marketing. He (very diplomatically) suggested that
the marketing department at Object Design, Inc.
(ODI) was ahead of product capabilities. For example,
SDM uses the Silicon Graphics platform, running the
IRIX operating system. However, ODI does not ap-
pear to give high priority to this platform in terms of
support, development or maintenance.

The fourth issue relates to tools support. David de-
scribed some experiences with ODIs Internet Solution
Suite (ISS). He argued that several tools of interest
for SDM, such as ObjectForms and the Extended Ob-
ject Manager were not up to quality. For example, the
SDM team wanted to view objects from their
database, but found ObjectForms to be very limited in
capability and only providing relational-like data ac-
cess. Similarly, the wrapper class for the Verity De-
veloper Kit (VPI) was somewhat limited in capabili-
ties. Again, the application programmer was left to
deal with performance and safety problems.



David concluded that experiences with ObjectStore
had been very mixed, but on the whole, the product
was a superior solution to using relational or object-
relational products for SDM.

CORBA-Based Applications, Ser-
vices, and Object Data Management

This paper was written and presented at the workshop
by John Chen. The author is with Silicon Graphics,
Inc.

John described the results of a project to build a set of
CORBA applications and some object services needed
by those applications. One of these services being
persistence. A pure object database was used as the
first persistence mechanism and John’s experiences
reported below are based on this.

One of the first issues discussed by John was how to
locate a database object for a particular CORBA ob-
ject:

1. Use the OID generated by the object
database.

2. Use the names selected by the CORBA ob-
ject.

3. Use the names managed by the Persistence
Service.

4. Use the OID generated by the object database
and add a tag generated by the Persistence
Service.

The first three options are unsatisfactory, since the
particular object database system reuses OIDs (option
1), which makes it difficult to keep track of deleted
objects or a mapping table is needed for names !
OIDs (options 2 and 3), which introduces an over-
head. The fourth option does not incur a mapping
overhead and was the one selected.

In a distributed environment, it is important to access
local data as much as possible to avoid unnecessary
network traffic. The CORBA applications do this by
using the Federated Database mechanism of the object
database. This enables those objects that are owned by
a particular CORBA server to be physically held on
the same machine as that server. Furthermore, good
concurrency is achieved by using the Container mech-
anism of the object database - all objects of the same
type as their CORBA objects are held in the same
container. Also, database interaction time was found
to be the limiting factor for I/O-bound applications,
so tradeoffs were necessary to achieve good through-
put, such as batching requests and committing trans-
actions per request batch.

John then discussed several issues related to database
management and application packaging. These in-
cluded shutting down the database server in a dis-
tributed environment - not an easy task, since all ap-
plications need to shut-down first and this can only be
done when any outstanding transactions either com-
mit or abort. A related issue is that of the lock server
used by the particular object database which also re-
quires careful handling. The object database also pro-
vides very minimal security and access control, so
user authentication and authorisation are performed at
the CORBA object level. Schema management was
also a little difficult in this object database system,
since all application schemas are held in one database.

Overall, despite the problems just described integrat-
ing CORBA and the particular object database, John
ended on a positive note and felt that the inconve-
niences and problems were not insurmountable.

Using Objectivity on the IRIDIUM1

System

This paper was written and presented at the workshop
by Jeff Garland and Dick Anthony. Both authors are
with Motorola, Inc.

The IRIDIUM project involves a large number of
components, including satellites in low earth orbit,
ground stations, etc. OO software and development
techniques are currently being used to develop the
System Control Segment (SCS) which is central to
the entire IRIDIUM system.

Objectivity/DB has been successfully used for some-
time in several SCS ground sub-systems. Other sub-
systems also use OO tools and techniques, such as
Orbix, Rogue Wave and ILOG. An obvious issue is
that of combining these diverse tools to work suc-
cessfully and this was achieved in IRIDIUM by the
SCS team developing high-level design and integra-
tion techniques, including the use of design patterns.
For example, one use of Orbix within SCS is to per-
form distributed event notification to database clients.
This is modelled by a design pattern, called Ob-
server. When a database client receives an alert, it
requests the database object using Objectivity/DB’s
direct interface.

