Where Will Object Technology Drive Data Administration?

Arnon Rosenthal
The MITRE Corporation, Bedford, MA 01730, USA
arnie@mitre.org

Abstract

Several unifications that the application
development process has long needed are now
occurring, due to developments in object
technologies and standards. These will
(gradually) change the way data intensive
applications are developed, reduce databases
prominence in this process, and change data
administration’s goals and participants. At the
same time, the database community needs to
ensure that its experiences are leveraged and its
concerns are met within the new methodologies
and toolsets. We discuss these issues, and
illustrate how they apply to a portion of the
Department of Defense (DOD). We dso
examine things that object technology won't
accomplish, and identify research problems
whose solution would enable further progress.

1. Introduction

Object technology will have evolutionary and
revolutionary effects on data administration.
Evolutionary changes include new descriptive
constructs (e.g., user-defined datatypes) and new
reuse mechanisms such as inheritance. This note
focuses mostly on the more revolutionary
changes that seem likely to emerge from the
opportunities offered by Object Oriented
Analysis and Design (OOA&D), object DBMSs,
and multi-tier data architectures.

This section discusses several very favorable
convergences that are occurring in industry.
Section 2 discusses how the leading metaphor for
application development will shift from
databases to objects and types, and identifies
data administration ideas that need to be added
back to this mix. Section 3 uses DOD examples
to illustrate some of the pragmatic situations that
many large organizations may encounter in
moving toward object technology.

Object formalisms provide an integrated way of
describing data, functions (i.e,, methods), and
(sometimes) events. The same resources may be
presented as a traversable web of objects, or as
queryable collections. This integration permits
representing “real world” concepts more
naturally, and provides more natural modules of
implementation, deployment, and reuse.

The maturing of object technology enables
several other major convergences in the industry,
which individually, and together, will have mgjor
consequences for data administration.

Convergence 1: A unified formalism across
levels of abstraction.

e The same object formalism can express
conceptual, implementation, and external
schemas. The object query language can
express derivations among them.

e It will be easier to give each community a
schema customized to its needs, because a
multi-tier schema architecture will be able to
relate schemas within one formalism.

Two decades ago, ANSI/SPARC proposed a
multi-tier schema architecture, that provided
implementation, conceptual, and external
schemas [Tsic77]. The idea was to give each
community a schema that suits its world view.
Though it became a staple of textbook advice,
few organizations maintained the three tiers.
Fatally, the conceptual tier typically used ER
formalisms that possessed no widely-
implemented query language. Developers could
not express requests against the conceptual
schema; therefore, they had no interest in it once
the database was implemented. As schemas
evolved, the conceptual schema was not
maintained, and became useless.

There are severa object formalisms that are
suitable for being used a al levels of
abstraction. They are typically rich enough to
express schemas at all three tiers, and can
provide both a (set-oriented) query language and
anavigationa (one-object-at-a-time) interface. In
addition, they alow user-written methods that
customize operations behavior. Consequently,
they remove the first set of barriers that
frustrated multi-tier architectures. The problemis
still difficult, though, as discussed in section 3.2.

Convergence 2: The design processes for
databases and applications are interleaved, to
form Object Oriented Analysis and Design
(OOA&D).

» Applications will be seen as interacting with
the object manager, rather than with the
DBMS.

e Object modeling will often be done by
devel opers who are not database experts.

The current design process consists of data
design plus application design. The future split
seems likely to be object design plus
implementation design; the implementation then
splits into data and code portions. Data
administration’s goals (including ability to share
and integrate data) still apply, but the techniques
will need to be adapted, and object designers will
need to be convinced of their value. Techniques
currently used within DOD include schemas,
dictionaries and ontologies, schema integration,
and use of declarative (SQL) mappings rather
than black-box methods. From this list, only
schemas are routinely used in OOA&D.

Convergence 3: OOA&D will use a common
core of representations (UML and the Microsoft
Repository), across vendors and lifecycle stages.

e Both vendors and user organizations will
find it easier to assemble best-of-breed tools
from multiple sources.

» Computer-aided Software Engineering
(CASE) tool suites should improve rapidly,
as market barriers drop, users need less
training, and users benefit from tool
synergies.

