Unbundling Active Functionality

Stella Gatziul, Arne Koschel?, Giinter von Biiltzingsloewen3, Hans Fritschit

1Department of Computer Science, University of Zurich {gatziu, fritsch} @ifi.unizh.ch
2Forschungszentrum Informatik (FZI), Karlsruhe { koschel @fzi.de}
33wiss Bank Corporation, { guenter.von_bueltzingsl oewen@mhs.swissbank.com} T

Abstract New application areas or new technical innova-
tions expect from database management systems more and
more new functionality. However, adding functions to the
DBMS as an integral part of them, tends to create mono-
liths that are difficult to design, implement, validate, main-
tain and adapt. Such monoliths can be avoided if one
configures DBMS according to the actually needed func-
tionality. In order to identify the basic functional compo-
nents for the configuration the current monoliths should
be broken up into smaller units, or in other words they
could be "unbundled". In this paper we apply unbundling
to active database systems. This results in a new form of
active mechanisms where active functionality is no longer
an integral part of the DBMS functionality. This allows the
use of active capabilities with any arbitrary DBMSand in
broader contexts. Furthermore, it allows the adaption of
the active functionality to the application profile. Such as-
pects are crucial for a wide use of active functionality in
real (database or not) applications.

1 Introduction

Active functionality, as it is offered today by active data-
base management systems (active DBMYS), is the ability to
react not only after an explicit request from the application
or the user, but also when a specific situation of interest has
occurred in the DBS or its environment. The basic notion
of active DBMS are Event/Condition/Action-Rules (ECA-
Rules), meaning WHEN a certain event occurs and IF a
given condition holds THEN a certain action is executed.

In order to offer active functionality, new components
(so-called activity components) implementing tasks like
rule management and execution are required in addition to
the known components of aDBMS.

Today, activity components are devel oped for a partic-
ular DBMS. By implementing the activity components as
an integra part of a DBMS, active functionality is rather
tightly coupled to the DBMS behind it. Thus, the active
DBMS becomes part of large monolithic pieces of soft-
ware. Such software is difficult to implement, validate,
maintain and adapt. Even where active DBM Ss have a lay-
ered system architecture with the activity components re-
siding “on top” of a conventiona DBMS the active

T. Thisauthor's work was performed during his stay at FZI Karlsruhe.

functionality remains tightly interconnected and as such
bound to the particular target DBMS.

In either architectural approach, a substantial effort is
required to adopt active functionality for various DBMSs.
It is close to impossible to develop activity mechanisms
that can be ported from one DBMS to the other. Today, few
commercial DBMS offer restricted active mechanisms
while the more expressive ones are only found in research
prototypes.

Moreover, active functionality tightly coupled to a
concrete environment (a particular DBMS environment)
hampers its adaption to changes in the information tech-
nology scenery. Just consider the present change of infor-
mation systems in environments with several (existing and
newly developed) heterogeneous and distributed informa-
tion sources. Active mechanisms, e.g., complex situation
monitoring or cooperation and coordination should take
into account heterogeneity and distribution.

A further weakness of the tightly coupling of active
and conventional database mechanismsis that active func-
tionality is not usable on its own, i.e., without the “added”
DBMS features. However, active functionality is also
needed in applications which require either no database
functionality at all or just some like persistence. Thus, ac-
tive functionality should be offered not only as part of the
functionality of a DBMS, but also as a separate service
which can be combined with other services like a persis-
tence service. In this way, users could develop “lean” solu-
tions without any overhead due to unneeded components.

In this paper, we investigate the provision of active
database mechanisms as an individua service. In other
words, we unbundle active functionality from the DBMS.
Thus, we follow a general direction that database research
is currently about to take, namely to provide individual da-
tabase management services that can be used and com-
bined in avariety of ways and in avariety of environments
[1, 2, 4,11, 24].

We first discuss the advantages of unbundling active
functionality. We then show how the unbundling process
may take place. We start with a domain analysis of active
DBMS-style active functionality. The main task is the
identification of components and the cooperation between
them. This leads to severa (architectural) configurations.
Each of these configurationsis sufficient for one (or maybe

several) specific application categories. It is the job of the
developer to choose just the “right” configuration for his
application, hopefully without incurring much overhead for
not needed components. In this paper we restrict ourselves
to one possible configuration as an example. A number of
several possible architectural configurations, an overview
of problems arising from unbundling the active functional -
ity and first experiences with using unbundling in concrete
projects are discussed in [13].