One of the problems with any large-scale develop-
ment is trying to ensure good software practices.
Within SCS, this was addressed by a series of mea-
sures, which can be summarised as follows. First,
coding guidelines were used with Objectivity/DB. In
particular, calling ooUpdate  for all non-const

1 IRIDIUM is a registered trademark and service mark
of Iridium LLC.



methods and ensuring that there were no direct inter-
faces across major sub-systems. Second, by a frame-
work of objects to unify Objectivity/DB’s features.
These included enhancements to session classes, us-
ing wrappers around transactions, the development of
specialised collection classes (since the collection fa-
cilities provided by Objectivity/DB were inadequate
for this project) and developing an error handler to
convert Objectivity/DB errors into exceptions. Third,
standard make rules were used to ensure that all sys-
tem-level schemas were correctly built. Fourth, C++
coding guidelines were used and enforced through code
inspections. Fifth, all system-level interfaces were
carefully developed with Programmer Interface Guide.

Jeff and Dick summarised their presentation by noting
that Objectivity/DB was a key element of the ground
system software and was being successfully integrated
and used with other technologies through careful at-
tention to interfaces, implementation issues and using
only the core features of the product. The SCS team
had also developed a framework for the rapid devel-
opment of applications with the object database,
which reduced the development time for new applica-
tions. Finally, an important factor to the success of
the overall project was the large number of experi-
enced developers being used.

The Electronic Library Project:
SGML Document Management System
Based on ODBMS

This paper was written by Philippe Futtersack,
Christophe Espert and Didier Bolf and presented at the
workshop by Philippe Futtersack. The first two au-
thors are with Direction Etudes et Recherches, Elec-
tricité De France (EDF) and the third author is with
Ingenia SA.

At the R&D division of EDF, large quantities of doc-
uments are generated. These include such things as
technical reports, project proposals, organisation
charts, etc. These contain large quantities of text, im-
age and possibly video data and currently number
140,000 documents. There are also hyperlinks be-
tween documents, to represent relationships, which
are stored in separate HyperIndex documents. At pre-
sent there are 80,000 SGML documents and 60,000
HyperIndex documents. Since the actual documents
represent a considerable corporate asset for EDF, one
aim of the project described by Philippe was to make
this information available in a more accessible and
consistent manner.

The project team decided to use SGML, since there is
already an ISO standard and due to its widespread use
in many other industries. To enable any links to be
defined between any documents an extension, called

HyTime, was also used. Documents stored in the ob-
ject database are represented as a tree structure with an
average of 1,000 nodes and leaves. Each node or leaf
is an instance of the ElementSGML class with the
HyTime links being generated by a HyTime engine
developed by the team. The actual database schema
comprises more than 70 C++ classes and can be used
to store any SGML, XML or HTML document. O2

was used to provide persistence and was chosen be-
cause of previous experience some members of the
team had using this product.

Since the full-text query facilities provided by O2

were inadequate for this project, the development team
decided to use the Search ’97 full-text engine from
Verity. The indexing was performed on the textual
content and structure of the 80,000 SGML documents
by scanning each document tree in the object
database. A web interface provides the mechanism for
end-users to query the database with the results being
displayed in a table showing the documents that sat-
isfy the selection predicate. If the user selects a par-
ticular document for display, this requires a recursive
tree traversal of 1,000 objects on average. For a doc-
ument search or displaying a document, the response
time was found to be less than 1 second.

Philippe concluded that the integration of three differ-
ent technologies, namely an object database, a full-
text retrieval engine and a web interface, was far better
than expected and provided superb performance. The
object database also demonstrated that it was very ef-
ficient and well-suited for the persistence mechanism
for a structured document management system.

