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Abstract 

Given the complexity of many queries over a Data 
Warehouse (DW), it is interesting to precompute and 
store in the DW the answer sets of some demanding 
operations, so called materialized views. In this 
paper, we present an algorithm, including its 
experimental evaluation, which allows the 
materialization of several views simultaneously 
without losing sight of processing costs for queries 
using these materialized views. 

1 Introduction 
The need to provide integrated access to multiple 

and heterogeneous databases, as well as other sources 
of information, has become one of the priority areas 
of database research. One of the solutions to this 
problem is based on the so-called mediator approach 
[8], as follows: 
1. Accept a query, determine the set of sources of 

information to answer the query and create the 
appropriate sub-queries for each source; 

2. Obtain the results from the sources, translate, filter 
and integrate them, and return the final results to 
the user. 
This requires implementation of an efficient 

mediator, which is a practically impossible task, 
owing to the scattering of information. 

A more viable alternative would be an anticipated 
approach to the integration of data. This approach 
would function as follows: 
1. The information from the sources is periodically 

extracted, translated, filtered, integrated and 
aggregated and then stored in a centralized 
repository, a Data Warehouse (DW); 

2. When a query is submitted, it is evaluated directly 
in the DW, without accessing, therefore, the 
primitive sources of information. 
Note that the DW is not actually updated during a 

user session in order to maintain temporal consistency 
[3], i.e., during a (possibly long) interactive session 
the DW should not change its state. 

A DW is normally a very large database, even 
when its information aggregation level is high, in fact 
it can maintain several years of historical information 

stored. Historical series are an essential requirement 
of On-line Analytical Processing (OLAP) applications 
developed to help decision-making processes [3]. The 
reduction of the costs of OLAP queries is an 
important research objective. 

1.1 A Typical OLAP Session 
Decision Support Systems are those which have 

the capacity to alert the users (in general, high and 
middle managers) about the occurrence of exceptions, 
giving them the means to find root causes. OLAP 
queries are inserted in this context: they are 
interactive system-user activities in which the user 
may want more details (drill down) or less details 
(drill up) of a report showing business trends. Trends 
are generally comparisons of data at a certain level of 
aggregation, throughout time. The user may still want 
to logically combine interlinked reports (drill across) 
[3]. 

Consider the following table of a relational DW 
Fact(Product#, Store#, Time#, Sale): Product#, 
Store# and Time# are respectively the keys of the 
dimension tables Product, Store and Time, while Sale 
is an additive attribute. Suppose that the aggregation 
level of the Fact  table is day. The dimension table 
Time contains the semantics of each value of Time 
(week-day, weekend, week, month and other 
attributes). In this way the Product and Store 
dimension tables describe, respectively, the semantics 
of Product and Store. 

A user wanting to analyze the sales of some 
products over a number of months can initiate an 
interaction with the system. If this type of analysis 
were quite common, a materialized view of the Fact 
table could be created previously, PST(Product#, 
Store#, Time#, Monthly-sale), sorted by Product, 
Store and Time. As PST would still be very large, 
other materialized views of the Fact table could also 
be created, PS(Product#, Store#, Sale-in-the-Period) 
and P(Product#, Sale-in-the-Period). This sequence 
of interactions - -  query of the PST, and afterwards of 
the P (drill up), followed by the PS (drill down), 
returning to the PST (drill down) - -  would be 
efficient. 
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Unfortunately, given the nature of an OLAP 
session, user activities are not completely foreseeable. 
Coming back to our example, the user can, in the 
middle of a session, direct his attention to stores. The 
materialized views PST, PS and P do not favor the 
new OLAP operations desired by the user. 

To speed up programming, the group bys 
corresponding to each of the combinations in P, S and 
T could be computed by a single operator, cube by 
[1]. But the question is still not totally solved: are all 
the possible group bys necessary? Is it better to store 
PS or SP, taking into account the relative frequency 
and importance of the queries to the DW? Are there 
constraints as to the time necessary for the creation of 
all the views? 

