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1 Introduction

As computational power and storage capacity in-
crease, processing and analyzing large volumes of
data play an increasingly important part in many
domains of scientific research. Typical examples of
large scientific datasets include long running simula-
tions of time-dependent phenomena that periodically
generate snapshots of their state (e.g. hydrodynam-
ics and chemical transport simulation for estimating
pollution impact on water bodies [4, 6, 20], magne-
tohydrodynamics simulation of planetary magneto-
spheres [32], simulation of a flame sweeping through a
volume [28], airplane wake simulations [21]), archives
of raw and processed remote sensing data (e.g.
AVHRR [25], Thematic Mapper [17], MODIS [22]),
and archives of medical images (e.g. confocal light
microscopy, CT imaging, MRI, sonography).

These datasets are usually multi-dimensional. The
data dimensions can be spatial coordinates, time,
or experimental conditions such as temperature, ve-
locity or magnetic field. The importance of such
datasets has been recognized by several database
research groups and vendors, and several systems
have been developed for managing and/or visualiz-
ing them [2, 7, 14, 19, 26, 27, 29, 31].

These systems, however, focus on lineage manage-
ment, retrieval and visualization of multi-dimensional
datasets. They provide little or no support for ana-
lyzing or processing these datasets — the assumption
is that this is too application-specific to warrant com-
mon support. As a result, applications that process
these datasets are usually decoupled from data stor-
age and management, resulting in inefficiency due to

*This research was supported by the National Science
Foundation under Grant #ASC 9318183, ARPA under Grant
#DABT 63-94-C-0049 (Caltech Subcontract #9503), and
the Office of Naval Research under Grant #N6600197C8534.
Anurag Acharya is supported by a grant from the College of
Engineering.

copying and loss of locality. Furthermore, every ap-
plication developer has to implement complex sup-
port for managing and scheduling the processing.

Over the past three years, we have been work-
ing with several scientific research groups to under-
stand the processing requirements for such applica-
tions [1, 5, 6, 10, 18, 23, 24, 28]. Our study of a large
set of applications indicates that the processing for
such datasets is often highly stylized and shares sev-
eral important characteristics. Usually, both the in-
put dataset as well as the result being computed have
underlying multi-dimensional grids, and queries into
the dataset are in the form of ranges within each di-
mension of the grid. The basic processing step usually
consists of transforming individual input items, map-
ping the transformed items to the output grid and
computing output items by aggregating, in some way,
all the transformed input items mapped to the cor-
responding grid point. For example, remote-sensing
earth images are often generated by performing at-
mospheric correction on several days worth of raw
telemetry data, mapping all the data to a latitude-
longitude grid and selecting those measurements that
provide the clearest view.

In this paper, we present 72, a customizable paral-
lel database that integrates storage, retrieval and pro-
cessing of multi-dimensional datasets. T2 provides
support for many operations including index genera-
tion, data retrieval, memory management, scheduling
of processing across a parallel machine and user in-
teraction. It achieves its primary advantage from the
ability to seamlessly integrate data retrieval and pro-
cessing for a wide variety of applications and from
the ability to maintain and process multiple datasets
with different underlying grids. Most other systems
for multi-dimensional data have focused on uniformly
distributed datasets, such as images, maps, and dense
multi-dimensional arrays. Many real datasets, how-
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ever, are non-uniform or unstructured. For example,
satellite data is a two dimensional strip that is em-
bedded in a three dimensional space; water contami-
nation studies use unstructured meshes to selectively
simulate regions and so on. T2 can handle both uni-
form and non-uniform datasets.

T2 has been developed as a set of modular ser-
vices. Since its structure mirrors that of a wide va-
riety of applications, T2 is easy to customize for dif-
ferent types of processing. To build a version of T2
customized for a particular application, a user has to
provide functions to pre-process the input data, map
input data to elements in the output data, and aggre-
gate multiple input data items that map to the same
output element.

T2 presents a uniform interface to the end users
(the clients of the database system). Users specify
the dataset(s) of interest, a region of interest within
the dataset(s), and the desired format and resolution
of the output. In addition, they select the mapping
and aggregation functions to be used. T2 analyzes
the user request, builds a suitable plan to retrieve and
process the datasets, executes the plan and presents
the results in the desired format.