The rest of this paper is organized as follows: In chap-
ter 2 we discuss the rationale for unbundling in genera
while unbundling in the context of active DBMS is dis-
cussed in chapter 3. The unbundling process and a possible
architecture for unbundled active functionality are de-
scribed in chapter 4 and 5. Chapter 6 concludes the paper.

2 Unbundlingin General

Unbundling is the activity to break up monolithic software
systems into smaller units with a fair degree of autonomy.
Each unit provides a specific service of the software sys-
tem, which should not only be useful in combination with
the further functionality of the system but also separate
from it. In contrast to monolithic systems, the communica-
tion and the cooperation between the units is not hidden
within the system but can clearly be identified from out-
side.

Considering database management systems as a form
of traditionally large and monolithic software system, it
makes sense to build them out from a number of cooperat-
ing components[1, 2, 4, 11, 24].

The major motivation for unbundling DBMS comes
from the ever increasing demands on the functionality of
DBMS because of (new) application areas (like data ware-
housing), new architectural forms (like distribution and
heterogeneity) and technical innovations (like middleware).
If one augments the DBMS as we know them today by the
new functionalities one aobtains ever more unwieldy sys-
tems if the integration is succeeded at all with. Nor are we
sure that the same situation may arise in the future again.
Therefore, unbundling the functions and configuring the
components according to needs into a specifically tailored
system seems the only reasonable answer.

3 Unbundling Active Functionality

One prominent example of new functionality required for
DBMS is the (re)active capability as it is offered today by
active DBMS. Unbundling active functionality from a
DBMS means first to separate the active part from the ac-
tive DBMS and then eventually to break up this active part
into units which provide specific services like:

e the definition of rules: Active DBMS offer constructs
for the definition of ECA-rules, which specify the part
of the application semantics representing the active
behavior. The expressiveness and the variety of the
constructs, especially those used for the specification
of events, is crucial for the wide use of active DBMS.

e the management of rules: Theinformation about rules,
events, conditions and actions is managed by the
DBMS so that it could be accessed efficiently when-
ever necessary.

« the detection of events: One main feature of active
DBMS is the ability to detect efficiently all events re-
quiring areaction.

¢ theexecution of rules: Upon an event detection the ac-
tive DBMS reacts with the execution of a rule. How
this execution takes place is determined by several
predefined or user-defined guidelines which form the
execution strategy of the active DBMS.

Unbundling active functionality from a concrete
DBMS brings a number of new opportunities which are
critical for a wide use of active functionality in real (data-
base or not) applications:

Use of active capabilities with arbitrary DBMS. As
mentioned in the introduction, today, active mechanisms
are always tightly coupled to a specific DBMS. Typicaly,
active functionality is rather restricted and provided only
by few DBMS. There are many applications with active
behavior where a DBMS is used, which fulfills amost al
application requirements (e.g., performance, program-
ming environment), but offers none or restricted active
functionality.

The separation of active mechanisms from the DBMS
isaprimary requisite to implement them as much as possi-
ble independent from a specific DBMS. Indeed there are
many activity components like the event detector for com-
plex events, which are independent from a specific DBMS
and can be used with minor adaptations with arbitrary
DBMS. For a concrete environment, only the DBM S-de-
pendent components (like the detector for database events)
must be implemented. This eases the implementation of
active mechanisms and should contribute to their wider
utilization.

Use of active capabilities in broader contexts separate
from a DBMS. A range of applications like workflow
management, health care monitoring, etc. require active
functionality. However, they do not necessarily require a
whole database functionality but only parts like persis-
tence or query facilities. Unfortunately the tight integra-
tion of active and database mechanisms in one system
forces users to accept the entire database functionality that
comes with the active functionality.

On the other hand, a separation of active and conven-
tional database mechanisms would alow the use of active

capabilities without any overhead due to unneeded compo-
nents.

This fits well into an environment of combinable ser-
vices (like CORBA or OLE/DCOM). These distributed ob-
ject systems specify a set of generic base services for
objects, such as services for persistence, transactions, or
concurrency control. It would only be natural to add to this
infrastructure a higher-level service of active functionality.
Applications could then combine active functionality with
other services.

