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Byte-addressable persistent memory was considered in the
data management community as long ago as 1986. Thatte
saw the advantages for programmability in unifying the ab-
stractions of byte-addressable RAM with persistence [2].
Thatte’s context was object-oriented databases containing
a variety data structures that would be awkward to trans-
form into the block-oriented abstractions provided by typical
secondary storage. Thatte’s proposed physical instantiation
of persistent memory was a disk-backed device, although it
is unclear whether such a device was ever built. Thatte rec-
ognized the importance of recovery to the overall scheme.

Fast forward to 2017 when Intel released its Optane non-
volatile memory. Among the key benefits of Optane is byte-
addressibility, making it a strong candidate for use as a per-
sistent memory. There are many di↵erent aspects of Optane
memory that might influence how data structures behave
when implemented on Optane rather than on RAM. Tradi-
tional measures such as latency and throughput (which may
di↵er for reads and writes) and capacity are important. Par-
ticular use cases may depend on other measures, such as the
supported concurrency level and the speed of atomic opera-
tions. Some details of the device, such as the internal block
size (analogous to the cache line size for RAM or the block
size for a secondary storage device) may a↵ect performance
without being fundamental to the technology. Given that all
of these measures are quite di↵erent from the corresponding
parameters for RAM and for SSDs, the ideal data structure
configurations for such devices may look quite di↵erent from
those used before.

In this context, Lu et al. [1] have tackled the question of
how best to design a persistent dynamic hash table using
persistent memory, evaluating their design on the Optane
platform. Persistent dynamic hash tables have broad ap-
plicability for storing data and indices in data management
and other applications, and therefore constitute a workload
worth optimizing. Prior work in this area included designs
that were proposed before widespread availability of Optane
devices. As Lu et al. [1] demonstrate experimentally, there
were several “gotchas” in those implementations that caused
poor performance on Optane because they accessed the de-
vice in a manner that turned out to be ine�cient. Informed
by the Optane device, Lu et al. [1] have engineered a highly
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performant implementation of persistent hash tables.
What makes this work stand out is the way many com-

peting demands of the data structure are addressed in a bal-
anced way. Unlike traditional hash tables, load factors are
kept high by allowing multiple possible destinations for a
key. Variable-length keys are supported. Failed searches are
optimized by maintaining metadata that can short-circuit
such look-ups. High concurrency is achieved through care-
ful implementation of optimistic synchronization primitives.
Fast recoverability is based on a timestamp-based scheme
that allows the system to be available in constant time, with
recovery work leading to somewhat degraded performance
for a short period after recovery. The implementation is
open-source, allowing others to build on these insights.

While the achievements of Lu et al. [1] are impressive,
their paper highlights several issues for future research. It is
not easy to program e�cient data structures for devices like
Optane, despite the byte-addressable interface. Complex is-
sues such as leaks of persistent memory are more serious
than leaks in RAM. Some of the choices made by Lu et
al. [1] depend on knowing the internal block size of the de-
vice, something that may be di↵erent in future devices, and
may vary across devices. Some kind of self-tuning might be
needed to make the right choices based on measured perfor-
mance rather than inside knowledge of such parameters.

The future role of persistent memory in database man-
agement systems remains open. Simply switching the un-
derlying memory type to Optane without changing the data
structures is not e�cient [3]. For inner-loop data structures
like hash tables, it may be worth the e↵ort to write spe-
cialized code so that the advantages of persistent memory
translate into tangible benefits for database users.
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