In Section 2 we first present several motivating ap-
plications and illustrate their common structure. Sec-
tion 3 then presents an overview of T2, including its
distinguishing features and a running example. Sec-
tion 4 describes each database service in some de-
tail. An example of how to customize several of the
database services for a particular application is given
in Section 5. T2 is a system in evolution. We con-
clude in Section 6 with a description of the current
status of both the T2 design and the implementation
of various applications with T2.

2 Motivating examples

Satellite data processing: Earth scientists study
the earth by processing remotely-sensed data contin-
uously acquired from satellite-based sensors, since a
significant amount of earth science research is devoted
to developing correlations between sensor radiometry
and various properties of the surface of the earth. A
typical analysis [1, 5, 18] processes satellite data for
ten days to a year and generates one or more com-
posite images of the area under study. Generating a
composite image requires projection of the globe onto
a two dimensional grid; each pixel in the compos-
ite image is computed by selecting the “best” sensor
value that maps to the associated grid point. A va-
riety of projections are used by earth scientists — the
USGS cartographic transformation package supports
24 different projections [33] . An earth scientist spec-

ifies the projection that best suits her needs, maps
the sensor data using the chosen projection, and gen-
erates an image by compositing the projected data.
Sensor values are pre-processed to correct the effects
of various distortions, such as instrument drift, at-
mospheric distortion and topographic effects, before
they are used.

Virtual Microscope and Analysis of Mi-
croscopy Data : The Virtual Microscope [10] is an
application we have developed to support the need
to interactively view and process digitized data aris-
ing from tissue specimens. The Virtual Microscope
provides a realistic digital emulation of a high power
light microscope. The raw data for such a system
can be captured by digitally scanning collections of
full microscope slides under high power. At the basic
level, it can emulate the usual behavior of a physical
microscope including continuously moving the stage
and changing magnification and focus. Used in this
manner, the Virtual Microscope can support com-
pletely digital dynamic telepathology [34]. In addi-
tion, it enables new modes of behavior that cannot be
achieved with a physical microscope, such as simulta-
neous viewing and manipulation of a single slide by
multiple users, and three dimensional image recon-
struction and registration from multiple microscope
slides marked by various special stains.

The digitized image from a slide is effectively a
three dimensional dataset, since each slide can con-
tain multiple focal planes. In the operation of the
virtual microscope, high resolution data is retrieved,
decompressed and projected onto a grid of suitable
resolution (governed by the desired magnification).
A compositing algorithm is applied to all pixels map-
ping onto a single grid point to avoid introducing
spurious artifacts into the displayed image. In the
future, we plan to make use of multi-resolution data
structures to make it possible to acquire and store
data arising from different spatial regions at different
levels of resolution.

Water contamination studies: Environmental
scientists study the water quality of bays and estuar-
ies using long running hydrodynamics and chemical
transport simulations [4, 6, 20]. The hydrodynam-
ics simulation imposes an unstructured grid on the
area of interest and determines circulation patterns
and fluid velocities over time. The chemical transport
simulation models reactions and transport of contam-
inants, using the fluid velocity data generated by the
hydrodynamics simulation. This simulation is per-
formed on a different unstructured spatial grid, and

often uses significantly coarser time steps. This is



achieved by mapping the fluid velocity information
from the circulation grid, averaged over multiple fine-
grain time steps, to the chemical transport grid and
computing smoothed fluid velocities for the points in
the chemical transport grid. As the chemical reac-
tions have little effect on the circulation patterns, the
fluid velocity data can be generated once and used for
many contamination studies.

3 Overview

In this section, we provide an overview of T2. We de-
scribe its distinguishing features and use a database
that generates composite images out of raw satellite
data as an example.