Until very recently, the representations used in
software methods (and the supporting CASE
industry) were hopelessly fragmented and
incompatible. But while moving to OO-CASE,
they have made enormous progress in
standardization. Technical inputs came from
many directions; the political push came from
customers, the Object Management Group
(OMG), and the Microsoft Repository, which
(combining concrete form with market power) is
being bundled with al Microsoft languages.

The result is that for many types of information
involved in OOA& D, we have standard concepts,
graphic notations and access interfaces. Leading
OO-CASE vendors have agreed to export/import
using the Unified Modeling Language (UML)
[Rati98] and Microsoft's repository interface
[Bern97]. UML will provide a standard core
(dlso adopted by OMG) that vendors will
interchange easily, as well as standard means of
describing vendor-specific extensions. Also,
because all UML diagrams are defined over the
same metaschema, information can be seen
consistently from the perspective of different
lifecycle stages, e.g., class diagrams and use
cases.

Currently, many DOD database designers use
drawing tools (e.g., PowerPoint) for schemas.
They reject database CASE systems as not worth
the trouble and expense, for now. The future
looks better. Standardization should reduce
software costs and the learning curve. Improved
integration should increase the payback, as the
captured information is used for more purposes.
As a consequence, there should be less tendency
for design information to wither, unmaintained,
as a system evolves.

2. Metaphor Shift, From DBM Sto Object
M anagement

For the past decade, application development
tools (e.g., PowerBuilder) have seen information
primarily as tables, accessed viaa DBMS. Wein
the database community have become
accustomed to being central to application
development. It now appears that OOA&D
(along with componentware [CACM97]) will

become the default way of constructing new
systems.

Below, section 2.1 examines the past and
describes current trends in industry that appear to
be moving toward object management as the
primary metaphor for resources available to
applications. Section 2.2 then discusses some of
the consequent effects on data administration and
on OOA&D, asthe two combine.

2.1 Competition Among Metaphors

During the 1980s, application development
environments saw available resources primarily
as databases, described by relational
implementation schemas and entity-relationship
conceptual schemas. These descriptions could
be exploited to generate access code and user
interfaces (e.g., forms). Information could be
captured incrementally and declaratively.
Standardization was also important: Although
SQL dialects and even catalog structures were
not plug compatible, they were sufficiently
similar that CASE vendors could wrench their
tools to apply across multiple products.

Databases won over two other potential
centerpieces. Transaction monitors (e.g., IBM’s
CICS) were the heart of 1970s systems, but these
provided only an abstraction of the execution
environment (e.g., multithreading, remote
invocation), not of interfaces nor of the problem
domain. Programming languages could describe
functions as well as data, but were hopelessly
heterogeneous in their data, processing, and
storage models, and had no value-based query
language.

Object formalisms, which offer even more
powerful descriptive constructs (types and
inheritance, methods), now provide a powerful
rival. In the trade magazines and consortia,
distributed object computing, as embodied in
Java, CORBA, and DCOM, are considered
critical to future systems. Databases get much
less attention. The Object Management Group
(OMG) has ~40 times as many members as the
Object Data Management Group. OO interface
formalisms have converged to a manageable
number of competing (and cooperating) formal

and de facto standards, e.g., CORBA, DCOM,
and UML, and Java.

Equally important, object request brokers will be
ubiquitous, encouraging applications to be
written as invocations of objects methods. A
DCOM or CORBA reguest broker is now
included with every Windows desktop and
Netscape browser. In contrast, moves to make
OO data management ubiquitous still face major
barriers, including standardization, cost, resource
reguirements, and administration requirements.

2.2 Merging Data Administration Into
OOA&D

If OOA&D becomes the dominant approach, it
will need to include models that address the
issues currently addressed by database-centered
administration. This section summarizes the
major changes administrators will see, and then
examines how data administration can adapt to
provide new functionality that OOA&D needs.

The biggest formalism change is that designers
and implementers will see resources as
individual objects and types, instead of seeing
tables (i.e., sets) of typed tuples, or even tables of
objects. The functions provided by DBMSs will
continue to be crucial (notably collections,
transactions, and a query language), but
developers will often think of them as part of
object management, not as a separate DBMS
server.