1.2 Contributions and Organization of  the Paper 
We are dealing with the following combinatorial 

problem: what is the best global cost of materializing 
a set of views (in short, the computing of all or part of 
the group bys of a cube by operation), taking into 
consideration the possibility of creating various 
simultaneous views and without loosing sight of the 
cost of queries which will use these views? The 
advantages of reducing the costs of a query are 
obvious. Reducing the costs of creating views is also 
important. Even though this process generally 
operates in batch mode, it can take several hours, and, 
during this time, the DW would remain unavailable to 
users. 

In section 3 of the paper, we shortly present an 
algorithm which yields a solution to the combinatorial 
problem mentioned above t. We will show that the 
best solution is not always possible, as there could be 
irreconcilable conflicts between the two objectives: 
efficient view creation versus efficient queries to the 
DW. In this case, the algorithm will seek to find a 
solution as close as possible to the best global cost for 
view creation. We include a glossary (section 2) 
before section 3, to precisely describe various terms 
which are used in explaining the algorithm. Three 
additional sections complete the article: section 4 
presenting experimental evaluation of the algorithm, 
section 5 about related works, and section 6 
presenting conclusions. 

2 Glossary 
In this section we give the meaning of various 

terms and expressions used throughout the article. 
Some of these expressions ("clustered table", "sorted 
query" and "clustered query") are not commonly 

1 _ Full details about the algorithm can be found in 
http://www.dsc.ufpb.br/-lsi/sbbd98-sigmod.ps 

used, while the rest of the terms and expressions are 
frequently found in the DW literature. 
Clustered Table In such a table the records are 
physically clustered by some clustering criteria 
involving one or more of its attributes. 
Clustered Query A sorted query to a clustered table 
in which the sorting criteria and the clustering 
coincide. The query processing cost is optimal. 
Cube by An operator associated with a set of n cube 
dimensions which computes 2 n group bys for each of 
the combinations of the n dimensions, including the 
group by null. For example, select ... from table ... 
cube by dl, d2 will result in a computation of 22 = 4 
group bys, group by dl, d2; group by dl; group by 
d2 and group by null 
Cuboid Each of the combinations of the dimensions 
of a cube by operator. For cube by dl, d2, the cuboids 
are dld2, dl, d2, null. 
Data Cube Synonym of a multidimensional database 
seen as a n-dimensional cube, or simply cube; each 
dimension is an aggregation criterion, and each cell of 
the cube contains numeric measures or facts 
associated with a value for each cube dimension. A 
cube can be represented by a relational schema called 
star schema. 
Dimension Table A table containing a dimension 
key and the attributes to describe the semantics of 
each key value. 
Fact Table A table characterized by a key composed 
of foreign keys for each dimension, and of attributes 
which are generally additive. 
Materialized View The name given to a clustered 
table corresponding to a cuboid and stored in a DW. 
In the rest of this paper, when we refer to a cuboid we 
will be thinking of the materialized view associated 
with it. 
Relational Data Warehouse A cube with a star 
schema. 
Sorted Query A query with an order by clause. 
Star Schema A representation of a cube, 
composed of a fact table (the star) and dimension 
tables related to the fact table (the star satellites). 

[ dl l I d2 1 

d2# 

d: H k!"O' ' o , .  

d3#_attributesl t attributes I I a4#-attributesl 

Figure 1: Star schema. 

Fig. 1 is an illustration of a star schema with the fact 
table fact and four dimension tables dl,d2,d3 and d4. 

3 Quasi-optimal Algorithm 
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We propose an algorithm (referred to as quasi- 
optimal) which either optimizes the global cost of 
computing a cube by or approximates, in a strong 
sense, the computed global cost to the optimal cost. 
The computation may be total (all of the cuboids) or 
partial (some cuboids). With respect to the global 
cost computation, the algorithm considers two costs: 
the cost of direct and indirect derivation of a cuboid 
from another cuboid ~ these costs will be explained 
up further o n - - ,  taking into account the use made of 
cuboids by the users. 

