Query Games in Databases

Ester Livshits
Technion, Haifa, Israel
esterliv@cs.technion.ac.il

Leopoldo Bertossi
Univ. Adolfo Ibafez and
Millennium Inst. Foundations

Benny Kimelfeld
Technion, Haifa, Israel
bennyk@cs.technion.ac.il

of Data (IMFD), Chile
leopoldo.bertossi@uai.cl

Moshe Sebag
Technion, Haifa, Israel
moshesebag@campus.technion.ac.il

ABSTRACT

Database tuples can be seen as players in the game of jointly
realizing the answer to a query. Some tuples may contribute
more than others to the outcome, which can be a binary
value in the case of a Boolean query, a number for a numer-
ical aggregate query, and so on. To quantify the contribu-
tions of tuples, we use the Shapley value that was introduced
in cooperative game theory and has found applications in a
plethora of domains. Specifically, the Shapley value of an
individual tuple quantifies its contribution to the query. We
investigate the applicability of the Shapley value in this set-
ting, as well as the computational aspects of its calculation
in terms of complexity, algorithms, and approximation.

1. INTRODUCTION

In data management, so as in artificial intelligence (AI),
there is an increasing need for characterizing and computing
explanations of the outcomes of algorithms. In Al this is
commonly attempted for classification algorithms. In rela-
tional databases, query answering may be the operation that
requires explanations. As we will see later on, the two areas
share concerns and approaches. On the databases side, we
may want to explain why we obtained a particular answer to
a query; or why we did not get some other answer we may
have in mind. As expected, the explanations depend on the
underlying data and the query itself. (We assume that the
query-answering algorithm is correct.) In this work, we con-
centrate on the positive case, that is, on why an answer was
obtained (as opposed to not obtained).

Explanations can be given in terms of individual tuples of
the underlying database that contribute to the answer or in
terms of the provenance or lineage of the query [10,18,35],
that explicitly describe the logical connection between a
generic query answer and the possible tuples of the database.
In this sense, provenance implicitly describes how a query
answer can be obtained. In this work, we focus mostly on
the identification of individual tuples that contribute to a
query answer, through, and accompanied by, their quantita-
tive “degree of contribution.”
©Ester Livshits, Leopoldo Bertossi, Benny Kimlfeld, and Moshe
Sebag. Licensed under Creative Commons License CC-BY. This
paper is based on the paper entitled “The Shapley Value of Tu-
ples in Query Answering”, published in 23rd International Confer-
ence on Database Theory (ICDT 2020). Editors: Carsten Lutz and
Jean Christoph Jung; Article No. 20; pp. 20:1-20:19. Leibniz In-
ternational Proceedings in Informatics Schloss Dagstuhl — Leibniz-

Zentrum fiir Informatik, Dagstuhl Publishing, Germany. DOI:
https://doi.org/10.4230/LIPIcs.ICDT.2020.20

78

Ezample 1. Consider the following relational database D,
with the table Store representing official stores, and the table
Receives for stores receiving goods from other stores:

Receives | receiver | sender Store | store
52 S1 52
S3 S3 S3
Sa S3 S4

For accounting purposes, a store could be its own supplier,
as shown by the tuple Receives(ss, s3). The query that asks
whether there are pairs of official stores in a receiving rela-
tionship is expressed (in predicate logic) as

Q: JzIy(Store(x) A Receives(z,y) A Store(y)) (1)

and we use D E Q to denote that it holds true in the
database D. This is a conjunctive query (CQ), as it is built
as a conjunction of atoms (database predicates instantiated
on constants or variables) preceded by a sequence of exis-
tential quantifiers.

The question is about the tuples (i.e., rows in tables) that
cause this query to be true (or lead to the answer yes). In
this case, among the tuples that contribute to the answer
we find the tuples Store(ss), Receives(sa, s3) and Store(ss)
that, taken together, make Q evaluate to true. O

In Example 1 we informally used the notion of a cause.
Actually, there is a precise notion of a tuple as an actual
cause for a query answer [26,27]. This notion was borrowed
from a more general notion of actual causality [20] that
defines causes in terms of counterfactual interventions (cf.,
e.g., [19]). These are hypothetical, exploratory updates on a
variable of a (structural) model that are made for detecting
whether the output changes. For monotone queries, such
as (1) whose answer set can only grow when the database
grows, the relevant interventions are tuple deletions and
changes of attribute values. In this work, we stick to the
former. Conjunctive queries are always monotone, and so
are unions (disjunctions) of conjunctive queries (UCQs).