There are four distinguishing features of T2. First,
it is targeted towards multi-dimensional datasets —
the attributes of each dataset form some underlying
multi-dimensional attribute spaces (e.g., spatial co-
ordinates, time, temperature, velocity, etc.). T2 can
simultaneously manage and process multiple datasets
with different attribute spaces and different distribu-
tions of data within each attribute space. For exam-
ple, T2 can manage satellite data at multiple stages
in a processing chain, ranging from the initial raw
data that consists of a two dimensional strip embed-
ded in a three dimensional space to ten day com-
posites that are two dimensional images in a suit-
able map projection to monthly composites that are
360x180 images with one pixel for each longitude-
latitude element. T2 uses multi-dimensional indices
(e.g., R*-trees [3, 13], quad-trees [11]) to manage
these datasets. For a given dataset, a separate index
is created for every attribute space of interest. For
example, the underlying attribute space for AVHRR
satellite data has three axes - latitude (in 1/128th of
a degree), longitude (1/128th of a degree) and time
(in seconds). During processing, this attribute space
i1s mapped to another attribute space, which is a grid
in the Interrupted Goodes Homolosine map projec-
tion [30]. T2 allows users to index this dataset either
on the underlying latitude-longitude-time attribute
space or on the attribute space jointly defined by the
Goodes map projection and time.

Second, T2 leverages commonality in processing re-
quirements to seamlessly integrate data retrieval and
processing for a wide variety of applications. It pro-
vides support for a variety of common operations such
as index generation, data retrieval, memory manage-
ment, scheduling of processing across the parallel ma-
chine and user interaction.

Third, T2 can be customized for a wide variety
of applications without compromising efficiency. To
customize T2, a user has to provide (1) a transforma-
tion function to pre-process individual input items;
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Figure 1: Example of a T2 query for an AVHRR
dataset. The query region is specified in terms of the
attribute space that underlies the AVHRR, dataset.

(2) one or more mapping functions to map from the
input attribute space to the output attribute space
(multiple functions are automatically composed by
T2); and (3) an aggregation function to compute an
output data item given the set of input data items
that map to it.

Fourth, T2 leverages the commonality in the struc-
ture of datasets and processing to present a uniform
interface. A T2 query is specified by the dataset(s)
of interest, a region of interest within the dataset(s),
and the desired format, resolution and destination of
the output. In addition, users select the transforma-
tion, mapping and aggregation functions. The out-
put of a T2 query is also multi-dimensional, and the
attribute space for the output is implicitly specified
by the query. The region of interest can be specified
in terms of any attribute space that the dataset has
an index on. For example, a query to retrieve and
process AVHRR data could specify its region of in-
terest in terms of either the latitude-longitude-time
attribute space that underlies the AVHRR dataset or
the attribute space defined by the Goodes map pro-
jection and time.

Figures 1 and 2 show how T2 is used to generate
an output image from processing raw AVHRR data.
Each data item in the AVHRR dataset is referred to
as an instantaneous field of view (IFOV), and con-
sists of eight attributes — three key attributes that
specify the spatio-temporal coordinates and five data
attributes that contain observations in different parts
of the electromagnetic spectrum. IFOVs from mul-
tiple orbits are stored in T2, although Figure 1 only
shows a strip from one orbit.
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Figure 2: The output of a query into an AVHRR
dataset is an image in the Goodes map projection. A
transformation function is applied to each IFOV for
correction, but is not shown.

A query consists of a query region that contains
the IFOVs of interest, the parameters of the output
image (i.e. grid resolution), references to a trans-
formation function, a mapping function and an ag-
gregation function, and what to do with the output
image (e.g., store on disk, send to another program,
etc.). The query region is specified in terms of the
latitude-longitude-time attribute space, and an R*-
tree indexed over the IFOVs on that attribute space
is used to identify the IFOVs of interest. Each IFOV
selected for the query is pre-processed by the specified
transformation function to correct the effects of var-
ious distortions — instrument drift, atmospheric dis-
tortion and topography. It is then mapped to a pixel
in the output image by the specified mapping func-
tion. Since the query region extends over ten days
and observations from different orbits overlap spa-
tially, multiple IFOVs may map to an output pixel.
The specified aggregation function for an output pixel
selects the “best” corrected IFOV that maps to the
output pixel, based on a measure of the clarity of the
sensor readings. Figure 2 illustrates these operations.

