
Applications of JAVA programming language to database

management

Bradley F. Burton and Victor W. Marek�

Department of Computer Science

University of Kentucky

Lexington, KY 40506-0046

e-mail: fbfburton|marekg@cs.uky.edu

1 Motivation

The Java programming language [1,3] from its in-

ception has been publicized as a web programming

language. Many programmers have developed sim-

ple applications such as games, clocks, news tickers

and stock tickers in order to create informative, in-

novative web sites. However, it is important to note

that the Java programming language possesses much

more capability. The language components and con-

structs originally designed to enhance the functional-

ity of Java as a web-based programming language can

be utilized in a broader extent. Java provides a devel-

oper with the tools allowing for the creation of innova-

tive network, database, and Graphical User Interface

(GUI) applications. In fact, Java and its associated

technologies such as JDBC API [11,5], JDBC drivers

[2,12], threading [10], and AWT provide the program-

mer with the much-needed assistance for the develop-

ment of platform-independent database-independent

interfaces. Thus, it is possible to build a graphical

database interface capable of connecting and query-

ing distributed databases [13,14].

Here are components that are important for build-

ing the database interface we have in mind.

� JDBC { The Java Database Connectivity module

is a standardized database access solution (JDBC

is packaged in Java 1.1 and later versions).

� Java Threads { The Java programming language

is multithreaded language. It provides multi-

ple threads, light-weight quasi-processes, han-

dling di�erent tasks at the same time.

�Corresponding author.

� AWT { The abstract window toolkit provides the

ability to build platform-independent graphical

user interfaces.

The combination of the above technologies provides

the fundamental building blocks that we use to de-

velop a distributed database interface. This pack-

age, Java Distributed Query Dispatcher (Java DQD),

is a platform-independent GUI application capable of

querying multiple heterogeneous databases simultane-

ously. JavaDQD is based upon the following ideas:

1. JavaDQD application establishes database con-

nectivity using JDBC API and drivers. By utilizing

the JDBC API, JavaDQD provides uniform access to

any database providing a JDBC driver. That is, a

user may connect to any database for which a JDBC

driver is provided. For our purposes, we will con-

nect to Sybase and MiniSQL using FastForward and

mSQL-JDBC respectively. The mSQL-JDBC driver,

we use, has been modi�ed to implement the desired

DatabaseMetaData functionality. As other JDBC

drivers are developed and become available, JavaDQD

will allow for their incorporation. Thus, JavaDQD is

an extendable tool for multiple database connectivity.

2. JavaDQD interface uses Java threads to allow

a user to connect to multiple databases simultane-

ously. The user can submit query distributed over

multiple databases; hence, when a user requests data

from multiple sources, a Java thread is started for each

database that needs to be queried. Each thread ac-

cepts a query string, queries a database, and accepts

the result. Thus, many databases can be queried at

virtually the same time.

3. JavaDQD uses the AWT and third party GUI

components in providing the capability to present the



user with a QBE-like interface. The QBE-like inter-

face creates a single virtual environment displaying

database information about all current connections.

In essence, the user bene�ts from a single interface

that can query across multiple databases as if the mul-

tiple databases were one.

Therefore, the technologies typically considered to

enhance Java's web-based ability provide a basis for

constructing a versatile distributed database inter-

face. JavaDQD application utilizes Java's AWT and

third party classes to present to the user a QBE-like

graphical interface to query and manipulate a virtual

database consisting of multiple heterogeneous databa-

ses uni�ed by JDBC and Java threads. The following

sections discuss the implementation methodology and

observed results of JavaDQD.

2 Implementation

The JavaDQD application, that we have developed,

incorporates Java and JDBC to manage distributed

database querying and to provide the user a user-

friendly environment to create distributed queries. We

will mention the key ideas or methodology supporting

the implementation of JavaDQD. Namely, we will ex-

plain the key Java and JDBC concepts used, our pre-

vious work with Java and JDBC, and our distributed

querying approach.