Actual causality can be extended by means of a measure of
causal responsibility that quantifies the strength of an actual
cause for the outcome at hand [12]. Responsibility can be
applied to database tuples, to capture in quantitative terms
the relevance of a tuple for the query result [9,27]. We
introduce and illustrate actual causality and responsibility
on our running example.

SIGMOD Record, March 2021 (Vol. 50, No. 1)

Example 2. (ex. 1 cont.) The tuple Store(ss) is a coun-
terfactual cause for Q (to be true in D), because: (a) D = Q,
and (b) D ~ {Store(s3)} = Q; that is, Q is no longer true
once Store(ss) is removed.

Now, Receives(sa, s3) is an actual cause, because: (a) D |=
Q, and (b) there is I' C D with Receives(sa, s3) ¢ T', such
that D\ T [= Q, but D \ (I' U {Receives(ss, s3)}) = Q.
In this case, I" is a contingency set for Receives(ss, s3), and
T' = {Receives(ss,s3)} is a minimum-size contingency set.
It holds D \ {Receives(sa, s3), Receives(ss, s3)} K= Q.

We can see that the counterfactual cause Store(ss) is also
an actual cause, with the empty set as the minimum-size
contingency set: it does not need any company to invalidate
the query when removed from the database.

Causal responsibility is defined in terms of minimum-size
contingency sets: If a tuple 7 is an actual cause for Q, its
responsibility is p(1) = fll"\’ where T is a minimum-size
contingency set for 7. The responsibility is set to 0 when a
tuple is not an actual cause.

We can see then that Store(ss) is an actual cause with
responsibility 1; and the tuple Receives(sa, s3) is an actual
cause with responsibility % Similarly, Receives(ss,ss) and
Store(ss) are actual causes, each with responsibility % m|

As earlier said, the responsibility score can be assigned
to variables, or values of variables, that participate in a
model that contains output variables. In databases, tuples
can be seen as binary variables taking values 1 or 0, indi-
cating whether or not the tuple belongs to the database,
respectively. At the same time, these variables are the in-
put of a model that captures both the database and the
query at hand. A probability-based generalization of the re-
sponsibility score has also been applied to assign (numerical)
scores to values of features that characterize entities that are
subject to classification by means of a trained classification
model [7]. This can be done with either black-box or open
models. This way, it is possible to identify the feature values
that are most relevant to the outcome of the classification.

As we have seen, the contribution of tuples to query results
has been based on causality-based approaches, and indi-
rectly, on the concept of explanation. Actually, explanations
have been treated in many disciplines, and, in particular,
in AI, under model-based diagnosis [34], where consistency-
based and abductive are the main approaches. Some connec-
tions between actual causality in databases and both forms
of diagnosis have been established in [8,9], respectively.

Back to databases, Salimi et al. [31] have illustrated that
in some situations, responsibility may assign non-intuitive
scores to tuples. As an alternative, they introduced the
causal-effect score. This goes through creating a probabilis-
tic database [35], seeing the query as a binary random vari-
able, and computing the difference between the expected
values of the query conditioned on the presence and the
absence of the tuple under consideration. Their examples
showed that the causal-effect score better captures the intu-
ition in some cases. Yet, their effort brings up some basic
questions. Is there any notion that directly considers and
quantifies the intuitive notion of contribution? What makes
the choice of a contribution score a good one? Fortunately,
questions of this sort have been addressed in decades of re-
search in the field of game theory.

Indeed, in this work, we treat the contribution from the
viewpoint of game theory and tie it to the question of how to

SIGMOD Record, March 2021 (Vol. 50, No. 1)

properly distribute wealth (profit) among collaborating agents.
To this end, we appeal to widely applied and established con-
cepts and techniques from cooperative game theory. There,
we find as a natural candidate the popular Shapley value, in-
troduced by Lloyd Shapley in 1953 [32] as a measure of the
contribution of a player to the common wealth associated
with a multiplayer coalition game.

In our setting, the database tuples can be seen as the
players, and the query value as the numerical, joint wealth
function. The query can be Boolean, taking the values 1 or
0, for true and false, respectively. This is the case for the
query in (1). It could also be an aggregate numerical query
that maps the database into a number.