The biggest usage change is that most developers
will interact with application schemas, i.e., type
definitions that match an application's world
view. Both the conceptual and external tier of the
three-schema architecture would be application
schemas.

The biggest political change is that data experts
no longer have exclusive turf, since OOA&D
addresses data and function together. In fact,
because producing methods is typically more
labor intensive than producing data descriptions,
method definition may receive greater attention
(e.g., when selecting inheritance hierarchies).
We now examine the changes in more detail.

First, the usual OOA&D scenarios will need
extensions, to describe a data intensive
application to the DBMS. Traditionally, data
modeling is restricted to data that will be stored
in databases, and table definitions that define
both types (interfaces) and persistent collections
of instances. OOA& D focuses on defining types.
Hence one must specify, in addition, how objects
are organized into collections, which objects (or
parts of objects) are to be persistent, and what
transaction model should apply to each method
invocation. UML does not currently address
these issues. OODBMSs provide the necessary
mechanisms, but the interfaces and capabilities
are often vendor-specific.

Second, at the enterprise level, it will be
necessary to merge object schemas from multiple
application domains. This task is familiar to
database experts, but is less frequently addressed
in OOA&D (or, for that matter, when combining
text bases that possess overlapping kinds of
metadata). Currently, the schema integration
field can offer insights, research papers, and
some limited industria strength tools. The
market for such tools should widen fast, as data
warehouses and middleware simplify data
access. The representation standards
(convergence 3) will reduce vendors costs and
increase their market.

Administrators of schemas produced by OOA&D
may have fewer decisions to make. Application
schemas will be used as a system interface
(unlike entity-relationship schemas), and hence
be up to date. Compared with relational
implementation schemas, they should change less
often, have fewer oddities, and fewer redundant
attributes (due to explicit inheritance and user-
defined types). However, the formalism offers
more options (e.g., ElapsedTime as an attributes
or amethod result).

Third, an enterprise needs a resource
administration activity separate from individual
applications. Object registries currently have
different aims and coverage than registries of
data elements (roughly, attribute definitions).
For large enterprises, OOA&D should be
complemented by a registry of data elements;

this registry should address and exploit object
technology, as discussed below.

2.2.1 Data Definition Registriesand OOA&D

Data and object registries typically differ in
granularity, and in their principa goals. OO
component registries often am at reducing
development cost of an individual system, via
reuse of fairly large granules. Data registries
may have a complementary aim, to improve
interoperability, i.e., the ability of separately-
developed systems to work together. At an
enterprise level, one cannot expect all systems to
use the same set of type definitions; data element
registries will still be needed in an OO world.

One form of interoperability concerns requests
from one system to another. With object
technology, these requests are method calls.
Developers of various applications might get
attribute and variable definitions from a registry,
e.g., say, a textual definition of “arrival_time”.
The shared definitions will make it easier to use
the concept in a method call. (Note that this
approach avoids requiring that client and server
use a consistent set of business objects.)

A second goal, more specific to data, is that
shared definitions may permit organizations to
reuse instance data, and thereby reduce
redundant and inconsistent data capture.
Achieving this goal reduces organizations
(human or sensor) operational costs, not just
software development.

In DOD, individua organizations manage their
own data and often see interoperability as an
externaly-imposed burden. The central data
administration effort has interoperability as its
prime mandate, and manages only data that
appears in interfaces. They have registered
~15000 data elements and hundreds of schemas.
Nevertheless, progress toward interoperability
has been slow. Until recently (i.e., the WWW),
it was too costly to provide inspection and
definition tools to thousands of contractor and
DOD sites, worldwide. Also, for organizations
that have not previously shared information,
short textual descriptions are an insufficient
semantic basis for exchanging critical data. At a

minimum, one must track who asserted the
correspondence, and how certain they are
[Rose974].