O2 and the ODMG Standard: Do They
Match?

This paper was written and presented at the workshop
by Suad Alagic. The author is with the Department of
Computer Science, Wichita State University.

Undoubtedly, one of the major reasons for the slow
uptake of object databases for commercial applica-
tions has been the lack of appropriate standards. The
standards work that was begun a few years ago by the
Object Database Management Group (ODMG) was
forced to work on standards issues after many object
database vendors had already begun offering commer-
cial products. Since object databases provide seamless
bindings for object-oriented programming languages,
eliminating the so-called “impedance mismatch” prob-
lem, the task of standards development has been fur-
ther complicated as each object-oriented language has
its own data model and type system. Suad’s presenta-
tion, therefore, focused on three issues: (i) the type
system, (ii) the model of persistence and (iii) non-tra-
ditional object-oriented features.



For the type system, the ODMG Object Model at-
tempts to provide a common model for several object-
oriented languages: Smalltalk, C++ and JavaTM.
However, as Suad noted, Smalltalk is dynamically
typed whilst C++ and Java are mostly statically
typed. Furthermore, there are currently large differ-
ences between the typing systems of C++ and Java.
This affects parametric polymorphism and obviously
has implications for the correct typing of collections
which are essential for querying. For example, the
ODMG Object Model has a root object type that is
supported by the Smalltalk and Java bindings, but not
the C++ binding. Similarly, the C++ binding uses
templates to support parametric polymorphism,
whilst the Java binding does not.

When looking at a particular object database, such as
O2, Suad highlighted a number of significant prob-
lems. For example, O2 supports the Object Query
Language (OQL) and C++ binding as defined in the
ODMG standard, but its Object Definition Language
(ODL) is totally different from the ODL defined by
ODMG and differs from the type systems of
Smalltalk, C++ and Java. The O2 object model is
therefore different from the ODMG Object Model.
Furthermore, whilst parametric collection classes are
supported in the C++ interface of O2, as required in
the ODMG standard, they are not supported in the ac-
tual O2 system.

For the model of persistence, Suad showed why or-
thogonal persistence is desirable for object databases
and where the ODMG standard and O2 are again con-
troversial. Complex object support, he argued, cannot
be managed without an orthogonal model of persis-
tence and in the ODMG standard, both the C++ and
Java models of persistence are not orthogonal.

O2 originally supported an orthogonal model of per-
sistence, as well as persistence by reachability. How-
ever, its C++ binding achieves persistence by inheri-
tance from a root class, called d_object, which is
obviously not orthogonal persistence. Furthermore,
this causes problems for Java, since it implies multi-
ple inheritance, which Java only supports for inter-
faces. The ODMG standard is also inconsistent in
other aspects of its Java binding, since it seems to
support persistence by reachability, but the model is
not orthogonal persistence.

The final issue of non-traditional object-oriented fea-
tures dealt with issues such as relationships, name-
space management and object identifiers. For exam-
ple, the ODMG Java binding does not provide sup-
port for relationships. Similarly, the O2 model does
not support relationships, but does support relation-
ships in its C++ binding. Also, both the ODMG

standard and O2 use a flat name-space, which is
somewhat limiting for multi-user or distributed appli-
cations. Finally, in the O2 C++ binding, object iden-
tifiers are directly accessible, which is unsafe. This is
caused by pointer mechanisms being available in the
language.

To summarise, Suad concluded that it was evident
that O2 had influenced the ODMG standard, but there
were also many important differences. For example,
differences in the type systems, support for parametric
classes and support for relationships.

Charting Unexplored Waters: An Ad-
venture in ODB-Land

This paper was written and presented at the workshop
by Adam Taylor. The author is with High Road In-
novation.