Use of active functionality in heterogeneous environ-
ments. Today’s, database applications often refer to severa
(existing and newly developed) heterogeneous and distrib-
uted information sources. The need for active functionality
in heterogeneous, distributed environments is obvious in
the area of data warehousing [26] and has a so been report-
edin[5, 19, 23].

The impact of heterogeneity on active DBMS is pri-
marily the richer set of information resources that must be
monitored. This means that relevant information may not
only reside in a database system but also in files, on web
pages, etc. Furthermore, checking complex situations like
an environmental pollution, a business opportunity, or an
emerging traffic congestion usually requires more com-
plex computations than supported by database conditions.
Typicaly, some specific analysis tools have to be invoked.
Thus, such analysis and processing tools may become im-
portant resources as well [5, 6].

Hence, the means of the interaction between a service
offering active functionality and the heterogeneous envi-
ronment (e.g., the information sources) becomes much
more diverse. What is desirable then is a uniform view that
hides the diversity of the cooperation forms and alows to
choose a particular form according to actual needs. This
seems possible after a clear identification and isolation of
the interfaces, which clearly should be the result of unbun-
dling active functionality.

Tailoring active functionality to the application profile.
In the more general environment sketched above active
functionality plays more roles than what has been used in
active DBMS.

Supporting advanced active functionality able to fulfill
the requirements of every application areais not a solution,
because there are many cases where the system is over-
loaded with functionality which is not necessarily needed.
Active mechanisms should be tailored to the application
profile. Consequently, collecting all active functionality
that could conceivably be used by some application into
one system is not the answer. Instead, the unbundling of
active mechanisms from the DBMS should be continued
into the unbundling of these capabilities themselves. For
example, active functionality could be split into separate
functions like composite event detection or rule execution.

This functions can be selected individually and configured
and interconnected independently.

Availability of uniform active functionality. The maor
advantage of separating active functionaity from the
DBMSisitsusein avariety of waysand in avariety of en-
vironments as mentioned above. However, this presumes
that offered active functionality is of general purpose.
More specifically the rule definition language must sub-
sume a mgjor part of the state-of-the-art approaches and
have a clear semantics.

Offering active functionality as a service allows a high
distribution of these genera active mechanisms. Thus, it
aso helpsto overcome the variety of existing rule languag-
eswith different semantics and enables the common use of
standards for active mechanisms.

4 The Unbundling Process

The unbundling process consists of two major steps (a) the
domain analysis where we identify the covered functional-
ity in terms of the services provided and (b) the description
of the unbundled system, based on an architectural model,
in form of a specific architecture [11].

In case of unbundling active functionality the domain
analysis consists of areview of existing work. Thisisfeasi-
ble because after around 10 years of research in active
DBMS the basic concepts and functionalities for active be-
havior and especialy the semantics behind them are well-
understood and established in these systems [8]. This has
recently lead to a consensus on those base concepts, which
spawned several comprehensive overviews on the concepts
and dimensions of active functionality in active DBMS [3,
18, 25].

In order to describe the architecture of an unbundled
system we adopt a rather general architectural model from
[10, 20]. Our architectural model consists of components,
connectors (between components) and a policy restricting
the ways how components and connections can be ar-
ranged/interacted. An architecture of a particular unbun-
died system is then defined by a number of (more or less)
autonomous processing components, so-called services
(or agents), which cooperate with each other. The knowl-
edge about the regulations which govern the cooperative
behavior of the components is captured by connectors.
Connectors provide both, services interconnecting the
components (e.g. object invocation, multicast messaging)
and services for supervision and control of the activities
performed by the components. Of course, unbundling can
proceed recursively, i.e., acomponent or aconnector canin
turn be subdivided into a set of components cooperating
via connectors.

Facilities of a component or possible constraints
which must be fulfilled in a concrete (architectural) config-

uration can be specified with constructs proposed by a
specification model.

5 An Unbundling Step asan Example

Starting from amonolithic active DBM S we show as an ex-
ample a possible unbundling step. In a monolithic active
database environment, the only autonomous components
are a number of clients and the active database manager
(Figure 1)1,

Client A Client B ClientC Client D
DB External External Rule
Acc Event Action Base
Da\e(:tion ExeCUtion M ift aIiOn
Active
Database
Manager

Figure 1: The monolithic active DBMS

Four different connectors regulate the interaction
among these components:

« Database Access. This connector allows clients to es-
tablish a session with the database manager, to start
and end transactions, and to access or modify data
items (e.g. relations, objects) within the database.
Thereby, the database manager synchronizes concur-
rent client accesses. In case of a passive DBMSthisis
the only connector.