2.1 Methodology, Java and JDBC

The Java Development Kit (version 1.1), released in

the Spring of 1997, was used in the development of

the Java code produced in the project. This version

of the JDK does provide (like the previous version) a

Java interpreter and compiler, but most importantly,

the JDK 1.1 provides the Java Database Connectivity

module called JDBC.

The Java programming language developed by Sun-

Soft is an excellent programming language. The

Java language may be described as relatively simple,

object-oriented, distributed, and portable. However,

one of the more important capabilities provided in the

Java language is its capability of producing platform-

independent programs. The Java language provides

an excellent framework for network-aware programs

that can run on any platform that has a Java inter-

preter. A Java programmay be developed to run as an

applet, a program that is downloaded over the Internet

and run on the client, or as an application, a program

that resides on the client side. In either case, the Java

programmer has the ability using built-in classes and

methods to access and use remote web space data such

as text, images, or sound in their programs. Similar to

the network capabilities just mentioned, the recent ad-

dition of JDBC allows a Java programmer to connect

and query remote databases using an API supplied in

the JDK. Thus, Java can be viewed as an excellent

database programming language because of platform-

independence, network-awareness, and JDBC.

The development and inclusion of JDBC does ex-

tend the Java programming language capability of net-

work programming. JDBC is a package that has been

recently added to the JDK. JDBC o�ers a generic SQL

database framework that de�nes a uniform API for a

variety of data sources. Actually, the JDBC API is

a package of abstract classes that must be de�ned for

speci�c database sources. This implies that JDBC can

be viewed from a high-level abstract view or from a

low-level database speci�c view. A high-level, applica-

tion programmer view of JDBC is an API, called the

JDBC API, that provides methods allowing an appli-

cation to connect, query and manipulate multiple da-

tabases. By contrast, the low-level, database speci�c

view of JDBC interprets it as a package of abstract

classes that must be implemented for speci�c data-

bases. That is, a database speci�c implementation

of the JDBC abstract classes, called a JDBC driver,

must be provided in order for the Java database pro-

grammer to access the database. Once a program-

mer implements a JDBC driver for a particular source,

the driver becomes an abstract SQL engine whose de-

tails are internalized and can be accessed through the

high-level JDBC API. Consequently, a database ap-

plication obtaining database access through the JDBC

API will work with any data source providing a JDBC

driver. For instance, if a programmer developed an ap-

plication powered by the JDBC API, the application

would be able to connect to any data source provid-

ing a JDBC driver, be it Sybase, MiniSQL, or Access.

Thus, JDBC is a powerful, 
exible database connec-

tivity module for the Java programming language.

2.2 Previous Work

Prior to developing JavaDQD, we researched Java

and JDBC in order to develop a platform-

independent database-independent database interface

named JavaQD (Java Query Dispatcher). It is a Java

client-side application that allows a user to query mul-

tiple databases by the way of SQL-like interfaces or

QBE-like interfaces. JavaQD was constructed using



the Java language and established database connec-

tivity using JDBC API and JDBC drivers. Most

importantly, the QBE-like interface utilized JDBC

drivers' capability to probe a database's metadata.

As a result, JavaQD's QBE-like interfaces were built

dynamically re
ecting information about the current

database connection such as the available tables, avail-

able columns, or available data types. Consequently,

JavaQD provided multiple database access and a user-

friendly query interface.

