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Abstract

A data warehouse is a redundant collection of data

replicated from several possibly distributed and loosely

coupled source databases, organized to answer OLAP

queries. Relational views are used both as a speci�cation

technique and as an execution plan for the derivation

of the warehouse data. In this position paper, we

summarize the versatility of relational views and their

potential.

1 Views

The importance of the \algebraic closedness" of the

relational model has not been recognized enough

in its 27 years of existence. Although a lot of

energy has been consumed on dogmatizing on the

\relational purity", on its interface simplicity, on its

mathematical foundation, etc., there has not been a

single paper with a central focus on the importance

of relational views, their versatility, and their yet-to-

be exploited potential.

What is a relational view? Is it a program? Is

it data? Is it an index? Is it an OLAP aggregate?

It is all these. And a lot more. Below I summarize

the most important uses, techniques, and bene�ts

pertaining to views. Note that the cited work here

is not meant to be exhaustive but representative and

easily accessible from my short-term memory.

2 The Multifaceted Form of Views

Relational views have several forms:

� pure program: an unmaterialized view is a pro-

gram speci�cation, \the intension", that gener-

ates data. Query modi�cation [Sto75] and com-

piled queries [ABC+76] were the �rst techniques

exploiting views{ their basic di�erence is that

the �rst is used as a macro that does not opti-

mize until run-time while the second stores op-

timized execution plans. Such a view form is a

pure program with no extensional attachments.

Each time the view program is invoked, it gen-

erates (materializes) the data at a cost that is

roughly the same for each invocation.

� derived data: a materialized view is \the exten-

sion" of the pure program form and has the char-

acteristics of data like any other relational data.

Thus, it can be further queried to build views-

on-views or collectively grouped [Pap94] to build

super-views. The derivation operations are at-

tached to materialized views. These procedural

attachments along with some \delta" relational

algebra are used to perform incremental updates

on the extension.

� pure data: when materialized views are con-

verted to snapshots, the derivation procedure is

detached and the views become pure data that

is not maintainable (pure data is at the opposite

end of the spectrum from pure program).

� pure index: view indexes [Rou82b] and View-

Caches [Rou91] illustrate this 
avor of views.

Their extension has only pointers to the underly-

ing data which are dereferenced when the values

are needed. Like all indexing schemes, the impor-

tance of indexes lies in their organization, which

facilitates easy manipulation of pointers and ef-

�cient single-pass dereferencing, and thus avoids

thrashing.

� hybrid data & index: a partially materialized

view [BR96] stores some attributes as data while

the rest are referenced through pointers. This

form combines data and indexes. B-trees, Join

indexes [Val87], star-indexes [Sys96] and most

of the other indexing schemes belong to this

category, with appropriate schema mapping for

translating pointers to record �eld values. Note

that in this form, the data values are drawn

directly from the underlying relations and no

transformation to these values is required1.

1This is how the indexed form is almost exclusively used

although there is no intrinsic reason for not applying a



� OLAP aggregate/indexing: a data cube [GBLP96]

is a set of materialized or indexed views [GHRU96,

RKR97]. They correspond to projections of the

multi-dimensional space data to lesser dimension-

ality subspaces and store aggregate values in it.

In this form, the data values are aggregated from

a collection of underlying relation values. Sum-

mary tables and Star Schemas [Sys96] belong in

this form (the latter belongs here as much as in

the previous category).

Each of these forms is used by some component

of a relational system. Having a uni�ed view of all

forms of relational views is important in recognizing

commonalities, re-using implementation techniques,

and discovering potential uses not yet exploited.

3 Discovery and Re-use of Views

RDBMSs do nothing else but generate or access

materialized views 24 hours a day whether these

are prede�ned views, results of compiled queries,

ad hoc queries, or even materialized view fragments

[RCK+95], i.e., temporary results generated during

the execution of a larger query. Unfortunately, com-

mercial RDBMSs discard these views immediately

after they are delivered to the user or to a subse-

quent execution phase. The cost for generating the

views is for one-time-use only instead of being amor-

tized over multiple and/or shared accesses [Rou91].