* Rule Base Modification. Clients may modify the rule
base e.g., by adding/removing/updating rules.

e External Event Detection and External Action Execu-
tion. To trigger arule, clients (e.g., the system clock or
an application program) may raise events, so-called ex-
ternal or abstract events, indicating some specific oc-
currence of interest. Furthermore, arule may trigger an
action which isto be executed by some client. The pro-
tocols enforced by the external action execution con-
nector depend on the rule execution model.

A first unbundling step is the separation of the active
mechanisms from the DBMS. This enables the use of ac-
tive functionality in different environments, e.g., with vari-
ous existing commercial database systems. From a
software engineering perspective, active capabilities have

t. Architectures consisting of components and connectors can be de-
scribed by means of ER-style diagrams, denoting components as
rectangular boxes and connectors as diamond-shaped relationships.

to be developed only once and can be re-used in different
contexts.

In a second unbundling step we isolate an event ser-
vice and arule service. This allows the flexible configura-
tion of active functionality for specific application profiles.
Active mechanisms are decomposed into two components
which can be selected individually and configured and in-
terconnected independently. For example, in case of event
detection, which is supported by the event service, differ-
ent applications may require different types of primitive
and composite events, different event consumption
modes, and different durations over which events are kept
as a history. In case of rule execution, which is supported
by the rule service, they may demand different execution
guidelines. Furthermore, the event detection and rule exe-
cution can now be used each on their own, independently
from the complete active functionality. For example, we
can provide separate event monitoring and production rule
facilities.

The corresponding architecture isillustrated in Figure
2. Beyond the two components responsible for the two
new services, four new connectors, the Database Event
Detection, the Condition Evaluation, the Action Execution
and the Event Sgnalling are introduced.

Client A ClientC Client D Client B
DB Rule
Base
Ace Modificifion
Passive .
Database Event Service
Manager
Event
Signalling
Rule Service

Database Action
Execution

Figure 2: Offering an event and a rule service

Event Service The Event Service records events, main-
tains a (persistent) event history (which consists of all
event occurrences which have not yet been consumed for a
rule execution or composite event detection) and detects
composite events. It is informed about the occurrence of
primitive events via the event detection connectors. It pro-
vides event information to condition evaluation and action

execution via condition evaluation and action execution
connectors.

Rule Service The Rule Service isresponsible for the main-
tenance of the rule base and implements the rule execution

cycle.

Database Event Detection This connector determines
what kind of events the Passive Database Manager produc-
es and the kinds of events the Event Service subscribes to.
Database events are raised in the context of some database
access. An access may raise several events (e.g., a set-ori-
ented insert raises severa tuple insert events), and one
event may depend on severa accesses (e.g., the net effect
of al updates during a transaction). Depending on the
event semantics and rule execution guidelines, the Data-
base Event Detection connector may enforce that the Event
Service performs certain steps before the Database M anag-
er can proceed with processing the access that raised the
event. The Database Event Detection connector is also in-
voked during rule base modification.

Condition Evaluation and Database Action Execution
In order to evaluate conditions and to execute database ac-
tions, the Event and the Rule Service must cooperate with
the Database Manager. The Rule Service defines, accord-
ing to the rule execution model, the point in time when
evaluation of the database condition has to be initiated and
when an action has to be executed. Since the Database
Manager is responsible for the actual condition evaluation
and action execution, these two connectors require data-
base access capabilities as provided by the DB Access con-
nector. Furthermore, they require a transaction service
allowing database accesses to be performed, e.g., as part of
atransaction performed on behalf of some client. If the Da-
tabase Manager requires that access commands are stati-
cally compiled before they are executed (as opposed to
dynamic invocation), the corresponding compilation isaso
performed via the Condition Evaluation or Database Ac-
tion Execution connector during a rule base modification.

Event Signalling is a connector between Event Service
and Rule Service. The Rule Service subscribes to events
which may trigger a rule. Events are signalled as soon as
they are recorded in the event history.

Furthermore, the Event and the Rule Service may also
make direct use of the DB Access connector in order to
store rules persistently, to search the rule base, and to re-
trieve rules (not shown in the figure).