The JavaQD application did demonstrate the abil-

ity to utilize Java and JDBC to build an e�ective user

interface for querying many database engines. How-

ever, JavaQD could only manage one database con-

nection at a time. Similar to our JavaQD, non-Java

systems for querying remote databases have been pro-

posed. In particular, the technique for using URLs of

remote databases for connection has been introduced

by Konopnicki and Shmueli in [7]. Their proposed

interface, just as JavaQD, does not allow for simul-

taneous connection to several remote databases. Our

approach solves this problem. Speci�cally, we realized

JavaQD could be extended to handle multiple simul-

taneous connections; and, therefore, JavaQD could be

migrated to a distributed database interface, which we

call JavaDQD. That is, JavaDQD could query mul-

tiple heterogeneous databases simultaneously. Thus,

the idea for JavaDQD was formed. JavaQD would be

modi�ed to handle distributed databases by utilizing

Java threads and handling pre- and post-processing of

queries.

2.3 Distributed Approach

As stated above, the JavaDQD application was mod-

i�ed from an earlier work JavaQD in order to han-

dle distributed query processing. Primarily, JavaDQD

implements distributed querying through Java threads

and localized pre- and post-processing. We will out-

line the methodology of the distributed querying in

JavaDQD.

1. Pre-process a user's query to create query strings.

Query strings needed to query each of the dis-

tributed databases must be determined. These

query strings will obtain data from multiple da-

tabases that ultimately might be included in the

�nal query result. Similarly, a collection query

string must be constructed to query all the dis-

tributed results.

2. Fork a thread to query each of the distributed da-

tabases that need to be queried. Each thread uses

its given distributed query string to query the ap-

propriate database, gather the result, and then

place the result in a temporary database. The

temporary database is a database used to store

the results of all the databases queried. The

tables within the temporary database will later

be queried using the collection query in order to

obtain the �nal result. Speci�cally, each thread

gathers the result from the distributed query, cre-

ates a table in the temporary database to store

the result, and then, the thread populates or

stores the result in the table. It is important to

realize a thread, by utilizing the ResultSetMeta-

Data methods in order to determine data types

and column sizes for the new table, creates a table

within the temporary database.

3. Wait for each thread to �nish.

4. Query the temporary database with the collection

query. The temporary database is queried and

the result of the query is displayed to the user in

a window.

The distributed query processing is handled inter-

nally by pre- and post- processing. Thus, a user of

JavaDQD is not required to know information about

the individual database connection. The utilization

of the JDBC API and JDBC drivers allows the dis-

tributed nature of queries be transparent to the user.

Consequently, the JavaDQD interface presents a single

virtual database of distributed databases.

Security issues for JavaDQD are handled by the

JDBC driver. Our application calls the JDBC method

getConnection(). This method facilitates the connec-

tion to the remote server. In particular this implies

that the JDBC driver is responsible for a proper han-

dling of security issues. Thus a user must investigate

the security of JDBC drivers called by JavaDQD since

this a�ects the JavaDQD security.

3 User-interface

We have described the methodology of the develop-

ment of JavaDQD. However, now, we will address

JavaDQD from a user's perspective. JavaDQD's user

interface provides a user with the capability to build

distributed queries in a graphical environment orga-

nizing multiple heterogeneous databases as if they are



one. It is important to note that JavaDQD's user-

interface does not require the user to know the schema

of the each connected database; JavaDQD probes each

connected database's metadata in order to determine

knowledge of the database and present the user with

an informative interface. Thus, the user has the abil-

ity to query across multiple databases with the ease

and 
exibility accompanied with querying only one

database. In this section, we will give details of spe-

ci�c elements of the JavaDQD user-interface such as

the connection dialog, create interface, select interface,

and insert interface.

JavaDQD's database connection dialog provides the

user with the ability to connect to local or remote

distributed databases and the ability to connect to

a temporary database. In order to make a database

connection, a user must provide a database URL and,

if necessary, a user name and password. A database

URL speci�es the JDBC driver, the database source,

and the database port. The database URL pictured in

the connection dialog below allows the user to attempt

to make a connection to a miniSQL database server

on the machine, shelley.ca.uky.edu. For instance, the

URL speci�es the miniSQL database server is listening

to port 1114 and the connection should make wxdb

(the current remote database) the working database.

Moreover, the database connection dialog allows the

user to enter a user name and password if required.