Caching query (intermediate) results for speed-

ing up intra- and inter-query processing has been

studied widely [Fin82, LY85, Rou91, Sel87, Jhi88,

DR92, AL80, Rou82b, Rou91, Sel88, Jhi88, RK86b,

BALT86, Fin82, LY85, DR92, HS93, RK86b, Han87a,

Han87b, JMRS93]. The goals of these studies range

from improving query optimization and processing

to supporting rules in active databases, to query

processing in client-server and distributed/replicated

database architectures, to handling time queries, to

obtaining e�cient update dissemination, to avoiding

expensive computations of external predicates, etc.

All these techniques have one common underlying

theme: the re-use of views to save cost.

Amortization and re-use of views can only be

possible if they can be discovered by the query

optimizer2 which decides to plug-in those views

which reduce the cost of the query. The bene�ts are

multiplied in a multi-user environment with a lot of

shared access to views. Despite this, only the ADMS

prototype has extended the query optimizer and its

cost model [CR94b] to include in its plan selection

transformation function, other than the identity one, to the

underlying values before indexing them- e.g., calibrate the

values before entered in a B-tree.
2the user cannot be aware of views generated by the system

and other users.

materialized views, ViewCaches, and incremental

access methods and a tailored bu�er manager , as

well as a tailored bu�er manager designed to support

these access methods [CR93]. However, both IBM

and Microsoft plan to incorporate similar constructs

in their DB2 and Sequel Server future releases.

The most common technique for discovering views

(in any of its forms) is subsumption [Rou82a, Fin82,

LY85, Rou91, BJNS94]. Subsumption in its most

general form is an undecidable problem, but for the

most common queries can be reduced to an NP-

complete problem. For simple conjunctive query

views, it further reduces to polynomial-time and very

e�cient algorithms [Rou82a, CR94b].

In a data warehouse where query execution and

I/O are magni�ed, the mandate for re-use cannot

be ignored. Furthermore, in an OLAP environment,

(unlike OLTP), updates come in bulk rather than

a few-at-a-time, making incremental update tech-

niques more e�ectively amortized [RKR97]. There-

fore, query optimizers based on materialized view

fragments are a necessity. At this point, data ware-

houses rely solely on users' memory for re-using pre-

computed summary tables. This severely limits their

performance potential.

4 Processing of Views

Now let's examine view processing for all the view

forms except for the pure data (snapshots) which

are not maintainable. View processing involves

view scanning, incremental update, or both applied

simultaneously. Scanning and incremental update of

views imply special locks, locking protocols [RES93],

authorization [RB85], and consistency protocols

for asynchronous updates from multiple sources

[ZGMHW95]. I will concentrate here on performance

issues.

View scanning in the pure program view form is

typically the same as re-execution of the query that

created the view. There is no performance bene�t

for unmaterialized views other than predicting re-

execution cost more accurately after the �rst time.

The performance is bad but predictable. Scanning

a materialized view has a cost that depends on

the ratio of the useful tuples in it to answer a

given query, called density of the view. For a

100% ratio, scanning a materialized view is optimal

because it has all the data for answering the query

compacted in a tight storage space. If the density

is low, the noise can be more than the amount of

useful data. For the index view form, scanning

cost can range from near optimal, when the pointers

are aligned and point to a tight space, to very

high, when pointer dereferencing causes thrashing

(similar to unclustering indexes in RDBMSs or in



OODBMSs). For this reason, in the index form, it is

very important that the pointers be well organized

[RK87, AR90] and use a tailored bu�er manager

[CR93] which avoids thrashing caused by the multi-

dimensionality of the view. ViewCache uses a

form of puzzle-shaped packed R-trees [RL85] and

tailored cache replacement strategies. Cubetrees

[RKR97] utilize multi-dimensional compressed and

packed R-trees [RL85]. Again, for performance, the

organization is the only thing that matters.