Ezample 3. (ex. 1 cont.) We add a third attribute (col-
umn), amount, to the table Receives, indicating the amount
of money received by the store in the first column from that
in the second. We also add the last two tuples, obtaining a
new database instance D'.

Receives’ | receiver | sender | amount
S2 S1 10
S3 S3 25
84 83 15
S2 S4 18
S2 S3 20

We can pose the query about the total amount received
by store sq from official stores:

Q1: sum{y | Iz(Receives' (s2, z,y) A Store(2))}. (2)

Here, we use the bag notation {-} since we care about all
of the numbers y and not just the distinct ones. Only the
last two tuples of Receives’ contribute to the sum (not the
first one, because s1 is not an official store). So, the query
answer is 18 4+ 20 = 38. Similarly, we can pose the query
about the maximum amount received by s2:

Qy: maz{z | Jy(Receives' (s2,y, z) A Store(y))}, (3)

with answer 20. Notice that these are aggregations over a
conjunctive query.

In this work, we consider only scalar aggregate queries, i.e.
without group-by. O

Using the Shapley value, we can quantify the contribu-
tion of tuples to query answers. For example, the con-
tribution of the tuple Store(ss) to the answer, 1, of the
query (1), will be Shapley (D, Store(ss)), that is, the Shap-
ley value of the tuple Store(ss) of database D w.r.t. the
query Q. Similarly, we can quantify the contribution of the
tuple Receives’(s2,54,18) of D' to the query Q;, through
Shapley o, (D', Receives'(sz2, s4,18)).

As we will see in Section 2, the general definition of the
Shapley value has a counterfactual flavor, in that interven-
tions on the players are implicitly considered. As in actual
causality in databases [27], our application of the Shapley
value allows to partition the database into endogenous and
ezogenous tuples. Only for the former, we quantify the de-
gree of contribution to query answering, whereas the latter
are taken as given and fixed. They are beyond our control
or scope of analysis. They could be, for example, tuples in-
herited from external sources or legacy data. The partition
is application dependent. For the same reason, exogenous

79

tuples are not subject to counterfactual interventions, in par-
ticular, to hypothetical deletions, and are always present.

Given the set of players and the “wealth function”, the
definition of the Shapley value of a player follows a general
pattern (see Section 2). It is also well known that the Shap-
ley value possesses properties that cast it as natural and
intuitive. Actually, the Shapley value emerged as the only
function that enjoys those desirable properties [33].

If we decide to adopt this approach, the main general ques-
tion in our context is: What is the computational cost of
computing the Shapley value of a tuple, for a fized, given
query? Since the query is fixed, this question is about data
complexity, that is, the time complexity of computing the
Shapley value for a tuple in terms of the size of the underly-
ing database D. We should mention that, although we are
computing the Shapley value for a single, particular tuple,
all the other players (tuples) have to be taken into account.

Interestingly, the answer to the above question depends on
the syntax of the query. We can provide a fairly complete
picture of the complexity of the Shapley value computation
when the query is conjunctive, or an aggregation over a con-
junctive query. However, with a proviso: as long as the
query does not contain self-joins. For example, query (1)
contains a self-join since the predicate Store appears twice
in the conjunction. It is important to notice that CQs with
self-joins have turned out to be elusive when it comes to
fully characterizing the complexity of dealing with them in
several different data management tasks.

For CQs without self-joins, we can give a precise charac-
terization of the complexity of computing the Shapley value.
Even more, we can provide a dichotomy result that tells us
that CQs of a certain syntactic form can be computed in
polynomial time (in the size of the database D), and any
other CQ is provably hard to compute, in a precise sense, as
we will see in Section 4. This classification can be extended
to some aggregations over self-join free CQs.

Ezample 4. (ex. 3 cont.) The purely conjunctive part of
query (2), namely

Q' : JyIz(Receives'(s2, z,y) A Store(2)). (4)

is self-join free. Just by looking at its syntactic shape, we
can conclude that the Shapley value of any of the tuples in
the database D’ can be computed in polynomial time in the
size of D’.

Now, let us add to the database a new table, IntStore,
displaying international stores. We denote the resulting
database by D”'.

