
Technical Perspective:
Scaling Dynamic Hash Tables on Real Persistent Memory

Kenneth A. Ross
Columbia University
kar@cs.columbia.edu

Byte-addressable persistent memory was considered in the
data management community as long ago as 1986. Thatte
saw the advantages for programmability in unifying the ab-
stractions of byte-addressable RAM with persistence [2].
Thatte’s context was object-oriented databases containing
a variety data structures that would be awkward to trans-
form into the block-oriented abstractions provided by typical
secondary storage. Thatte’s proposed physical instantiation
of persistent memory was a disk-backed device, although it
is unclear whether such a device was ever built. Thatte rec-
ognized the importance of recovery to the overall scheme.

Fast forward to 2017 when Intel released its Optane non-
volatile memory. Among the key benefits of Optane is byte-
addressibility, making it a strong candidate for use as a per-
sistent memory. There are many di↵erent aspects of Optane
memory that might influence how data structures behave
when implemented on Optane rather than on RAM. Tradi-
tional measures such as latency and throughput (which may
di↵er for reads and writes) and capacity are important. Par-
ticular use cases may depend on other measures, such as the
supported concurrency level and the speed of atomic opera-
tions. Some details of the device, such as the internal block
size (analogous to the cache line size for RAM or the block
size for a secondary storage device) may a↵ect performance
without being fundamental to the technology. Given that all
of these measures are quite di↵erent from the corresponding
parameters for RAM and for SSDs, the ideal data structure
configurations for such devices may look quite di↵erent from
those used before.

In this context, Lu et al. [1] have tackled the question of
how best to design a persistent dynamic hash table using
persistent memory, evaluating their design on the Optane
platform. Persistent dynamic hash tables have broad ap-
plicability for storing data and indices in data management
and other applications, and therefore constitute a workload
worth optimizing. Prior work in this area included designs
that were proposed before widespread availability of Optane
devices. As Lu et al. [1] demonstrate experimentally, there
were several “gotchas” in those implementations that caused
poor performance on Optane because they accessed the de-
vice in a manner that turned out to be ine�cient. Informed
by the Optane device, Lu et al. [1] have engineered a highly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2021 ACM 0001-0782/08/0X00 ...$5.00.

performant implementation of persistent hash tables.
What makes this work stand out is the way many com-

peting demands of the data structure are addressed in a bal-
anced way. Unlike traditional hash tables, load factors are
kept high by allowing multiple possible destinations for a
key. Variable-length keys are supported. Failed searches are
optimized by maintaining metadata that can short-circuit
such look-ups. High concurrency is achieved through care-
ful implementation of optimistic synchronization primitives.
Fast recoverability is based on a timestamp-based scheme
that allows the system to be available in constant time, with
recovery work leading to somewhat degraded performance
for a short period after recovery. The implementation is
open-source, allowing others to build on these insights.

While the achievements of Lu et al. [1] are impressive,
their paper highlights several issues for future research. It is
not easy to program e�cient data structures for devices like
Optane, despite the byte-addressable interface. Complex is-
sues such as leaks of persistent memory are more serious
than leaks in RAM. Some of the choices made by Lu et
al. [1] depend on knowing the internal block size of the de-
vice, something that may be di↵erent in future devices, and
may vary across devices. Some kind of self-tuning might be
needed to make the right choices based on measured perfor-
mance rather than inside knowledge of such parameters.

The future role of persistent memory in database man-
agement systems remains open. Simply switching the un-
derlying memory type to Optane without changing the data
structures is not e�cient [3]. For inner-loop data structures
like hash tables, it may be worth the e↵ort to write spe-
cialized code so that the advantages of persistent memory
translate into tangible benefits for database users.

1. REFERENCES
[1] B. Lu, X. Hao, T. Wang, and E. Lo. Dash: Scalable

hashing on persistent memory. Proc. VLDB Endow.,
13(8):1147–1161, 2020.

[2] S. M. Thatte. Persistent memory: A storage
architecture for object-oriented database systems. In
Proceedings on the 1986 International Workshop on
Object-Oriented Database Systems, pages 148–159.
IEEE Computer Society Press, 1986.

[3] Y. Wu, K. Park, R. Sen, B. Kroth, and J. Do. Lessons
learned from the early performance evaluation of Intel
Optane DC persistent memory in DBMS. In
Proceedings of the 16th International Workshop on Data
Management on New Hardware, DaMoN ’20, 2020.

86 SIGMOD Record, March 2021 (Vol. 50, No. 1)