Incremental update techniques for views are ma-

ture, as they go back for more than a decade of re-

search [BLT86, RK86b, Rou87, Rou91, RES93]. The

same techniques were the foundation for the man-

agement of replicated data [RK86a, RK86b] which

found its way to the log-based replication tools of

commercial RDBMSs.

Incremental update of a view depends again

on its underlying form. In its un-materialized

form the cost of an incremental update is the

cost of re-execution. For other forms we must

distinguish two cases. The �rst case occurs when

the incremental update is done in real-time during

the query execution. In this case, the update is

combined with scanning and therefore, the cost of

incremental update is subsumed by the scanning

cost. This was the main objective of the one-pass

incremental update algorithms of ViewCache. The

subsumed cost savings are signi�cant and this was

shown by comparing worst case analysis estimations

against actual timed experiments [RES93]. This

was especially true for views-on-views because of

the elimination of storing and accessing intermediate

results.

The second case is when the incremental update of

a view is done at times other than scanning. This is

the typical case in a data warehouse where updates

from multiple sources are applied asynchronously ei-

ther when they arrive or at scheduled (often o�-line)

times. The bene�t of combining scanning and up-

dating is not a factor any more. Therefore, minimal

dereferencing is a good target optimization. Par-

tially materialized views [BR96] which materialize

only the subset of the attributes useful for the incre-

mental update, outer-joins instead of joins, or other

appropriate attribute caching techniques [Sta89] are

best suited. On the other hand, fully materialized

views are cumbersome and generate a lot of unneces-

sary I/O and data movement for just updating views

that are to be used in the future.

It should be mentioned here that the issue of

self-maintenance [GJM96] of views is important.

However, the additional information necessary for

the incremental update and its storage organization

must be well designed since this a�ects performance.

For example, the storage organization of the deltas

may have an equivalent adverse e�ects to thrashing

if their tuples are scattered in an unclustered space.

5 Data Mining within Views

Views which are materialized or partially material-

ized contain valuable information in them such as

value distributions and other statistical information

that are much more accurate than the clumsy ones

maintained by the DBMS statistics utility which is

run once in a while. Having accurate value distribu-

tions avoids those unrealistic assumptions and gues-

timates based on the uniformity assumption. Since

RDBMSs do nothing else but generate materialized

views, a smarter system can extract this valuable

meta-data and, with a query feedback mechanism

[CR94a], maintain precise statistics. This was shown

to incur no additional I/O cost and have negligible

CPU only overhead for a big return, as the error in

the estimation is very close to none.

6 Harvesting the Executions of

Views

Consider a view as a program again. Whether we

execute it to materialize it or to incrementally up-

date it, the system's behavior can be observed dur-

ing this execution and be used to adapt resource al-

location during subsequent executions. For example,

bu�er page fault behavior during a view's execution

can be accurately predicted using regression from a

few executions of it [CR93]. Using this information,

bu�er allocation is done much more e�ciently using

a marginal gain technique [FNS91]. Clearly, bu�ers

are some of the most important resources to be man-

aged, but other resources such as locks, logs, threads,

etc., can be observed during view execution and used

to adapt strategies for improving performance.

Repeated materialization of views can also be

harvested to obtain patterns of access and use them

for just-in-time page prefetching from disk. This

not only enhances bu�er management, but more

importantly, reduces context switching overhead.

Similar techniques have been engaged successfully in

OS studies [PG96] where the patterns are much less

predictable than re-materializing a view.

7 Conclusion

Views are the most important asset of the relational

model. They provide a uniform conceptual and im-

plementation model of relational programs, derived

data, indexes, and aggregated derived data. I can

think of a very few things that are so elegant and

practical too.



These are my views on views. And, like most

views, they are evolving and incrementally updating

with time. I am impressed with views' versatility,

resilience, and refusal of retiring [Mum96]. As for the

yet-to-be discovered uses of views that I promised at

the beginning of the paper, I remind you that it is

just a speculative view on my part.
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