Derivation Graph 

The algorithm's input is a derivation graph 
(G,--<), where each vertex Vk ~ G is a cuboid of a 
cube by. The edges in -< are derivation-oriented 
edges (% vj), i ~: j, from vi to vj, if vj has all the 
dimensions of vi, less one. Each edge is labelled with 
two derivation costs: Direct and Indirect. The cost 
D(vi,vj) means that vj is a prefix of vi; consequently vj 
can be computed directly from, and simultaneously 
with, vi. On the other hand, if vj is not a prefix of % 
then the cost of computing vj from vi is indirect, 
I(vi,vj), meaning that vi should be re-sorted to create vj 
directly from it. It is then obvious that the direct cost 
D to derive a cuboid is always less than the indirect 
cost L This derivation graph is similar to the hierarchy 
of group by operations in [7] 

Besides the derivation graph, one must indicate a 
list of the sorted queries related to some or all of the 
cuboids. There could be more than one sorted query 
to a given cuboid. 

See the derivation graph in Fig. 2. Consider 
cuboid C2; the edges from C2 (a deriver cuboid) to 
cuboids C5 and C6 (derived cuboids), respectively, 
are derivation edges which indicate that C5 and C6 
are derived from C2, that is, C5 (C6) has all the 
dimensions of C2, less one. These edges are labelled 
(D, /). The cost of deriving C5 (C6) is D, when C5 
(C6) is a prefix of C2; when C5 (C6) is not a prefix of 
C2, then the cost is I. There could be more than one 
sorted query to C2. 

We make a fairly reasonable hypothesis that, 
given a deriver cuboid and all which are derived from 
it, all the deriver-derived edges have the same D and 
I costs. Thus, for example, for the edges from C2 to 
C5 and C6, the value of (D,/)  is common to both. 

Level 
C l 

C2 C3 C4 2 
(D,I) (D.I; (D,IJ 

C5 C6 C7 1 
(D,I) (D,I) (D.IJ 

" " - - - . 1 /  
(null)  0 

Figura 2: A derivation graph, input to the quasi- 
optimal algorithm. 

The level k of a derivation graph represents all the 
cuboids with k dimensions. Note that given a n- 
dimensional cube by, the number of levels of the 
graph (G, --< ) is always n+l (level 0, level 1 ..... level 
n). The level 0 represents the cuboid null. The level n 
represents the deriver cuboid of the cuboids of other 
levels, direct or indirectly. By examining the number 
of levels for the graph in Fig. 2, it can be concluded 
that the cube has three dimensions. 

For lack of space, we will not detail how to 
estimate the derivation costs from a cuboid. We will 
only say that they are dependent on the cuboid size 
(actually, the size of the result of the group by 
associated with it) and on the characteristics of the 
hardware (memory size and processing speed). [7] 
presents a procedure for estimating the size of a 
cuboid. 

Quasi.optimal Derivation Graph 

One of the algorithm's goals is to guarantee that 
queries supplied remain clustered to the 
corresponding derivation graph cuboids. The other 
goal is to explore to the full the possibility of deriving 
cuboids directly, or simultaneously, from others, 
aiming to diminish the creation costs of materialized 
views. Ideally, both goals would be fully achieved. 
Unfortunately, these goals may be conflicting. 

The algorithm's output is a sub-graph called 
quasi-optimal derivation graph, generated from the 
derivation graph given as input to the algorithm, in 
which the global sum of all of the costs D and I is 
minimal, or is a value as close as possible to the 
minimum, in relation to the two goals being pursued. 
In this graph, each cuboid, with the exception of the 
highest level cuboid, is connected to a single higher 
level cuboid (the deriver cuboid), the edge being 
labelled as D or L To distinguish between a D value 
and an I value, the edges with costs D are solid edged 
while the edges with costs I are dashed. The deriver 
cuboid of all of the other cuboids, direct or indirectly, 
is a cuboid in the highest level of the quasi-optimal 
derivation graph. An example of a quasi-optimal 
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derivation graph (there are others) for the derivation 
graph in Fig. 2 is shown in Fig. 3. 

