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Abstract

Data mining is the discovery of previously un-
known, potentially useful and hidden knowledge in
databases. In this paper, we concentrate on the dis-
covery of association rules. Many algorithms have
been proposed to find association rules in databases
with binary attributes. We introduce the fuzzy as-
sociation rules of the form, 'If X 1s A then Y is B’,
to deal with quantitative attributes. X, Y are set of
attributes and A, B are fuzzy sets which describe X
and Y respectively. Using the fuzzy set concept, the
discovered rules are more understandable to human.
Moreover, fuzzy sets handle numerical values better
than existing methods because fuzzy sets soften the
effect of sharp boundaries.

1 Introduction

During the past years, boolean association rule min-
ing has received considerable attention. Boolean as-
sociation rule mining tries to find consumer behav-
ior in retail data. The discovered rule can tell, for
example, people buy butter and milk will also buy
bread. Such rules can be used in customizing mar-
keting program, advertisement and sales promotion.
However, binary association rule mining restricts the
application area to binary one.

Recently, people are interested in quantitative at-
tributes. In [12], mining quantitative association
rules has been proposed. The algorithm finds the as-
sociation rules by partitioning the attribute domain
and combining adjacent partitions, then transforms
the problem into binary one. Although this method
can solve problems introduced by infinite domain, it
causes the sharp boundary problem. We either ig-
nore or overemphasize the elements near the bound-
aries in the mining process.

In this paper, we propose an algorithm for mining
fuzzy association rule of the form, If X is A then
Y is B. X, Y are attributes and A, B are fuzzy

sets which characterize X and Y respectively. The
Fuzzy set concept is better than the partition method
because fuzzy sets provide a smooth transition be-
tween member and non-member of a set. Because of
the smooth transition, there are fewer boundary ele-
ments being excluded. Moreover, the fuzzy associa-
tion rule is more understandable because of linguistic
terms associated with fuzzy sets.

This paper is organized as follows. In the follow-
ing section, we will describe different ways to han-
dle quantitative attributes. We will give definition
of fuzzy association rules and interest measures of
itemsets and rules in section 3. In section 4, the ex-
perimental results will be given. We will give a brief
conclusion in section 5.

2 Quantitative Attributes

In [1, 2, 10, 5, 11], algorithms to find binary asso-
ciation rules in large databases have been proposed.
However, a database may also contain quantitative
attributes, e.g.
tributes. Since we cannot directly apply the binary
algorithms, we either have to transform the quanti-

integer, categorical, numerical at-

tative problem into binary one or to find new algo-
rithms.

In figure 1, the discrete interval method [12] di-
vides the attribute domain into discrete intervals.
Each element will contribute weight to its own in-
terval. We can use the weights to estimate the im-
portance of an interval. However, we may miss some
interesting intervals because of excluding some po-
tential elements near the sharp boundaries.

The effect of sharp boundary is shown in figure 1.
The first graph is the data distribution of age. The
attribute domain has been partitioned into 5 inter-
vals. Suppose the intervals, 10 to 20, 20 to 30 and
30 to 40, only have 20% support and the minimum
support is 25%. In this case, all these intervals will
not have enough support. However, the interval, 20
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Figure 1: Discrete Intervals.

to 30, should be interesting if we consider the values
near both sides.

Another attribute partitioning method [12] is to
divide attribute domain into overlapped regions and
is shown in figure 2. In the second graph, we can see
that the boundaries of intervals are overlapped with
each other. As a result, the elements located near
the boundary will contribute to more than one inter-
val such that some intervals may become interesting
in this case. It is, however, not reasonable for an
element near the boundaries to contribute the same
as those located within an interval. This will surely
overemphasize the importance of an interval.
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Figure 2: Overlapped Intervals.

The above attribute partitioning methods are sub-
ject to the effect of sharp boundaries because of the
classical set theory. In the fuzzy set theory, however,
an element can belong to a set with set membership
value in [0,1]. This value is assigned by the mem-
bership function associated with each fuzzy set. For
attribute = and its domain D, , the mapping of the
membership function is my, (z) : Dy — [0, 1].

Fuzzy set provides a smooth change between the
boundary and the effect is shown in figure 3. The sec-
ond graph shows the curve of a traditional fuzzy set.
In the third graph, we can see that the values located
outside the interval have been considered. Therefore,
the sharp boundary problem has been tackled. More-
over, the contribution of a value has been restricted

by the membership function as illustrated in figure 3.
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Figure 3: Fuzzy Set.
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3 Problem Definition

Mining fuzzy association rule is the discovery of as-
sociation rules using fuzzy set concepts such that the
quantitative attributes can be handled. In this sec-
tion, we will give the definition of fuzzy association
rule first. Then we will discuss the interest measures
of itemsets and the rules.