A problem that is sometimes faced by organisations
today is whether to use an object-oriented program-
ming language with a relational or object database.
Documented examples (e.g. see [Loomi98]), demon-
strate the practical benefits of using an object database
over a relational database in certain cases. One of the
reasons why an organisation may wish to do this is
for improving performance where considerable naviga-
tional access is required as, for example, in a bill-of-
materials or parts-explosion hierarchy. It is precisely
this type of problem that Adam described in his pre-
sentation.

After initial performance problems experienced with a
relational database, Adam’s group evaluated several
object database products and eventually found Object-
Store to be the best fit for their requirements. How-
ever, a number of problems were encountered, which
can be summarised as follows:

1. An initial and serious mistake was simply to
use the existing relational database model as
the basis for the new object database model.
This resulted in too many classes and an in-
flexible design.

2. Casual misuse (e.g. stray deletes) of database
objects by developers often caused serious
problems.

3. Transforming objects from one form to an-
other was overly-complex, even for simple
operations. Despite the transformation being
encapsulated, the code was still difficult to
write and maintain.

4. Many programming languages were being
used in the development group, such as Vi-
sual Basic for the GUI and C++ for database
development. Consequently, an in-house
language interchange format was written,



with developers providing some additional
(“glue”) code to connect C++ classes and Vi-
sual Basic. This interchange format was ex-
tended for persistent classes and TCL (used
for database loading, unloading, report gener-
ation), but resulted in many maintenance
problems for the glue code whenever schema
changes occurred.

After a period of development, a major reconstruction
of classes and schema changes required complete
database rebuilds, which reduced database-related errors
to almost none. However, further problems subse-
quently emerged:

1. The schema was overly-complex, which
caused schema-evolution problems, particu-
larly in restructuring relationships to meet
new requirements. The ObjectStore schema
evolution tools were inadequate for this pro-
ject.

2. The new schema caused synchronisation
problems, since not all the developers were
working at the same level.

Further restructuring simplified the design, providing
easier maintenance, as well as enabling the develop-
ment of pre-formulated queries. These changes pro-
vided significant performance gains.

To conclude, Adam noted that two of the three appli-
cations that were being developed on the object
database had already been successfully deployed, with
the third application due for release by the end of
1997.

Overall, there were many issues related to the use of
object databases that were not foreseen. These could
be summarised as integration, architectural and de-
ployment strategies.

Object to RDB Mapping: When At-
tributes and Fields are Not Enough

This paper was written and presented at the workshop
by Gerald Zincke. The author is with GMO GmbH,
Vienna, Austria.

A common feature of some database systems today is
the use of a large centralised mainframe and users “in
the field” with small personal computers or laptops
(for mobile computing). A typical sequence of events
for remote users would be to:

1. Copy portions of the main database to a
smaller machine.

2. Make offline changes to data.

3. Write the changed data back to the main
database.

However, there are a number of complex issues in-
volved with these requirements:

1. The centralised database has a complex data
model. If all the data regarding a small num-
ber of business objects are required, this may
involve the transfer of a large number of
records to the remote offline database.

2. Data manipulation performed on the remote
offline database needs to be recorded to en-
able changes to be correctly applied to the
main centralised database.
• New business objects inserted into the

offline database will have to have their
keys translated when the data are trans-
ferred back to the main database, since
there are well-defined rules for key allo-
cation.

• The same business object may be up-
dated at more than one offline site, so a
pre-image log is maintained on each lap-
top for every updated object.

• Deleting business objects is also per-
formed by using a log.

• Transactions must be correctly recorded
and applied when data are transferred
back to the main database.

3. When transferring the data back, the various
changes need to be repeated against the main
database. The issues presented above regard-
ing new, updated and deleted objects are care-
fully applied to ensure that the main database
remains consistent.

Gerald described the following general solution to
these problems, which was developed using a frame-
work. Business objects:

• Know their primary key and the rules to cre-
ate that key.

• Know how they are mapped to the database.
• Know pre-image information about them-

selves.
• Know how to check the database to see

whether they already exist.
• Know what relationships they have with

other business objects.
• Can only be accessed by a behavioural inter-

face.