C t  

C 2  C a  C 4  

C ~  C 6 C 7 

Figura 3: A quasi-optimal derivation graph. 

Imagine four sorted queries, to C1, C2, C5 and 
C6. If the two goals of the algorithm had been fully 
achieved, then among all the related combinations of 
edges in Fig.2, the combination of edges in Fig.3 
would have a minimal cost (in other words, the sum of 
all edge costs would be minimal), and the queries 
would also be clustered to their respective cuboids. In 
the case of a conflict between the two objectives, the 
queries would be still clustered to their cuboids, but 
the sum of all edge costs would not be exactly 
minimal. 

To understand the way in which a quasi-optimal 
derivation graph is created, we need to describe the 
algorithm. 

Algorithm Description 

In order to obtain a quasi-optimal derivation graph 
from a derivation graph (G,-<), the quasi-optimal 
algorithm uses iteration; each iteration considers two 
consecutive levels of (G, -< ), from level k = 0 to level 
k = n-l, where n is the number of dimensions of a 
cube by represented by (G,--<). For each level k, the 
algorithm finds the mininal cost to derive level k from 
level k+l. This problem is solved through an 
algorithm implementing the Hungarian method [4], 
which determines what is called minimal-cost- 
matching in an directed bipartite graph. 

With the help of the quasi-optimal algorithm's 
Minimal_Cost_Matchings procedure, which 
implements the Hungarian method, we can arrive at a 
minimal cost matching, as shown in Fig. 4, between 
the two sets of cuboids at levels 1 and 2, respectively, 
of the derivation graph in Fig.2. 

L e v e l  
2 C 2  C 3  C 4  

1 C 5  C 6  C 7  

Figure 4: A minimal cost matching for the cuboids at 
levels 1 and 2, respectively, of the 
derivation graph in Fig.2. 

As we can see, this matching is not unique, and the 
Minimal_Cost_Matchings procedure actually finds all 
matchings. The existence of several minimal-cost 

matchings allows us to exhaustively test the 
alternatives in order to resolve conflicts between the 
order of the cuboids and the order of the queries. 

Detection and Solution of Conflicts 

There exist two kinds of conflict which are 
detected by the quasi-optimal algorithm' s 
Conflict_Detector procedure: the first is a conflict 
among the several sorted queries to the same cuboid; 
the second type of conflict is between the order of the 
cuboids and the order of the queries. 

To illustrate the first type of conflict and its 
solution by the Conflict_Resolver procedure, imagine 
two queries to cuboid C2. It is clear that only one of 
them can be clustered with C2. The solution to the 
conflict, as determined by the Conflict_Resolver 
procedure, is the following: the procedure chooses the 
query which is clustered with C2, maintaining the 
minimal cost matching among the cuboids at levels 1 
and 2. With respect to the other query, a careful 
choice of indices to access C2 can make its processing 
cost acceptable [6]. 

For the second type of conflict and its solution, 
consider that the orders of C4 and the query submitted 
to it are different. In this case, C4 is re-sorted to 

c luster  it with the query to it, and consequently the 
direct derivation cost of C7 is substituted by this 
cuboids' indirect derivation cost (that is, the edge 
from C4 to C7 changes from solid to dashed). As a 
result, the matching between the cuboids at levels 1 
and 2 is not now of minimal cost. Note that the 
solution for these conflicts will always privilege the 
queries. 

It is important to point out that a conflict of the 
second type is still frequently solved by maintaining 
the minimal cost matching. Observe again the 
bipartite graph in Fig.4: we could change the order of 
C2, and as such invert the derivation costs of C5 (now 
a dashed edge) and of C6 (now a solid edge) n it is 
obvious that the sum of all costs will remain 
unaltered. 