4 System Architecture

T2 has been developed as a set of modular services,
as shown in Figure 3. Some of the functions provided
by these services, such as the indexing service, corre-
spond directly to those provided by object-relational
database systems; other functions are provided to
support the stylized processing required by our tar-
get applications. While we expect that many appli-
cations will be able to use the services as is, we an-
ticipate that some applications may need to replace
or modify some of the services.
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Figure 3: The architecture of T2.

4.1 The attribute space service

The attribute space service manages the registration
and use of attribute spaces and mapping functions.
Mapping functions are used to either map individual
points between previously registered attribute spaces
or to map points from a registered attribute space
to define a new attribute space. In this section, we
describe how attribute spaces and mapping functions
are specified and maintained.

Multi-dimensional attribute spaces are the central
structures in T2. All other structures and opera-
tions are specified in terms of these attribute spaces.
An attribute space is specified by the number of di-
mensions and the range of values in each dimension.
For user convenience, additional information can be
stored with an attribute space. For example, a name
and the resolution of the values in a dimension can
be specified (e.g. for the latitude-longitude-time at-
tribute space from Section 3, the resolution of the
latitude dimension is 1/128-th of a degree).

T2 supports two kinds of attribute spaces: base and
derived. Base attribute spaces are explicitly specified
by the user and are persistent, so can be identified by
names that are visible to users. A derived attribute
space is specified as a (base attribute space, mapping
function) pair. Logically, a derived space is defined
as the space generated by mapping every point in the
base space using the mapping function.

Mapping functions are specified by the domain and
range attribute spaces and an algorithm for the map-
ping between them. Currently, mapping functions are
statically linked; we plan to provide dynamic linking
in the near future.



4.2 The data loading service

The data loading service manages the process of load-
ing new datasets into T2. To load a new dataset into
T2, a user has to specify the format, location and
metadata for the dataset and the data loading ser-
vice takes care of loading the dataset and integrating
it into the database.

T2 expects incoming datasets to be partitioned into
chunks, each chunk consisting of one or more data
items. T2 allows users to pick any chunk size (all
chunks do not have to be the same size); users should
pick chunk sizes that allow for efficient retrieval from
disk, because chunks are the unit of disk retrieval in
T2 (for the IBM Starfire disks that our T2 prototypes
run on, we pick chunk sizes greater than 128 KB). The
format of the dataset is specified by: (1) the name of
a base attribute space that underlies the dataset (we
call this the native attribute space of the dataset); (2)
the size of each chunk in the dataset; (3) the num-
ber of chunks in the dataset; (4) an iterator function
that iterates over the set of data items in a single
chunk; and (5) and an access function that given a
data item, returns its coordinates in the underlying
attribute space.

The metadata for the dataset consists of place-
ment information. T2 assumes that a disk farm is
attached to the processors and placement informa-
tion is needed to determine the data layout. There
are two components of the placement information,
both of which are optional. The first is a list of mine-
mum bounding rectangles (mbr) for each chunk being
loaded. An mbr for a chunk 1s a specification of the
extent of the data items in the chunk in the attribute
space. If the mbr information is not specified, it is
automatically computed using the iterator and the
access functions. The second is a pair of algorithms
— one to decluster the chunks to individual disks and
the other to cluster them on individual disks. Each
algorithm is specified by name. As for mapping func-
tions, T2 currently supports only static linking. By
default, T2 uses the minimaz algorithm [23, 24] for
declustering and the Short Spanning Path (SSP) al-
gorithm [9] for clustering. In addition, T2 allows the
data layout to be separately computed and provided
in a file. This would be useful if the algorithms used
to compute the placements were embedded in some
other application that could not be structured to fit
T2’s interface requirements.

Once the data layout is specified, the service com-
putes an efficient schedule for moving the chunks to
their destinations and executes the schedule.

4.3 The indexing service

The indexing service creates an index for a given
(dataset, attribute space) pair. An attribute space
can be used for indexing a dataset if and only if it
is either the native attribute space of the dataset or
the target of a chain of mapping functions that maps
the native attribute space to the new attribute space.
T2 allows users to optionally specify an indexing al-
gorithm; by default it uses a variant of R*-trees.