3.1

Let T' = {t1, ta, ..., t,} be the database and ¢; rep-
resents the % tuple in 7. Moreover, we use I = {iy,
i9, ..., im  to represent all attributes appeared in T
and ¢; represents the 4t attribute. Since I contains
set of items, we call I an itemset which appeared in
existing papers. Table 1 i1s a sample database with
quantitative attributes.

Fuzzy association rule

Retired | Children | Salary
Yes 2 0
No 3 15000
No 0 10000
No 1 20000
Yes 2 0

Table 1: A Sample Database.

We have T' = {t1, t2, 3, t4, {5} and I = {Retired,
Children, Salary}. We can retrieve the value of at-
tribute 4 in the j record simply by ¢;[is]. For
example, if we want to know the value of Salary of
the forth record, we can use t4[Salary] and get the
value 20000.

Besides, each attribute i will associate with sev-
eral fuzzy sets. We use F;, = { Z»lk, Z»Zk, . lek}
to represent set of fuzzy sets associated with ¢; and



i'jk represents the j* fuzzy set in Fj,. For ex-
ample, if the attribute Salary has three fuzzy sets:
high, medium and low, we will have Fgq1qry = {high,
medium, low}. The fuzzy sets and the correspond-
ing membership functions are provided by domain
experts.

Given a database T with attributes I and those
fuzzy sets associated with attributes in I, we want to
find out some interesting, potentially useful regulari-
ties in a guided way. Our proposed fuzzy association
rule 1s in the following form:

If X is A then Y 1s B.

In the above rule, X = {1, 2, ..., 2zp} and ¥ = {y1,
Y2, ..., Yg I are itemsets. X and Y are subsets of I
and they are disjoint which means that they share no
common attributes. A = {fs,, fe,, ..., fz, } and B =
{fy» fyor s fy,} contain the fuzzy sets associated
with the corresponding attributes in X and Y. For
example, an attribute x; in X will have a fuzzy set
Sz, 1n A such that f;, € Fy, is satisfied.

The first part of the rule X is A’ is called the
antecedent and Y is B’ is called the consequent of
the rule. The semantics of the rule 1s when *X is A’ is
satisfied, we can imply that Y is B’ is also satisfied.
Here, satisfied means there are sufficient amount of
records which contribute their votes to the attribute-
fuzzy set pairs and the sum of these votes is greater
than a user specified threshold.

If a rule is interesting, it should have enough sig-
nificance and a high certainty factor. We use signif-
icance and a certainty factor to determine the satis-
fiability of itemsets and rules.

3.2 Significance factor

To generate fuzzy association rule, we have first to
find out all large k-itemsets which are itemsets with
significance higher than a user specified threshold.
The significance factor is calculated by first summing
all votes of each record with respect to the speci-
fied 1itemset, then dividing it by the total number of
records. Each record contributes a vote which falls
in [0,1]. Therefore, a significance factor reflects not
only number of records supporting the itemset, but
also their degree of support. We use the following
formula to calculate the significance factor of (X, A),

le. S(X,A) .

Sum of votes satisfying (X, A)

Siani fi .
tgnificance Number of records in T

Zt,eT Ha:j ex{o‘aj (tilz;])}
total(T')

Six,ay =

where

o meeattln)) ifma, > e,
ozaj(t,[x]]) - {0 otherwise.

In the above equation, (X, A) represents the
itemset-fuzzy set pair, where X is set of attributes z;
and A is the set of fuzzy sets a;. A record satisfies
(X, A) means that the vote of the record is greater
than zero. The vote of a record is calculated by the
membership grade of each z; in that record. The
membership grade should not be less than the user
specified threshold w such that low membership val-
ues will not be considered. We use ¢;[z;] to obtain
the value of z; in the it? records, then transform
the value into membership grade by mqg,ea (ti[2;])
which is the membership function of z;. After ob-
taining all membership grades of each z; in a record,
we use v my.eal(t;[z;])} to calculate the vote
of ;. Agt[exrj Esﬁilmlileg ép [tlfg)\];otes of all records, we
divide the value by the total number of records.

In fact, we can use operators other than [] (mul),
e.g. min, maz, but mul gives the simplest and reason-
able results. It takes the membership of all attributes
of an itemset into account. Table 2 illustrates why
we use mul.