The Conflict_Detector and Conflict_Resolver 
procedures are applied to each matching generated by 
the Minimal_Cost_Matchings procedure. The final 
solution for levels k+l and k is the one closest to the 
minimal cost matching. 

3.1 Partial Computing of a Cube by Operation 
Often, a DW administrator is interested in 

materializing only some views, among all of the views 
corresponding to each of the cuboids of a cube by. If 
this is the administrator's option, the algorithm's 
output is a partial quasi-optimal derivation graph, 
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constructed from the quasi-optimal derivation graph, 
when the option is a total cube by computation. This 
partial graph consists of cuboids corresponding to the 
desired materialized views, as well as the intermediate 
cuboids necessary to create them, along with the 
appropriate edges. The following refinement consists 
of changing the dashed edges of the partial graph into 
solid edges, wherever possible. The example in the 
following sub-section gives additional details about 
this operation of the algorithm. 

3.2 An Application Example of the Algorithm 
Take four dimensions, Product (P), Promotion 

(Pr), Store (S) and Time (T), and six very frequently 
sorted queries pspr, sprp, ps, spr, p and s to a 
relational DW. Also consider the table Fact (P#, Pr#, 
S#, 7"#, additive_at:ributes) and the dimension tables 
Product, Promotion, Store and Time. The DW 
administrator then wishes to materialize the views 
PPrS, PS, PrS, P and S, so as to guarantee good 
performance for the queries. 

P P r S T  
Sorted queries: (100 .320)  

popr,  $prp,  po,  spr ,  p.  I ...... ~ ; , r .~ .~  ....... 

P S T  PPrS P r S T  P P r T  
(20.60) (30.80) (90.260)  (10.40) 

P$ PT  ST  PPr  PrS P r T  
(10.30) (8.28) (10.30) (10.30)  (lO.30J (20,40) 

P S F P r  
(8,32) (10,16) (4,8) (8,26) 

..................... 72-::. ...... .=.';2~ ....................... 
( .  m 1l) 

Figure 5: Derivation graph for Cube by P, Pr, S, T. 

The input to the quasi-optimal algorithm is the 
derivation graph in Fig. 5, with the list of six queries. 

Each pair of numbers is of the type (D, I). Thus, 
for example, (20, 60) under the cuboid PST means 
that the direct cost of derivating PS, or PT, or ST  
from PST is 20, while the indirect cost of derivating 
PS, or PT, or ST from PST is 60. 

Figure 6 is a quasi-optimal derivation graph 
created by the algorithm, whose semantics are the 
optimal cost plan for the construction of all 
materialized views concerning the cube by P, Pr, S, T 
operation, taking into account the given queries and 
the possibility of simultaneously creating several 
views. Among all alternatives for the construction of 
optimal plans, the algorithm chooses this one, which 
privileges the pspr query instead of sprp, and in which 
the queries pspr, ps, spr, p and s are clustered 
respectively with PSPr, PS, SPr, P and S. 

S T P P r  
( 1 0 0 . 3 2 0 )  

S TP P S P r  S P r T  T P P r  
(20J (30 ,80 )  (10 ,40)  

PS TP S T  PrP SPr  P r T  
(IO) (8) (10)  (10)  

P S T Pr  
(4) 

(nu l l )  

Figure 6: The best plan to materialize the views of 
Cube by P, Pr, S, T. 

As an example of a plan which is not exactly 
optimal, add a sorted query sprpt to the given queries. 
In this case, we would have a cuboid SPrPT and the 
cost of deriving STP of SPrPT would be indirect 
(320, instead of 100), and the global cost would not 
be minimum. 

From the graph in Fig. 6, the algorithm creates a 
partial graph as in Fig. 7 where the cuboids 
correspond to the given queries. An intermediate 
cuboid necessary to the first ones is also shown. 

i ' S P r T  
( 1 0 0 )  

r S P r  
t Z o . 8 o l  

P $  5 P e  
( 1 0 /  (101  

P S 

Figure 7: Graph to partial computing of Cube by P, 
Pr, S,T. 