An index can be created at any time, although it is
expected that most indices will be created as a part
of the data loading operation. To create an index,
the indexing service uses information about the mbr
for each chunk in the dataset and about the physical
location of each chunk on disk. It obtains this in-
formation from the data loading service. For derived
attribute spaces, the indexing service uses the associ-
ated mapping function to first map the mbr for each
chunk into the derived attribute space.!

4.4 The data aggregation service

The data aggregation service manages the user-
provided functions to be used in aggregation oper-
ations. It manages the namespace of these functions
and performs type checking both when the functions
are registered (as a part of customization) and when
they are used in response to a query. This service
manages two kinds of functions: transformation func-
tions and aggregation functions, as described in Sec-
tion 3. Transformation functions are used to pre-
process data items before aggregation. Aggregation
functions are assumed to be commutative and asso-
ciative and can be applied to individual data items
in parallel and in any order. T2 is able to deal with
both distributive and algebraic aggregation functions
as defined by Gray et. al [12].

Functions are specified by a (function name, ob-
ject file name) pair. The query interface service uses
namespace information from the data aggregation
service to allow the user to find the set of transfor-
mation functions and aggregation functions that can
be applied to a given dataset.

4.5 The query interface service

The query interface service has two functions. First,
it allows clients to find out what datasets are available
and what functions and indices are associated with
each dataset. Second, 1t allows clients to formulate
and present valid queries.

As a part of the first function, the query interface
service allows clients to browse all the namespaces

1Recall that a derived attribute space is specified as a (base
attribute space, mapping function) pair.



in T2: (1) attribute spaces, (2) datasets, (3) indices,
(4) placement algorithms, (5) mapping functions, (6)
transformation functions, and (7) aggregation func-
tions. As a part of the second function, it ensures
that for each query: (1) the domain of the transfor-
mation function selected is the same as that of the
input dataset (i.e. the types are the same); (2) the
range of the transformation function has the same
type as the domain of the aggregation function; and
(3) the chain of mapping functions is consistent (that
is, all the types and shapes match) and the input at-
tribute space of the first mapping function matches
the native attribute space of the dataset selected.

4.6 The query planning service

To be able to efficiently integrate data retrieval and
processing on a parallel machine, T2 manages the
allocation and scheduling of all resources, includ-
ing processor, memory, disk bandwidth and network
bandwidth. The task of the query planning service
is to determine a schedule for the use of these re-
sources to satisfy a query. Given the stylized nature
of the computations supported by T2, use of several
of these resources is not independent (e.g., it is not
possible to use disk bandwidth without having mem-
ory to store the data being transferred from disk). In
addition, the associative and commutative nature of
the aggregation operations must be leveraged to form
loosely synchronized schedules — the schedules for in-
dividual processors need not proceed in lock-step and
only need to synchronize infrequently.

The input to the T2 query planning service consists
of: (1) the list of chunks that need to be processed,
their location on disk and the region of the output
attribute space that each of them maps to; (2) the
dependencies between chunks — dependencies occur
when multiple datasets are being processed simulta-
neously; (3) a description of the output dataset, in-
cluding the underlying attribute space and the size of
each output data item; and (4) the amount of mem-
ory available on each processor. The output of the
planning service consists of a set of ordered lists of
chunks, one list per disk in the machine configura-
tion. Each list consists of a sequence of sublists sep-
arated by synchronization markers. The operations
in each sublist can be performed in any order; all op-
erations in a sublist must be completed before any
operation in the subsequent sublist can be initiated.
This restriction is enforced to ensure schedulability.

We now briefly describe how these resources are
taken into consideration during the planning, assum-
ing a shared-nothing database architecture.