IntStore | istore
52
53
S5

Now, the query is about international stores in receiving
relationship with official stores:

Qs: JxIy3z(IntStore(x) A Receives' (x,y, z) AStore(y)). (5)

This query is self-join free. Again, from the syntactic shape
of this formula, we can conclude that computing the Shapley
values of database tuples is computationally hard. O

Actually, the main result in this work is a dichotomy crite-
rion that tells us that, for a self-join free CQ Q, the following

80

holds: If Q is hierarchical (as we formally define in Sec-
tion 4), then Shapley,(D,7), for 7 € D, can be computed
in polynomial time in the size, |D|, of D. Otherwise, the
computation is #P-complete, which can be interpreted as
an intractable complexity class. The hierarchy condition is
purely syntactic and can be easily checked. This result can
be extended to some of the aforementioned aggregations.

It is worth mentioning here that this dichotomy result
follows the same pattern as that for answering conjunctive
queries over probabilistic databases [15,35]. In particular,
the same hierarchy condition is used. However, the proofs
for the probabilistic case cannot be used or easily adapted to
our case. We take a fresh route, at least for the harder part
of the proof (namely, the hardness part of the dichotomy).

Another interesting result we obtain states the existence
of an efficient and good approximation algorithm for the
hard cases of the computation of the Shapley value. In par-
ticular, every UCQ (and some aggregations over UCQs) has
efficient approximation algorithms for arbitrary approxima-
tion ratios.

In this section, we discussed mainly Boolean CQs and
unions thereof, where the answer to the query is 1 or 0,
and scalar, numerical aggregations over CQs. In this way,
the queries always return a number. The extension of the
results presented here to open queries with variables, such as
O(z): Jy(Receives'(sz, z,y) A Store(z)), asking now about
official stores, is rather straightforward: one keeps fixed a
particular answer, instantiates the query with it, obtaining
a Boolean query, and then one proceeds as before. (More
details are given in Section 4.)

Many more results than those presented here, and their
technical details, can be found in the conference version of
this article [23].

2. THE SHAPLEY VALUE OF TUPLES

Let us consider a set of players D, and a wealth function
(or simply, game function) G that assigns real numbers to
the subsets of the players, that is, G : P(D) — R. Here,
P(D) denotes the power set of D (i.e., the set of all subsets
of D). The contribution of a particular player p € D to the
common wealth of the game represented by G is its Shapley
value, defined by:

Shapleyo(D, p) 2L 3~ W@@u{p}w(s»
SCD\{p}
(6)

An intuitive explanation of this formula is as follows. Con-
sider the situation when we form the coalition D by selecting
random players from D, one by one, randomly and uniformly
(without replacement). The Shapley value of p is the ex-
pected (or average) contribution of p when it is added to
the set of players selected up to that point. Put differently,
when ordering the players of D in a random permutation,
how does G differ between the prefix that precedes p and
the one that ends with p? Accordingly, |S|!(|D| — |S| — 1)!
corresponds to the number of permutations of D with all
players in S coming first, then p, and then all the others.
In our case where the players are the tuples in the database
D, we view D as consisting of two parts, Dy and Dy; the for-
mer comprises the exogenous tuples and the latter the en-
dogenous tuples. A player p of the general setting becomes
an endogenous tuple 7 € Dy, and, in Formula (6), S and
S U {7} become subinstances of D,. The wealth function

SIGMOD Record, March 2021 (Vol. 50, No. 1)

G(S) becomes Q[Dy U S] — Q[Dx]. Note that Q[Dx] is the
result of the query on the subinstance that contains all ex-
ogenous and none of the endogenous tuples. The subtraction
of Q[D] is due to the formal requirement of the wealth func-
tion underlying the Shapley value to be zero on the empty
set of players. The Shapley value of a tuple then becomes:

Shapley (D, T) def (7)

> IS\-(\Dn‘ID*nllls‘ — Do, usuiry - QDU S)).

Ezample 5. Consider a very simple database instance D
represented by the following table.

Players | name amount
john 5
joe 2
T sue 4
mary 5
peggy 14

Here we assume that all tuples are endogenous, that is,
D, = D and Dy = (). The query

Q: sum{y | JxPlayers(z,y)}

represents the sum of numbers in the last attribute. We
wish to quantify, via the Shapley value, the contribution of
the selected tuple 7, namely Players(sue,4), to the answer.