We briefly illustrate here how the architecture intro-
duced can be extended to cope with distribution and heter-
ogeneity. As mentioned in chapter 3 heterogeneity is
reflected on the interaction between a service offering ac-
tive functionality and the environment (e.g., the informa-
tion sources) which must be considered in a variety of
ways. One typical interaction is the detection of primitive

events. For this, we propose an abstract connector for
primitive event detection which includes (and actually sub-
stitutes) the connectors External Event Detection and Data-
base Event Detection of Figure 2. This connector hides the
fact that several different event sources exist. Thus, the
Event Service now has to issue event subscriptions only to
this one connector. The connector can decide (by means of
an internal component Primitive Event Mediator), which
event source actually needs to be addressed, and issue the
corresponding subscription. Thus, heterogeneity of event
sources is hidden to the subscriber. Details about the ap-
propriate architecture can be found in [13].

6 Conclusions

Degpite their recent progress, active DBMS have rarely be-
come an ingredient of applications. One major reason is
the monolithic nature of existing active DBMS. Active
functionality should be offered as a separate facility which
could be combined with further facilities, e.g., certain
DBMS functions, only to the needed extent. In other
words, active functionality should be usable as just one
component amongst others, but should still rely on the con-
sensus-based functionalities and semantics as contained in
active DBMS. As such it should support heterogeneous
and distributed information systems.

To address these problems, we have discussed in this
paper initial ideas towards a new form of active mecha-
nisms where the active functionality is not a tight part of
the DBMS functiondlity like in current approaches. Un-
bundling isthe activity to break up traditionally monolithic
software systems into smaller units. We apply the unbun-
dling process to active database systems. In this paper, we
presented a possible architecture where active mecha-
nisms are separated from the DBMS and subdivided into
an event service and arule service.

There are several questions arising from the unbun-
dling process and many problems must be solved. The
most important one may be whether active DBMS-style
ECA functionality can “survive’ the whole unbundling
process, giving the full semantics as in traditional active
DBMS. Is an active DBMS the same as a passive DBMS
plus a service offering active functionality? We think that
in the general case thisis not possible, at least not without
maodifications, since unbundling essentially means to give
up the “closed world” assumption which traditionally un-
derliesaDBMS.

Furthermore, much more experience is needed with
the concrete investigation of the development of services
offering active functionality outside the DBMS. Some
work has been done in the FRAMBOI SE project [9] which
proposes a construction system for the development of so-
called ECA-services which are decoupled from a particular

DBMS. [12] proposes TriggerMan, an asynchronous trig-
ger processor which is designed to be able to gather up-
dates from awide variety of sources and to execute triggers
asynchronously. In the C2offein [14] approach, which is an
extension of [5], a widely configurable service set for ac-
tive functionality in CORBA-based heterogeneous, distrib-
uted systems is developed. The system is configurable
with respect to the types and features of supported services,
protocols between services, distribution parameters etc.

Acknowledgments

The work described here has been supported by the ACT-
NET-Network. We thank Peter Lockemann and Klaus Dit-
trich for the careful reading of the paper and the fruitful
comments.

References

1. Database Systems - Breaking Out of the Box. ACM Work-
shop on Strategic Directions in Computing Research, Report
of Database Working Group, June, 1996 (to be published in
ACM Computing Surveys)

2 M. Adler. Emerging Standards for Component Software.
|EEE Computer, March, 1995.

3 The ACT-NET Consortium. The Active Database Manage-
ment System Manifesto: A Rulebase of ADBMS Features.
ACM Sgmod Record, 25:3, September 1996.

4 J. Blakeley. Data Access for The Masses through OLE DB.
Proc. of the Intl. Conf. of the ACM S GMOD, 1996.

5 G. von Biltzingsloewen, A. Koschel, R. Kramer. Active In-
formation Delivery in a CORBA-based Distributed Informa-
tion System. Proc. of the 1st IFCISIntl Conf. on Cooperative
Information Systems. Brussels, June 1996.

6 G. von Biltzingloewen, A. Koschel, R. Kramer. Accept Het-
erogeneity: An Event Monitoring Service for CORBA-based
Heterogeneous Information Systems. Poster in Proc. of the
2nd IFCIS Conf. on Cooperative Information Systems. South
Carolina, USA, June 1997.