Load balancing: the query planning service consid-

ers two classes of load balancing. The first class, re-
ferred to as input partitioning, requires each processor
to generate an independent intermediate result based
on the chunks that are stored on its disks. These in-
termediate results are merged in a second phase to
obtain the final output. This yields correct results
due to the order-independent nature of the process-
ing. The second class, referred to as output partition-
ing, partitions the final output; the data needed to
compute the portion of the output assigned to a pro-
cessor 1s forwarded to it by all the other processors in
the machine configuration. The choice between these
approaches 1s based on several factors, including the
distribution of the data in the output attribute space,
the placement of the input data chunks needed to an-
swer the query on disk, and the machine characteris-
tics (i.e. the relative costs of computation, interpro-
cessor communication and disk accesses).

Memory: T2 uses memory for three purposes — to
hold the data read from disk or received from the
network, to hold the intermediate results for the ag-
gregation operation and to hold the final output. If
enough memory is available for all three purposes,
operations for all chunks in a sublist are scheduled to-
gether. Otherwise, memory is first allocated to hold
the incoming input data and the remaining memory
is partitioned between the other two uses. Each sub-
list, then, is processed in a sequence of iterations —
each iteration being scheduled such that all data for
the iteration fits into memory.

4.7 The query execution service

The query execution service manages all the resources
in the system using the schedule created by the plan-
ning service. The primary feature of the T2 query ex-
ecution service is its ability to integrate data retrieval
and processing. It achieves this in three ways. First,
it creates a query environment containing the set of
functions that capture application-specific aspects of
the processing. The query environment includes: (1)
the access functions for individual data items; (2) the
iterator to iterate over the data items in a chunk; (3)
the transformation function; (4) the sequence of map-
ping functions that are applied to map each data item
to the corresponding result data item; and (5) the ag-
gregation functions needed to compute the output. In
effect, explicitly maintaining this environment allows
the query execution service to push processing oper-
ations into the storage manager and allows them to
be performed directly on the buffer used to hold data
arriving from disk. This avoids one or more levels of
copying that would be needed in a layered architec-
ture, where the storage manager and the processing



belonged to different layers.

Second, this service overlaps the disk operations,
network operations and the actual processing as much
as possible. It does this by maintaining explicit
queues for each kind of operation (data retrieval, mes-
sage sends and receives, processing) and switches be-
tween them as required.

Third, it maximizes the utility of each disk retrieval
by performing all processing for a data chunk while
the chunk 1s in memory. As a result, a data chunk has
to be retrieved only once. This is similar to the strip-
mining and/or blocking operations performed for op-
timizing cache usage for matrix operations [8, 16].

The query execution service performs two kinds of
synchronization. First, it enforces the synchroniza-
tion indicated by the markers in the list of chunks
retrieved from every disk (computed by the planning
service). That is, the operations between a pair of
markers can be performed in any order; all opera-
tions before a marker must be completed before any
operation after the marker can be initiated. This re-
striction is used to avoid deadlocks.

The second type of synchronization attempts to
preserve load balance by reordering operations. If
a particular processor is unable to keep up with its
peers, the other processors reorder their operations
to reduce the amount of data that is sent to that pro-
This mechanism can be used only between
synchronization markers.

CESsOor.

Assuming a shared-nothing architecture, for each
iteration specified by the query plan, the query exe-
cution service goes through three phases: (1) memory
allocation and initialization for intermediate and fi-
nal results; (2) retrieval and processing of data; and
(3) dispatching of the intermediate results — either to
disk for use in a later iteration, or to another pro-
cessor for further processing. The second phase con-
sists of two sub-phases — a local reduction phase and
a global combine phase. During the local reduction
phase, chunks are retrieved and forwarded to wher-
ever they should be processed, as specified by the
query plan. Appropriate functions are invoked when-
ever a chunk arrives, either from the local disks or
from the network interface. These functions iterate
through the data items in a chunk, apply the trans-
formation function to each data item, map the trans-
formed data item to an intermediate result item using
the mapping function, and finally aggregate the data
items that map to each result item. After all chunks
for an iteration have been retrieved and processed,
the global combine phase is performed to aggregate
the intermediate results.

Once all the chunks for the entire query plan have

been processed, the final output dataset is computed
from the intermediate results and sent to the desti-
nation specified by the query.

5 Customization example:

AVHRR database

In this section, we illustrate customization in more
detail using the AVHRR satellite database described
in Section 3 as an example. This example is loosely
based on Titan [5], a prototype data server capable
of producing composite images out of raw remotely-
sensed data.