Max  Min Mul

0.9 0.2 0 0.9 0 0
0.9 09 0.2 0.9 0.2 0.162
0.3 03 0.2 0.3 0.2 0.018

Table 2: The Effect Of Functions.

(Salary, high) | (Balance,low)
0.9 0.2
0.2 0.7
0.5 0.4
0.3 0.7
0.6 0.3

Table 3: Database Containing Membership.

We use an example to illustrate the computation
of the significance factor. Let X = {Salary, Balance}
and A = {high,low} and a part of database shown in
table 3. The significance of (X, A) is as follows.

(0.184+0.14 + 0.2 + 0.21 + 0.18)/5
0.182

S(x,A)



3.3 Certainty factor

We use the discovered large itemsels to generate all
possible rules. The criteria for a rule to be interesting
1s called certainty factor. If the union of antecedent
and consequent has enough significance and the rule
has sufficient certainty, this rule will be considered
as interesting. There are two ways to calculate the
certainty factor.

Using significance

When we obtain a large itemset (Z,C), we want to
generate fuzzy association rules of the form, 'If X
i1s A then YV 1s B, where X C 7, Y = 7 — X,
A C C and B = C'— A. Having the large itemset,
we know 1its significance as well as the fact that all
of its subsets will be also large. We can calculate the
certainty factor as follows.

Significance of (Z,C)
Significance of (X, A)

Zt,eT szez{ack (tilzx])}
Zt,eT Hmjex{aaj (ti[z;])}

Certainty =

C(x,a),(v,B))

where

, _ me,eo(tilzx]) if me, > w,
ac(tilz]) = { 0 otherwise.

Z=XUY,C=AUB

Since the significance factor of an itemset is the
measure of the degree of support given by records,
we use significance to help us estimate the interest-
ingness of the generated fuzzy association rules. In
the above equation, we divide the significance of
(Z,C) by significance of (X, A). The certainty re-
flects fraction of votes support (X, A) will also sup-
port (Z,C). We will use the information in table 3 to
illustrate the calculation of certainty factor. Given
the rule, ’If Salary is high then Balance is low.’; 1.e.
X = {Sdlary}, A = {high}, Y = {Balance} and B =

{low}, the certainty is as follows.

0.184+0.14+0.24+0.214+0.18

09+02+05403406
= 0.364

C(x,a),(v,B))

Using correlation

Another way to calculate the certainty factor of a rule
is to compute the correlation of (X, A) and (Y, B).
In this paper, the correlation, which is different from
statistics, is called XYCorrelation. The calculation
of expectation of the antecedent is similar to statis-
tics except that we have to take the user specified
membership w into account. The vote of record will

be zero if the membership grade of (X, A) in that
record is less than w. However, the vote of conse-
quent will also be zero if the vote of the antecedent
is less than w. The following equation is used for

computing the certainty.

XY Correlation of (X, A) and (Y, B)
Cou(X,Y)
Var(X) X Var(Y)

Certainty =

Cux,a(v,By) =

where
Cov(X,Y) = E[Z C)] - E[(X,A)] x E'[(Y,B)]
Z=XUY,C=AUB
Var(X) = BI(X,4)%] - B(X, AP
Var(Y) = E'[(Y.B)?) - E'[(Y, B)P
aq.(ti|lx
pry - ZuerTlyex (o wle)

total(T)
[ maseatile)
0

if mg. > w,
vay(tle))) = @ 2

otherwise.
, > Bt
BB = SR
o i if v> w,
ol = {(IJ_[MGY{ o)) otZe;Wise.

v= ] {ae, iz}

.erX

In data mining, an association rule X — Y usu-
ally means X implies Y and we cannot assume Y also
implies X because of the data distribution of X and
Y. Therefore, we change the calculation of expec-
tation such that we can accommodate the meaning
of fuzzy association rules. In the above equations,
we can see that the calculation of E[(X, A)] is sim-
ilar to an ordinary expectation except it has taken
the membership threshold w into account. E'[(Y, B)]
calculates the expectation of the consequent. If the
product of membership grades of the antecedent of
a record is less than w, the vote of the consequent of
that record will be zero.

The value of the certainty is ranging from -1 to
1. Only positive value tells that the antecedent and
consequent are related. The higher the value is, the
more related they are. Therefore, if the rule ’If X
is A then Y i1s B.” holds, the certainty of this rule
should be at least greater than zero.