The table above does not encode any particular order
among the tuples. One particular subset S of D \ {7} con-
tains the tuples indicated by an arrow in the table below.
The second to last tuple is not chosen. One possible permu-
tation of D, and also of S, is given by the auxiliary tuple
numbers on the left-hand side. It is also shown in the figure.
The numbers at the lower-right corners show the total wealth
of the players in the game so far. With this particular per-
mutation, the contribution of 7, namely (Q[SU{7}] — Q[S])
in the sum in (7), is 4.

Players | name amount
#2 | john 5 —
#1 joe 2 —
#4 sue 4 T
#5 | mary 5 X
#3 | peggy 14 «—

A

30

This contribution of 4 will appear in the sum as many
times as the number of permutations of S, that is, 6 times.
If we had not only tuple #5, but also a sixth one, say #6,
outside S, we would multiply 4 x 6 by 2 (for the two possible
permutations of the tuples left outside S). m|

It is well-known that, in various instantiations of coalition
games, the computation of the Shapley value for a player

SIGMOD Record, March 2021 (Vol. 50, No. 1)

can be hard to compute, actually #P-hard. This means it
is at least as difficult as any problem in the class #P that
contains the computational problems of counting the solu-
tions of problems in the class NP, that is, decision problems
that can be solved in polynomial time by means of a non-
deterministic Turing machine [3]. Among the best-known
and hard problems in the class #P, we find #SAT, i.e., the
problem of computing the number of satisfying truth valu-
ations for a propositional formula. It should be clear that
this problem is at least as hard as SAT, since a formula is
satisfiable if and only if the number of solutions is nonzero.

3. COMPARING THE MEASURES

We now illustrate the differences among the contribution
measures we mentioned in the previous sections, namely re-
sponsibility, causal-effect, and Shapley value, on several ex-
amples. We begin with the following example, taken from
Salimi et al. [31], that was used as a motivation to introduce
an alternative to the notion of causal responsibility, that of
causal-effect.

Example 6. Consider a database D defined via a table
Edge with two attributes. Each tuple in the table represents
an edge of the following graph.

Here, we assume that all edges e; are endogenous tuples.
Let Qqp be the Boolean query (definable in, e.g., Datalog,
or as a UCQ) that determines whether there is a path from
a to b. Let us compute the contribution of different edges
e; to the query result. Intuitively, we expect e; to have the
highest value as it provides a direct path from a to b, while
eo contributes to a path only in the presence of e3, and eq
enables a path only in the presence of both es and eg.

All tuples in D are actual causes since every tuple appears
in a path from a to b. It is easy to verify that all the tuples
in D have the same causal responsibility, %, which may be
considered as counter-intuitive. In that sense, the causal-
effect and Shapley value return more intuitive results, as we
have that [31]:

CEo,,(D,e1) = 0.65625
CEo,,(D,e:) = 0.21875, for i € {2,3}
CEo,,(D,e:) = 0.09375, for i € {4,5,6}
where we use the notation CEg_,(D, e;) for the causal effect
of e; € D w.r.t. Qup, and:
Shapleyg (D, e1) = 0.5833
Shapleyg (D, e;) = 0.1333, for i € {2,3}
Shapleyy (D, e;) = 0.05, for i € {4,5,6}
(The detailed computations can be found in [23].) O

Note that the responsibility measure is fundamentally de-
signed for non-numerical queries, and it is not at all clear
whether it can incorporate the numerical contribution of a
tuple (e.g., recognizing that some tuples contribute more
than others due to high numerical attributes). Therefore,
in the following example, we only consider the causal-effect
measure and the Shapley value.

81

Ezample 7. Consider again the query Qs in (3), and as-
sume that all the tuples in the table Receives’ in Example
3 are exogenous, while the tuples in the table Store are en-
dogenous. It is rather straightforward to see that:

CEgy(D, Store(sz2)) = Shapleyg, (D, Store(sz2)) =0

as this tuple has not impact on the query result (that is, the
addition of this tuple to any subset of the endogenous tuples
does not change the query result).