The AVHRR dataset is partitioned into IFOV
chunks based on the geometry of the IFOVs and the
performance characteristics of the disks used to store
the data. On the machine used for Titan, one reason-
able partitioning creates chunks of 204x204 TFOVs —
the size of each chunk is 187 KB. The format of the
chunk is specified using an iterator that understands
the multi-spectral nature of the values.

The three dimensional latitude-longitude-time at-
tribute space that underlies the IFOVs is registered
as a base attribute space with the attribute space
service. An access function is used to extract the
coordinate attributes from an IFOV, and the coor-
dinates of the four corner IFOVs are used to com-
pute for each chunk a minimum bounding rectangle
in the latitude-longitude-time attribute space. The
default T2 declustering and clustering algorithms de-
scribed in Section 4.2 can be used to assign disk lo-
cations for the IFOV chunks. The data loading ser-
vice then records all the relevant information about
the AVHRR dataset, and moves the TFOV chunks
to their assigned disk locations. A simplified R*-tree
suffices for indexing this dataset, and uses the spatio-
temporal bounds of the IFOV chunks as access keys.
The spatio-temporal bounds are specified as a region
in the latitude-longitude-time attribute space. The
R*-tree shown in Figure 1 actually indexes over the
IFOV chunks, not the individual IFOVs.

Since the standard AVHRR data product is pre-
sented in the Goodes map projection, a three di-
mensional attribute space jointly defined by the
Goodes map projection and time is registered with
the attribute space service as another base attribute
space, and a mapping function is defined accordingly
to map points from the latitude-longitude-time at-
tribute space to this attribute space. This allows the
indexing service to map the mbr of each IFOV chunk
from the latitude-longitude-time attribute space to
the Goodes-time attribute space, and build an in-
dex for the AVHRR dataset on the Goodes-time at-
tribute space. With this additional index, a query



region then can be specified in terms of the Goodes
map projection. A two dimensional spatial attribute
space can be derived from either of the three dimen-
sional spatio-temporal attribute spaces, with a map-
ping function that discards the temporal coordinate.
This derived spatial attribute space is used for the
standard AVHRR data product.

As described in Section 3, the transformation func-
tion registered with the data aggregation service per-
forms a sequence of corrections to each IFOV. In
addition, it also computes the Normalized Difference
Vegetation Index (NDVI) [15] for each TFOV, us-
ing corrected values from the first two bands of each
IFOV. A registered aggregation function selects the
NDVI value with the “best” IFOV among all IFOVs
that map to asingle output pixel, based on the clarity
of the TFOV and the angular position of the satellite
when the observation was made.

A typical query specifies an area of interest, usually
corresponding to a geo-political area of world, and a
temporal bound, which gets translated into a query
region in either of the two base attribute spaces. The
query would choose the AVHRR-correction/NDVI-
generation algorithm as the transformation function,
and the previously described NDVI aggregation al-
gorithm as the aggregation function. The query also
specifies the desired resolution of and where to send
the output image (e.g., to disk or to another process-
ing program). The query interface service validates
the received query, and the query planning service
generates an efficient schedule by taking into account
the available machine resources. The query execu-
tion service carries out data retrieval and processing
according to the generated schedule, and sends the
output image to the destination.

6 Current Status and Future
Work

We have presented T2, a customizable parallel
database that integrates storage, retrieval and pro-
cessing of multi-dimensional datasets. We have de-
scribed the various services provided by T2, and fur-
ther shown how several of those services can be cus-
tomized for a particular application. In particular,
we have shown how an AVHRR database, based on
an existing system for handling raw remotely-sensed
AVHRR satellite data, can be implemented using the
services provided by T2.

We are currently in the process of implementing
the various T2 services, and are designing the plan-
ning algorithm and cost models for the query plan-
ning service. We are also working on generalizing the

design of the various services to handle multiple si-
multaneous queries. In addition, we are beginning to
implement Titan, the Virtual Microscope, and a sys-
tem for storing hydrodynamics simulation results for
environmental studies using T2.
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