For simplicity, the collection of an URL and user name

can be saved in the con�guration �le that is loaded

when JavaDQD is initiated; thus, the user can save

information about frequently accessed databases.

Once a database connection is made, the user can

begin to query the database using dynamically built

QBE interfaces.

The JavaDQD's QBE-like distributed database in-

terface demonstrates a user-friendly interface that uti-

lizes the knowledge of the database schema. The

QBE-like interfaces incorporate the GUI capabilities

of Java and MCT, Microline Component Toolkit, such

as radio buttons, lists, buttons, grids, and scrollbars.

These capabilities are used to construct interfaces de-

rived from the QBE speci�cation proposed by Zloof

[15] and utilized by IBM. Indeed, the GUI compo-

nents and the ability packaged in the JDBC API to

probe the schema of a database allows the QBE-like

interfaces to be built dynamically after a connection

to a database is established. Therefore, the QBE-like

interfaces do show the database-independent ability

of JDBC. The QBE-like interfaces provided in the

JavaDQD application are create, drop, select, insert,

update, and delete 1. We will detail the create, insert,

and select interfaces.

The QBE create interface provides the user with the

ability to create a new table in a database. The create

interface has three main components. First, the create

interface provides a selection list that provides a list

of all the current databases. The user must select a

database in which the new table will created. Second,

the create interface provides a text �eld to enter the

new table name. Third, the interface provides a grid

in which one can de�ne the columns of the table. One

can de�ne the column name, pick a supported data

type, and a column length. The supported data types

are determined dynamically by probing the schema of

the selected database. The QBE create interface is

shown below.

The QBE select interface allows the user to select

data from the distributed database. This data is sub-

sequently presented in a result frame. The QBE se-

lect interface presents a list of available tables from

which data can be selected. The list of available in-

cludes all tables from all current database connections.

One should note that we choose to identify tables by

database URL and table name (refer to sample select

interface below). Once a user chooses a table, a select

grid is constructed to designate the criteria the re-

sult data must adhere to. The user can specify which

columns will be displayed by the checking a column in

the view row. Also, a user can specify an example of

what a returned row of data should be. The user can

express a column value to be =; <;>;�;�, LIKE, or

<> a literal value; a literal value is a character string

or a numeric value. The expression criteria placed

in one row constitute a conjunctive clause, and crite-

ria placed in separate rows constitute a disjunction of

conjunctive clauses. Lastly, once a user chooses two or

more tables from the available list, a join item row is

present. The join item row provides a series of radio

buttons to specify the columns to join tables. One can

select one column from each table, and the selected

columns signify equal column values. Thus, one does

have the ability to join multiple tables on one column

value. Admittedly, this is a limitation; however, us-

ing the concept of radio buttons and with additional

join item rows, one can construct a conjunction of join

items and achieve full join functionality.

The QBE insert interface provides the user with the

ability to insert a new row into a table. The insert in-

terface presents a list of available tables to insert into.

1Space restrictions permit us to show only few screens.



Create interface

Again, the list of tables includes all tables from all

current database connections, and the tables are iden-

ti�ed by database URL and table name. Once a table

is chosen, a grid is displayed with the columns and

cells to enter the new data. The QBE insert interface

is displayed below.

As should be clear from the above discussion,

JavaDQD's interface provides the user with a friendly,

informative interface that can be used with many

data sources. The QBE-like interfaces, most impor-

tantly, demonstrate the database-independent ability

of the Java programming language and the JDBC

API. The project demonstrates that the JDBC API

can be used to generate platform-independent dis-

tributed database interfaces. It is clear that Java GUI

capabilities can be used to build better database in-

terfaces. The consequences of the Java and JDBC

combination allow for further development and will

be a subject of database research in years to come.

4 Results

The work described above on the JavaDQD applica-

tion demonstrates the feasibility of using Java and

JDBC in developing distributed database interfaces.