Inheritance hierarchies and user-defined
datatypes can reduce the labor of maintaining
such registries. For example, much of an
attribute’s semantics might be captured in the
datatype for its values. Currently, DOD has a
centrally controlled list of domain datatypes
(Time, Speed, etc.); in an OO environment, the
list would naturally be extensible, so more
semantics could be captured. Method arguments
would also be included in this registry, since one
system's attribute may be another’'s method
result.

The OO community’s view that a standard
should permit tool interoperability would be a
giant step forward for registry standardization.
The 1SO standard for registries [1SO97] contains
much insight into registry maintenance, but less
about how standards catalyze tool progress.
Committee leaders have expressed disinterest in
defining an invocable interface for the mandated
registry functionality. Hence, unlike the OMG
and Microsoft specifications, the 1SO-11179
standard will not allow a user tool to work with
multiple registries.

3. Pragmaticsof Introducing Object
Technology

Thiswork is an outgrowth of efforts to advise the
Department of Defense on data administration,
particularly for planning and monitoring Air
Force operations, and for centra data
administration. (Opinions are dtrictly the
author’s.) We useillustrations from DOD efforts
(mostly tentative), but expect that the problems
are shared by many organizations.

3.1 DOD Adoption of Object Technology
for Data I ntensive Applications

Recently. the Air Force's Chief Architects Office
identified flexibility asits primary goal for future
software. Technology is opening important new
opportunities, eg., for reducing personnel
movement in a crisis by performing more tasks
from bases in the US. The change will be

gradual, and information systems must be able to
change gradually. Perhaps more dramatic,
unanticipated emergencies will be met by
configuring customized task forces. Their
information systems will need likewise to be
customized, within a period of days rather than
years. This requires that customization require a
small enough effort to be done in-house, without
going through the slow, costly government
procurement process.

Object technology and componentware are
widely seen as keys to flexibility. Today, even
conservative organizations running RDBMSs
want to add attributes that exploit new datatypes
(e.g., image data blades) being sold by their
current vendor. These organizations require
administration of schemas that include such
datatypes, and of the datatype definitions
themselves. (Use of enhanced DBMSs as
standard software components aso requires
guidelines, since the enhancement may
potentially make the DBMS less stable).

Object database middleware (including object-
relational products like UniSQL/M) are
occasionally being used to provide integrated
access to multiple data sources. As in many
middleware-based systems, one needs separate
schemas for the application interface and the
implementation schema that encapsulates
external systems. Administration of such multi-
tier systems currently seems to rely on what the
middleware vendor provides.

There are aso groups developing new
applications using OOA&D. They will want to
store their information in object databases
(whether native, or created by a persistence layer
over a relational system). Currently, the tools
seem to switch abruptly from class diagrams to
database issues. Perhaps in the future, the
transition will be less abrupt. These groups
currently make limited use of the data registries.

There is widespread desire to simplify system
administration, and this can slow the adoption of
object databases. We know of one OO
application that ran natively over an OODBMS,
but which was rejected because owners of the
deployment platforms did not want to administer

a second DBMS. The application was accepted
only after being rewritten (less elegantly) to
employ already-deployed copies of Oracle. With
similar motivation, Microsoft’s repository hosts
its object layer over existing engines (Jet/Access
and SQL Server).

3.2 Why Objects Aren’t a Panacea

Object technology eases some difficulties in
building complex, flexible, systems, but many
others reman, and complicate data
administration. We discuss three of them below.

1. Resourceswill not all be described in the same
object formalism. Heterogeneous formalisms
reguire an organization to have more skills and
more tools, also, derivations need to be
decomposed into a query that derives the desired
information, plus a “cast” between formalisms.
The various industry sectors involved in
implementing OO systems have each developed
their own standard formalism(s): UML for the
CASE community, CORBA and DCOM for
distributed objects, and SQL3 and OQL for
databases. Also, standards change, and each
version is, in effect, a different formalism. DOD
cannot upgrade tens of thousands of systems all
on the same day (or year), so multiple versions
will coexist.

Fortunately, the number of competing standards
for each capability is fairly small, and there are
moves to reduce inconsistencies. It may be
feasible for a gateway to read an object’s
description in one formalism, and then present it
in a different one. (When the gateway simply
reveals an object through an alternate interface, it
may be possible to ignore difficult issues such as
inheritance mechanisms, creation and deletion
services, and event models.)