For the other two tuples of Store, a simple computation
shows that:

CEg4(D, Store(ss)) = Shapley g (D, Store(ss)) = 11
CEgy(D, Store(sa)) = Shapley g, (D, Store(sa)) = 9. O

These two examples show that the numbers for the causal-
effect measure and the Shapley value may coincide in some
cases, and be different in other cases. In both examples,
however, the two measures rank the tuples similarly accord-
ing to their contribution to the query result.

We showed in [23] that the causal-effect score coincides
with another popular score used in cooperative game theory
and related areas, namely the Banzhaf Power Index [16]. Its
definition is similar to that of the Shapley value, but instead
of considering permutations of subsets of players, only sub-
sets of players are considered, which has advantages in some
applications. In general, its computation is also intractable
[17]. It is known that the Shapley value and Banzhaf power
index may produce different rankings in general [30].

While the justification to measuring tuple contribution
using one measure over the other is yet to be established,
we believe that the suitability of the Shapley value is backed
by the aforementioned theoretical justification as well as its
massive adoption in a plethora of fields.

4. COMPUTATIONAL COMPLEXITY

We now discuss the computational complexity of calculat-
ing the Shapley value of a database tuple with respect to a
database query, either exactly or approximately.

4.1 Conjunctive Queries

We first discuss the case of Boolean CQs, that is, CQs
such as Q of Equation (1) where all variables are existen-
tially quantified. For the fragment of CQs without self-joins
(i-e., no relation name is mentioned more than once), we can
classify all the queries into tractable (polynomial-time) and
intractable (#P-hard) ones. Interestingly, the tractability
criterion is the same as that of query answering over tuple-
independent probabilistic databases [13]: being hierarchical.
(We recall the precise definition later on.)

THEOREM 4.1. Let Q be a Boolean CQ without self-joins.
If Q is hierarchical, then Shapley (D, T) can be computed in
polynomial time, given D and 7. Otherwise, the problem is

#P-hard.

Recall that #P is the complexity class of problems that can
be defined as that of counting the witnesses of a problem in
NP. A Boolean CQ Q is hierarchical if for every two vari-
ables z and y it holds that the set of atoms (conjuncts) that
contain x either contains, is contained in, or is disjoint from
the set of atoms that contain y. For example, every CQ
with at most two atoms (e.g., the query Q} in (4)) is hier-
archical. The query Qs of Example 4, on the other hand,

82

is not hierarchical, since the sets of atoms that contain the
variables z and y are {IntStore(z), Receives'(z,y,z)} and
{Receives'(z,y, z), Store(y)}, respectively, which have nei-
ther disjointness nor containment between them.

For illustration, we conclude from Theorem 4.1 that the
Shapley value is tractable for Q) of Equation (4), but in-
tractable for Qs of Equation (5). On the other hand, the
theorem does not say anything about the complexity of Q
in Equation (1), since Q has a self-join (as it contains two
occurrences of the Store relation). Nevertheless, an easy re-
duction from the case of Q3 shows that the Shapley value is
#P-hard to compute for Q as well (see, e.g., [29]).

The algorithm for hierarchical Boolean CQs Q without
self-joins is a reduction to the following counting problem:
given a database D and a number k, how many sets of k
tuples from D satisfy Q7 (The problem of counting the
subsets of D that satisfy Q, regardless of their size, has been
the subject of recent studies [1,22].) In [23] we show that
when Q is a hierarchical CQ without self-joins, this problem
is solvable in polynomial time.

Similarly to Dalvi and Suciu [14], our proof of hardness
in [23] consists of two steps. First, we prove hardness for
the simplest non-hierarchical query

Orst: JzTy(R(z) A S(z,y) AT (y)) .-

Then, we reduce the computation of Shapleyy (D,) to
that of Shapley (D, 7) for any non-hierarchical CQ Q with-
out self-joins. The second step is the same as that of Dalvi
and Suciu [14]. The proof of the first step is by a reduction
from the problem of computing the number of independent
sets of a bipartite graph. Our reduction adopts a technique
that Aziz and Keijzer [4] used for proving the hardness of
computing the Shapley value for a matching game on un-
weighted graphs: solve several instances of the problem in
order to construct a full-rank set of linear equations.