In our �nal remarks, we will critically consider the

accomplishments and restrictions of JavaDQD as well

as the current state and future of the technologies uti-

lized in the development of JavaDQD. Several conclu-

sions drawn from the development of JavaDQD are

JavaDQD is a prototype distributed database inter-

face, Java threads provided an e�cient mechanism in

distributed query processing, and Java's AWT and

third party classes were useful in developing a user-

friendly QBE-like database interface. The conclusions

are presented below:

� JavaDQD database interface should be character-

ized as a prototype Java distributed database in-

terface. JavaDQD has been successfully tested

querying remote MiniSQL databases located on

di�erent machines using the modi�ed mSQL-

JDBC driver. It is important to note since the

JavaDQD interface handles database connectivity

using the JDBC API. The test does signify that

JavaDQD can be utilized to query any database

providing a JDBC driver. That is, JavaDQD can

query Sybase, Oracle, Informix, and other data-

bases providing a JDBC driver that implements

the minimal set of classes and methods used by

JavaDQD. Thus, JavaDQD is an extendable dis-



Insert interface

tributed database interface.

� JavaDQD e�ectively queries multiple databases

by Java threads. The JavaDQD application does

handle the network connections and query pro-

cessing by the way of Java threads. The Java

threads, when given a query string, submit the

query to the desired database and collect the

results. By handling the multiple queries in

threads, one achieves an advantage of querying

multiple databases virtually simultaneously not

sequentially. Therefore, JavaDQD's utilization of

threads greatly enhance the performance of dis-

tributed database processing.

� The combination of JDBC, Java threads, AWT,

and third-party classes facilitates the ability to

develop a QBE-like interface presenting a vir-

tual database. The interface presented to the

user transparently organizes the multiple connec-

tions utilizing database metadata information to

present the user a friendly, informative interface.

JDBC DatabaseMetaData class is used to query

each connection's available tables, columns, and

data types. The resulting metadata is used to es-

tablish an environment displaying multiple het-

erogeneous databases as if they were one. Con-

sequently, the user can query multiple databases

just as he or she queries one database. Thus, the

JavaDQD interface can be used to query multi-

ple databases located on di�erent machines and

stored in di�erent database engines.

Just as we stated some conclusions above, we also

need to state restrictions involved in using JavaDQD

to query distributed databases. The JDBC drivers

and temporary databases utilized in conjunction with

JavaDQD must be considered carefully. The restric-

tions are stated below.

� JDBC drivers used with JavaDQD must im-

plement a minimal set of classes and meth-

ods. The JavaDQD application relies on JDBC

classes and methods implemented in a JDBC

driver for database connectivity; thus, in order

for JavaDQD to connect to a particular database

engine, a JDBC driver must exist for the database

implementing all classes and methods utilized by

JavaDQD. In particular, JDBC drivers accessed

by the JavaDQD application must implement at

least the following classes and methods:

� The temporary database must be the greatest



Classes Methods

Connection close(), getMetaData(),

createStatement(), getConnection()

Statement execute(), executeUpdate()

DatabaseMetaData getTables(), getColumns(),
getTypeInfo()

ResultSet getMetaData(), getString(), next()

ResultSetMetaData getColumnCount(),

getColumnDisplaySize(),

getColumnTypeName(),
getTableName(),

getColumnName()

common denominator of all databases involved in

a distributed select query. That is, all the pos-

sible data types from all databases involved in

the query must be available in the system serving

as a basis for temporary storage. The tempo-

rary database is managed by JavaDQD to store

results of each distributed database queried and

to obtain the �nal query result. Since the tem-

porary database must store the results from all

distributed database queries, it must provide all

the data types that are possible in the results.

Therefore, the temporary database should be the

greatest common denominator of the distributed

databases queried.