2. Application schemas will often remain distinct
from implementation schemas. The change of
formalism does not remove the major drivers for
organizing physical information: response time
for critical tasks, encapsulation of externd
sources, etc. It seems best for implementations to
be built from first class objects, and that the
mappings between application and

implementation schemas use formally-specified,
non-proprietary languages.

3. Multi-Tier schemas are needed, but are
difficult to support. OOA&D promises to
present diverse developers and users with objects
that match their mental concepts. Since the
physical database conforms to a single
implementation schema, one must have
additional tiers of interfaces until one provides
views that match application concepts, as seen by
each user community. We call a structure with
two or more schemas, related by derivation, a
multi-tier schema.

Ideally, these application views would have a full
set of generic methods. To access data, one
would start with GetAttribute and Query.
Beyond these, one wants generic methods for
Update, DefineTrigger, GrantPermission, and
many other tasks. Each of the above methods
must be implemented in terms of methods of
objects at the implementation tier. Worse, as well
known from view update, the mappings tend to
be ambiguous, so a data administrator needs to
select which approach is suitable for each
attribute being mapped [Rose97b]. The scale is
daunting, both for tool vendors (who must
implement the mapping and decision tools for
each generic method) and for administrators,
who must make and maintain the choices.

Object technology does not address the above
difficulties directly, but does ameliorate them.
Type definitions and constraints require fewer
circumlocutions than in relational schemas.
Inheritance and user-defined types aid in reuse.
And the customized semantics, once chosen, can
be implemented as methods. However,
developers' tendency to implement derivationsin
C++ or Java need to be resisted. To permit end-
to-end query optimization and to offer hope of
generating the other methods (e.g., view
updates), the derivations must use a theory-
friendly query language (e.g., OQL, SQL3).

4. Final Comments
In some organizations, data administration

groups have failed to help system developers,
and have therefore been dismantled [Nath97].

The trends discussed here provide new
challenges, but also new opportunities for data
administration to be effective. We end by posing
Some open i ssues:

e We cannot predict which standards will win,
nor exactly how the technologies described
here will be embodied in industrial-strength
products. What can an application
organization do now, preferably with short
term payoffs, to be better prepared for the
future?

* We need to improve or develop theories and
tools that map ancillary operations (e.g.,
define trigger, grant privilege) between tiers.
Also, design tools that operate in the large
(e.g., to select an implementation for an
application schema) create unmanageably
large changes when a system evolves. How
can dight changes at one tier be mapped to
similarly small changes at tiers above or
below?

e How do the trends explored here (e.g., multi-
tier schemas) play against other trends, such
as OO application frameworks, and design
patterns?

References

[CACM97] "Object-Oriented Application
Frameworks', Communications of the ACM,
special section, Oct. 1997.

[Bern97] P. Bernstein et. a., “ The Microsoft
Repository”, Very Large Database Conf.,
Athens, Greece, 1997. For further information,
see http://www.microsoft.com/repository/

[1SO97] International Standards Organiation
(Gilman ed.), “ISO/IEC 11179 - Specification
and Standardization of Data Elements”,
www.|bl.gov/~olken/X 3L 8/drafts/draft.docs.html

[Nath97] M. Nath, personal communication,
describing cuts at his state' s Department of
Natural Resources.

[Rati98] UML Resource Page, Rational
Software,
http://www.rational .com/uml/index.html

[Ros97a] A. Rosenthal, E. Sciore, S. Renner,
“Toward Integrated Metadata for the Department
of Defense”, IEEE Metadata Workshop, Silver
Spring, MD, 1997.
www.lInl.gov/liv_comp/metadata

[Rose97b] A. Rosenthal, P. Dell, “ Propagating
Integrity Information in Multi-Tiered Database
Systems”, Workshop on Information Quality,
Cambridge, MA, 1997.

[Tsic77] D. Tsichritzis, F. Lochovsky, Data Base
Management Systems, Academic Press, 1977.

Acknowledgement
The author received generous help from Leonard

Seligman, Sandra Heiler, Scott Ambler, and
Chris Clifton.