To generalize our complexity results to non-Boolean CQs,
we apply the aforementioned standard approach of convert-
ing the CQ into a Boolean CQ by referring to each out-
put variable as a constant. The idea is that we view every
answer as a separate Boolean CQ. (Recall that we are us-
ing data complexity.) Hence, for a CQ Q we consider the
Boolean version Q, where each free (output) variable be-
comes a constant. When Q, is a Boolean CQ without self-
joins, the complexity of calculating the Shapley value of a
tuple 7 for any answer to Q is the same as that of calcu-
lating Shapleyo, (D, 7). In particular, we can compute it in
polynomial time if Qp is hierarchical, and it is #P-hard oth-
erwise. For example, in the following variation of Qs in (5),
we can efficiently compute the Shapley value of every tuple
to every query answer.

Q'(x): IyIz(IntStore(x) A Receives'(x,y, z) A Store(y))
This is because the Boolean CQ

Qy,: JyIz(IntStore(s2) A Receives'(s2,y, z) A Store(y)) .
is a hierarchical CQ.

4.2 Aggregate Queries

Next, we consider aggregate queries. For simplicity of pre-
sentation, the aggregate queries that we consider here have
the form Q(D) = afz | Q'(D)} when applied to a database
D. Here, Q' is a CQ, z is one of the free variables of Q’
that we view as a numerical attribute, and « is an aggregate

SIGMOD Record, March 2021 (Vol. 50, No. 1)

operator that maps a bag of numbers into a single number.
Recall that {-} is used here for bag notation. Examples of
« include the functions sum, min, maz, average and so on.
We call Q' the underlying CQ of Q.

REMARK 1. In the conference version of this article [23],
we consider a more general class of queries where, instead
of the wvariable z, we allow for any feature function that
transforms a given tuple into a number (e.g., the product
of two attributes). The results we state here hold for this
generalized model as well.

As expected, the complexity of an aggregate query de-
pends on the complexity of its underlying CQ. The following
theorem generalizes the hardness side of Theorem 4.1 and
states that it is #P-hard to compute Shapley 5(D, T) when-
ever the underlying CQ is a non-hierarchical CQ without
self-joins. The only exception is the case where Q is a con-
stant query, that is, Q(D) = Q(D’) for all databases D and
D’—in that case, Shapleyo(D, 7) = 0 always holds.

THEOREM 4.2. Let Q be a fized aggregate query where the
underlying CQ is a non-hierarchical CQ without self-joins.
If Q is not constant, then computing Shapleyo(D,T), given
D and 7, is #P-hard.

For instance, it follows from Theorem 4.2 that, computing
Shapley (D, 7) for the query

Qu: afz | (IntStore(z) A Receives' (z,y, z) AStore(y))} (8)

is hard for all @ € {min, maz, sum, average}, and, in fact,
for any aggregate function « that is not a constant.

What about the other direction? Does the tractability of
the Shapley value for the underlying CQ imply the tractabil-
ity of the Shapley value for the whole aggregate query? We
do not have any result that is as general as that of Theo-
rem 4.2, but we can show that this is the case for the aggre-
gate operator sum (and count as a special case). This is a
simple corollary of Theorem 4.1 that we obtain by applying
the linearity of expectation.

COROLLARY 4.3. Let Q(D) = sumf{z | Q'(D)}. If
is a hierarchical CQ without self-joins, then Shapleyo(D, T)
can be computed in polynomial time, given D and T.

As an example, the Shapley value can be computed in
polynomial time for the query Q; of Example 3, because the
underlying CQ has only two atoms, and is then hierarchical.

The complexity of computing the Shapley value for other
aggregate queries remains an open problem for the general
case where the underlying CQ is a hierarchical CQ with-
out self-joins. We can, however, state a positive result for
maz and min, for the special case where the underlying CQ
consists of a single atom (i.e., aggregation over a single re-
lation). As an example, computing Shapley (D,) can be
done in polynomial time for:

Q: {maz{z | Iy(Receives'(s2,y,2))}
However, we do not know whether this is also the case for

the query Qo of Example 3.