Similarly, a JDBC driver (if fully compliant) al-

lows the user to submit the queries in SQL-92

standard. This does not imply that the remote

server must support the SQL-92 natively. What is

implied is that the JDBC driver must implement

a mechanism for conversion of SQL-92 queries

into the remote database query language. In par-

ticular, we are trusting the JDBC driver for each

particular remote database to be correctly imple-

mented (which is not always the case, see con-

clusions below). Moreover, JDBC does not sup-

port types beyond SQL-92 standard. Thus, even

if the remote database supports additional types

JavaDQD will not be able to handle these types.

In addition to reporting the speci�c results and

facts, the research and implementation of JavaDQD

lead us to draw several conclusions about the current

state and future of Java and JDBC technologies.

1. The JDBC API, currently, is a versatile interface

for distributed database connectivity. Java facil-

itates platform-independence in addition to the

JDBC API being a standardized set of abstract

methods, which de�ne database access in Java.

Thus, by using Java and JDBC, JavaDQD is a

platform-independent application that possesses

the ability to connect, query, and manipulate any

database in, which provides a JDBC driver im-

plementing the minimal set of methods needed

by JDBC.

2. The reality, however, of the current state of JDBC

drivers is not satisfactory. Many JDBC drivers

are in an immature stage. That is, many are not

JDBC-compliant or do not implement the mini-

mal set needed by JavaDQD. However, one must

realize the immature state of JDBC drivers did

not hinder the development of JavaDQD; it did

restrict the ability to test on multiple database

engines.

3. Java's AWT and other third party GUI classes

are useful in developing user-friendly platform-

independent interfaces. We conclude that JDBC,

the AWT, and third-party GUI classes provided

an excellent base for developing JavaDQD.

The future potential of Java distributed

database interfaces is very promising. How-

ever, in order for that potential to be real-

ized, several steps need to be taken by database

vendors and developers. First, the capabil-

ity of the JDBC standard must be recognized

and upheld. Secondly, much e�ort should

be directed toward developing fully compli-

ant JDBC implementations (drivers). If these

steps are achieved, the combination of Java and

JDBC will provide a powerful, versatile tool in

the development of distributed database inter-

faces.



Acknowledgements

We thank Yuri Breitbart for valuable suggestions. Re-

search of the second author has been partially sup-

ported by US ARO grant DAAH 04-96-1-0398.

References

[1] Cornell, G. and Horstmann, C., Core Java,

SunSoft Press, 1996.

[2] FastForward JDBC driver, Connect Software, Six

months educational license.

[3] Flannagan, D. Java in a Nutshell, Reilly &

Associates, 1996.

[4] Java Development Kit. http://www.javasoft.com.

[5] Jepson, B., Database Conncetivity: The Lure of

Java, Java Report, 1997.

[6] JDBC Speci�cations, JavaSoft.

http://splash.jacasoft.com/jdbc/index.html, 1996.

[7] Konopnicki, D., Shmueli, O., W3QS: A Query

System for the WWW, VLDB-95.

http://www.cs.technion.ac.il/
~konop/w3qs.html#publications

[8] Microline Component Toolkit, Microline Software.

http://www.neurondata.com/index2.html, Free lite

ed. license, 1997.

[9] MiniSQL, Hughes Techn. http://Hughes.com.au,

1997.

[10] Oaks S., Wong, H., Java Threads, O'Reilly,

1997. [11] Patel, P., and Moss, K., Java Database

Programming with JDBC, Coriolis Group Book,

1996.

[12] Reese, G., mSQL-JDBC driver, Center for Imag.

Environments,

http://www.imaginary.com, 1997.

[13] Silberschatz, A., Korth, H.F. and Sudarshan,

S., Database System Concepts, McGraw-Hill, 1997.

[14] Ullman, J. Database and Knowledge-Base Sys-

tems, Computer Science Press, 1988.

[15] Zloof, M.M., Query-by Example: a database

language, IBM System Journal 16: 324{343, 1977.