7 Computer Corporation of Amerika. An architecture for data-
base management standards. NBS Spec. Pub. 1982.

8 U. Dayal. Ten Years of Activity in Active Database Systems:
What Have We Accomplished? Proc. of the Intl. Workshop in
Active and Real-Time Database Systems, Skévde 1995.

9 H. Fritschi, S. Gatziu, K.R. Dittrich. FRAMBOISE -- An Ap-
proach to Construct Active Database Mechanisms.Technical
Report 97.04, Department of Computer Science, University
of Zurich, April 1997 (http://www.ifi.unizh.ch/dbtg/).

10 D. Garlan, M. Shaw: An Introduction to Software Architec-
ture. Advances in Software Engineering and Knowledge En-
gineering, Vol. 1. V. Ambriola, G. Tortora (eds.), World
Scientific Publishing Company.

11 A. Geppert, K.R. Dittrich. Bundling: A new Construction
Paradigm for Persistent Systems?. Technical Report 97.08
Department of Computer Science, University of Zurich, July
1997.

12 E. Hanson, S. Khosla. An Introduction to the TriggerMan
Asynchronous Trigger Processor. Proc. of the 3rd Int. Work-
shop on Rules in Databases, Skoevde, June 1997.

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

A. Koschdl, S. Gatziu, G. von Biltzingsloewen, H. Fritschi.
Applying the Unbundling Process on Active Database Sys-
tems. Intl. Workshop on Issues and Applications of Data-
base Technology (IADT), Berlin, July 1998 (to be pub-
lished).

A. Koschel, R. Kramer, G. von Bultzingsléwen, T. Bleibel,
P. Krumlinde, S. Schmuck C. Wein. Configurable Active
Functionality for CORBA. ECOOP'97 Workshop "CORBA:
Implementation, Use and Evaluation", Jyvaskul&, Finnland,
June 1997.

P.C. Lockemann, K.R. Dittrich. Architektur von Datenbank-
systemen. In PC. Lockemann, JW. Schmidt (eds) Daten-
bankhandbuch, Springer 1987.

Object Management Group. CORBA services: Common Ob-
ject Services Specification. Object Management Group, Inc.
(OMG), March 1995.

Object Management Group. The Common Object Request
Broker: Architecture and Specification, Version 2.0. Object
Management Group, Inc. (OMG), July 1995.

N.W. Paton, O. Diaz, M.H. Williams, J. Campin, A. Dinn,
A. Jaime. Dimensions of Active Behaviour. Proc. 1st Intl.
Workshop on Rules in Database Systems.Workshops in
Computing, Springer-Verlag, 1994.

N. Pissinou and K. Vanapipat. Active Database Rulesin Dis-
tributed Database Systems. Journal of Computer Systems,
11:1, January 1996.

M. Shaw, R. DeLine, D. V. Klein, T.L. Ross, D.M. Young,
G. Zelesnik. Abstractions for Software Architecture and
Tools to Support Them. IEEE Transactions on Software En-
gineering (TSE), 21:4, April 1995.

R. M. Soley. Object Management Architecture Guide. Ob-
ject Management Group, Inc. (OMG). Revision 1.0, Novem-
ber 1990.

E. Simon, A. Kotz-Dittrich. Active Database Systems. Pro-
mices and Redlities. Proc. 21th Intl. Conf. on Very Large
Data Bases (VLDB), Zurich, Switzerland, September 1995.

SY.W. Su, H. Lam and J. Arroyo-Figueroa, T. Yu and Z.
Yang. An Extensible Knowledge Base Management System
for Supporting Rule-based Interoperability among Hetero-
geneous Systems. Proc. of the Intl. Conf. on Information
and Knowledge, Baltimore, 1995.

D. Vaskevitch. Very Large Databases How Large? How Dif-
ferent? Proc. 21th Intl. Conf. on Very Large Data Bases
(VLDB), Zurich, Switzerland, September 1995.

J. Widom, S. Ceri (eds). Active Database Systems. Triggers
and Rules for Advanced Database Processing. Morgan
Kaufmann Publishers, 1995.

J. Widom. Research Problems in Data Warehousing. Proc.
of the Intl. Conf. on Information and Knowledge, Baltimore,
1995.

G. Zhou and R. Hull and R. King and J. Franchitti. Support-
ing Data Integration and Warehousing Using H20. Data En-
gineering, 18:2, June 1995.