Given the database in table 3, we can calculate
the certainty factor of the rule, ’If Salary is high then
Balance is low.” as follows.

0.182 — 0.23

1/0.06 x 0.0424

= —-0.96

Cx,A),(v,BY)



4 Experimental Results

In this section, we will examine the accuracy and per-
formance of discrete interval method and the meth-
ods proposed in this paper. We will describe the
parameter settings and the results of different meth-

ods.

4.1 Experiment One

In this experiment, we use two attributes to illustrate
how the fuzzy set concept can solve the problem of
sharp boundary. We assume that there are three
intervals/fuzzy sets for each attribute.

Attribute B

22 24 26 28 3
x10"

1 12 14 16 18 2
Attribute A

Figure 4: Data of Experiment One.

In figure 4, the horizontal axis represents attribute
A and the vertical axis represents attribute B. We
generate the database such that records are clustered
in the inner box.

S =0.25
Methods C | L | R
Discretel 15 | 6 0
Discrete2 3 3 2
Significance | 7 3 2
Correlation 7 3 2

Table 4: Result Of Experiment One.

In table 4, S is the significance factor and C', L,
R are numbers of candidate itemsets, large itemsets
and rules. The confidence and certainty have been
set to 50%. Moreover, we have set the user specified
membership threshold to 0.6. Discrete! uses the in-
ner box as the interesting region and Discrete2 uses
the outer box.

We can see that all methods discover similar re-
sults except that Discretel cannot find rules. There-
fore, Discrete2 uses large region in order to find the
missing rules. However, the region is so large that
the semantics of the rules become meaningless. On
the contrary, the fuzzy sets have not overemphasized
the sparse elements but still give similar results.

4.2 Experiment Two

We assume there is a relation between the working
hour and the GPA of a student. The relation of the
two attributes is shown in figure 5(a). The meaning
of the relation is that the GPA of a student will be
high if he works hard. Otherwise, he will get low
GPA. The data are generated according to the rela-
tion curve in figure 5(a). In figure 5(b), we can see
the data distribution of the two attributes.

(a) The Relation. (b) The Database.

Figure 5: Data of Experiment Two.

The two attributes, Hour and GPA, have three
intervals/fuzzy sets such that the plane of Hour and
GPA is divided into nine regions. In figure 5(b), we
can see that at least four areas are heavily shaded
which means that several rules should exist in the
database. The results in table 5 are quite similar to
those of experiment one. The significance factor has
been set to 0.2 and 0.25 and the certainty factor is
50%.

S =0.2 S = 0.25
Methods C L R C L | R
Discrete 15 2 15 6 0
Significance | 15 5 15 | 10 | 5
Correlation 15 10 | 15 | 10 | 8

Table 5: Result Of Experiment Two.

In this experiment, we can see that the method us-
ing correlation to calculate certainty factor gives the
highest number of expected interesting rules. The
discrete interval method again find fewest rules than
our methods.

4.3 Experiment Three

In this experiment, we will give the experimental
results on the performance of the three methods.
There are three attributes in the database. Each
attribute has three intervals/fuzzy sets. We have
set the user specified parameters such that all three
methods will give same number of rules. We have



run the programs with database size ranging from
5000 to 100000 records. Figure 6, shows the execu-
tion time of the three methods.

Execution Time(sec)

) e

Figure 6: Result of Experiment Three.

In figure 6, the execution of all methods grow lin-
early as the number of records increased. In previous
experiments, the method using correlation will give
more rules than others. However, the performance
of this method turns out to be the worst because we
have to scan the database again when we calculate
the certainty factor. The method using significance
give comparable performance with respect to the dis-
crete interval method and 1t finds more relevant rules
than the discrete interval method. Therefore, the
trade-off between significance and correlation meth-
ods is performance and number of rules to be discov-
ered.

5 Conclusion

In this paper, we have proposed a method to han-
dle quantitative attributes. We assign each attribute
with several fuzzy sets which characterize the quan-
titative attribute. Using the fuzzy set concept, we
want to find fuzzy association rule. We have de-
fined the significance factor of itemset, the defini-
tion and certainty factor of fuzzy association rule.
Moreover, we have performed several experiments.
In those experiments, we have shown that our al-
gorithm has solved the problem of sharp boundary.
We have used two methods to measure the certainty
of fuzzy association rules, i.e. significance and cor-
relation. In the experiments, we have found that
the method using significance as certainty will give a
better performance. On the other hand, the method
using correlation as certainty will give more accurate
results.
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