So both data and model information are maintained
and, using this approach, a solution to the problems
outlined earlier was developed in 1.5 months. The
framework also allows the same solution to be used
for other applications.



Mapping Objects to an RDBMS Using
Message Passing

This paper was written and presented at the workshop
by Patrick Noonan. The author is with the First
Union National Bank, Charlotte, North Carolina.

Patrick described a three-tier system being developed
by a large commercial bank. This bank had experi-
enced performance problems with a two-tier solution
and was looking towards middleware to provide im-
proved performance for an on-line transaction system
that would support 200+ users in 8 states. The
servers were large mainframes running Oracle and
IMS, with 486 and Pentium PCs being used for the
clients. The application uses 110 business objects and
80 Oracle tables.

Early project decisions were to isolate the client and
client developers from any knowledge of the database.
In this way, they were not influenced by SQL or rela-
tional table considerations. Furthermore, business
logic would be maintained on the server with thin
clients to support data entry and querying using win-
dows and dialog boxes.

Mapping rules for object attributes and classes to row
attributes and tables were maintained in an extended
data dictionary. This dictionary was used by a custom-
built code generator to build server-side code.

Persistent and non-persistent objects were managed by
subclassing. Within the development team, the deci-
sion to subclass business objects from a persistent
superclass caused disagreements, since some develop-
ers felt that business objects should not have any
knowledge of the persistence layer. However, the so-
lution worked and continued to be used although it
was felt that major drawbacks would occur if the rela-
tional database was replaced with an object database.

The original performance requirements were that
250,000 bytes from the server should be retrieved in a
single transaction within a reasonable (not quantified)
time. At the present time, the largest transaction is
80,000 bytes and takes approximately 20 seconds,
which is acceptable to customers, since it is relatively
infrequent. Other transactions are typically in the 3-5
second range.

To summarise, Patrick felt that the system would
continue to use relational databases, although he
would prefer to move away from this type of database
technology. Object databases were unlikely to be used
in the foreseeable future, as the bank was taking a
conservative view of this technology.

Conclusions

The previous summaries show that, on the whole,
object data management is being successfully used for
commercial applications. However, there are still a
number of outstanding issues. For example, some
vendors have adopted a very aggressive marketing
strategy, which means that whilst their products may
be used for more applications, there is also the likeli-
hood that there are more failures (which the user
community at large generally does not hear about for
obvious reasons). Furthermore, from the discussions
during the workshop, it also emerged that the partici-
pants developing commercial systems were not using
the query capabilities provided by a particular object
database product. Similarly, none of the same partici-
pants had used any public benchmarks for perfor-
mance evaluations; most preferred to undertake their
own benchmarking tests. On the issue of standards,
there are some problems with the current efforts and a
number of areas that ODMG needs to address were
clearly identified. Another important issue was that,
for successful commercial systems, it is essential to
have suitably qualified people. Retaining such people
can also be a major problem.

Workshop participants may make available electronic
copies of their position papers and slides. If so, links
to these will be added from one of the workshop
home pages located at http://www.soi.city
.ac.uk/~akmal/oopsla97.dir/workshop.
html.

Acknowledgements

The workshop organisers would like to thank all
those who took the time and effort to prepare position
papers, presentations or participated directly in the
workshop.

Thanks to Doug Barry for his comments on an earlier
draft of this report and to Ling Liu for proofreading.

References

[Loomi98] M.E.S. Loomis and A.B. Chaudhri (eds.)
(1998) Object databases in practice (Upper Saddle
River, New Jersey: Prentice-Hall) http://www
.prenhall.com/ptrbooks/ptr_013899
725x.html

[Zorn95] B.G. Zorn and A.B. Chaudhri (1995) Object
database behavior, benchmarks, and performance.
OOPS Messenger. 6 (4):159-163. http://www
.cs.colorado.edu/homes/zorn/publi
c_html/oopsla95/addendum.ps