Observe that the intermediate cuboid PSPrT is 
necessary to simultaneously derive the cuboids PSPr, 
PS and P. 

4 Experimental Evaluation 
The critical point in terms of the quasi-optimal 

algorithm's performance is the 
Minimal_Cost__Matchings procedure which 
implements the Hungarian method to compute the 
minimal cost matchings between two sets of vertices 
of a bipartite graph. The complexity of the procedure, 
for two consecutive levels k and k+l of the derivation 
graph, is cubic, O(n3), where n is the number of 
vertices at level k+l. 

The test involved the materialization of 5 views 
PSPr, PS, SPr, P and S, with and without the help of 
the cost plan in Fig. 7. The hardware for the test was 
the IBM RS/6000, with 32 MB of memory, while the 
software used for table creation was the Postgresql 
DBMS [5]. Assuming that all record fields in the Fact 
table are 4 bytes, the tests were made for the Fact 
table with 54,750,000 records (= L1 GB). 
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Firstly, we created a file PSPrT, sorted by P, S, Pr, 
and T, with the contents of the Fact table. From this 
file, a Postgresql clustered table, PSPrT, was created. 
The remaining Postgresql tables, PSPr, PS, SPr, P and 
S, were created according to the quasi-optimal 
derivation graph in Fig. 7. Let Timel be the total 
creation time for these 5 tables. 

For the tests without the Fig. 7 plan, a Postgresql 
clustered table, PPrST, was initially created. 
Afterwards, each of the 5 tables, PSPr, PS, SPr, P and 
S were created separately. Let Time2 be the total 
creation time for these 5 tables. 

Since Time2 is more than 8 times larger than 
Timel, the test unambiguously shows that the creation 
of materialized views according to the plan exposed is 
vastly superior. 

5 Related Works  
A large DW research project is being developed at 

Stanford University, USA. With respect to the cube 
by operator and materialized views, refer to the work 
by [2], who presents an algorithm to decide which 
group bys should be pre-computed and indexed. This 
research, however., does not deal with the 
optimization of related group bys. 

[7] and [6], in which the last complements the 
first, are related to one another. The focus of [7] is the 
cube by operator, which may be seen as a hierarchy of 
group by operations. It thus considers related group 
bys, but the performance of complex queries to a DW 
is outside its scope. On the contrary, [6] exclusively 
considers the efficiency of complex queries to DWs, 
supposing that the materialized views have already 
been created. 

6 Conclusions 
In this paper we present an algorithm for the 

efficient computing of multiple group bys of a cube 
by..The results of all or some of the group bys of a 
cube by should be stored in the Data Warehouse 
(materialized view process), aiming for their later use 
in queries to the Data Warehouse. 

However, it would not be worthwhile to 
materialize views without considering the queries that 
could use them. - Without this care, it could happen 
that (1) a view would be used very little or not at all; 
and (2) that a view and a query that frequently uses it 
could have incompatible orders, requiring the sorting 
of very large temporary files, thus resulting in large 
query processing costs. 

The algorithm takes the following two costs into 
account: the cost of creating a materialized view and 
the cost of processing a query to a Data Warehouse. It 
has as input a graph called derivation graph which 
indicates that the result of a group by may be derived 

directly or indirectly from another (that is, in the case 
where it is not or is necessary to re-sort the last to 
obtain the first), with their respective costs, as well as 
a list of frequent queries to the Data Warehouse which 
could use these views. 

As output, the algorithm produces an optimal, or 
quasi-optimal, plan to create the views. In an optimal 
plan the view creation cost is mathematically the least 
in relation to all the other costs, and the view orders 
are compatible with the query orders; in a quasi- 
optimal plan, the cost is closest to the least cost, and 
the view orders are still compatible with the query 
orders. 

The tests with the algorithm unambiguously show 
its superior performance when compared with ad hoc 
view materialization processes. 
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