4.3 Approximation

The complexity results presented so far imply that com-
puting the exact Shapley value is often intractable. Nev-
ertheless, the picture is far more optimistic when allowing

SIGMOD Record, March 2021 (Vol. 50, No. 1)

approximation with strong precision guarantees. A conven-

tional feasibility notion of arbitrarily-tight approximations

is via efficient approximation schemes such as the Fully

Polynomial-Time Approzimation Scheme (FPRAS for short).
An FPRAS for a numeric function f is a randomized algo-

rithm A(z,¢€,d), where z is an input for f and €,d € (0,1),

that returns an e-approximation of f(z) with probability

1—§ (where the probability is over the randomness of A) in

time polynomial in z, 1/€ and log(1/§). To be more precise,

we distinguish between an additive (or absolute) FPRAS:

Pr [f(:v) —e < A(z,6,0) < f(:c)—|—e] >1-6
and a multiplicative (or relative) FPRAS:

Pr f@) < A(z,€,0) < (1+¢€)f(x)

>1-9.
1+e€ -

Using the Chernoff-Hoeffding bound, we easily get an ad-
ditive FPRAS of Shapleyo(D,) when Q is any monotone
Boolean query computable in polynomial time, by simply
taking the ratio of successes over O(log(1/6)/€?) trials of
the following experiment:

1. Select a random permutation (¢1,...,¢,) over the set
of endogenous tuples in the database,

2. Suppose that 7 = ¢;, and let D;—1 = DU{t1, ..., ti—1}.
If Q(D;—1) is false and Q(D;—1 U{7}) is true, then re-
port “success;” otherwise, “failure.”

Moreover, the additive FPRAS extends to non-Boolean CQs
in the same manner described in Section 4.1.

In general, the existence of an additive FPRAS for a func-
tion f does not guarantee the existence of a multiplicative
one, since f(z) can be very small. For example, we can
get an additive FPRAS of the satisfaction of a propositional
formula over Boolean i.i.d. variables by, again, sampling the
averaging, but there is no multiplicative FPRAS for such
formulas unless NP C BPP. Nevertheless, the situation is
different for Shapleyo(D,7) when Q is a CQ, and even a
UCQ), since the Shapley value is never too small. In partic-
ular, we have the following “gap” property.

ProPOSITION 4.4. Let Q be a fized Boolean UCQ. Then
Q satisfies the gap property: there is a polynomial p such
that for all databases D and tuples T of D it is the case that
Shapley (D, 7) is either zero or at least 1/(p(|D|)).

It follows from Proposition 4.4 that a multiplicative
FPRAS can be obtained using the above sampling algo-
rithm, possibly with a different (yet still polynomial) number
of samples. Hence, we have the following.

COROLLARY 4.5. For every fired UCQ), the Shapley value
has both an additive and a multiplicative FPRAS.

Observe that Corollary 4.5 does not make any assump-
tion about self-joins—it allows for any UCQ. As we explain
shortly, it ceases to hold once negation is allowed. Corol-
lary 4.5 also generalizes to a multiplicative FPRAS for sum-
mation over CQs, in the case where all the values in the sum-
mation have the same sign (i.e., they are either all negative
or all non-negative). In other words, there is a multiplica-
tive FPRAS for the query Q(D) = sum{z | Q' (D)} under
the assumption that all of the values that x is assigned have
the same sign.

83

What changes when we allow for negation? This problem
has been studied by Reshef et al. [29]. On the positive side,
the additive approximation is tractable even when UCQs are
allowed to use (safe) negation.

PROPOSITION 4.6. ([29]) For every fired UCQ with nega-
tion, the Shapley value has an additive FPRAS.

Yet, the “gap” property can be violated when CQs are
allowed to use negation. Reshef et al. [29] have shown that
we lose this property when considering CQs with negated
atoms. For example, when considering the query

Jx3y(Store(x) A Receives(z,y) A ~Store(y))

that differs from the query Q of Example 1 only by the
negation of the last atom, the Shapley value of a tuple may
be as small as 27 UPD | In fact, a CQ with negation almost
always violates the gap property [29, Theorem 5.1].

While the gap property is a technique for extending ad-
ditive approximations into multiplicative ones, its violation
does not preclude the existence of any multiplicative ap-
proximation. Nevertheless, Reshef et al. [29] have shown
that there are CQs with negation where a multiplicative ap-
proximation is infeasible, since it is already NP-hard to de-
termine whether the Shapley value is nonzero. An example
is the following CQ:

F2FyF2Iw(T(2) A —R(z) A —R(y) A R(2) A R(w)
A S(z,y, z,w)).

S. CONCLUSIONS

Explanations in AI, Machine Learning, in particular, and
Data and Knowledge Management have become prominent
and active areas of research. There are different notions
about, and approaches to, explanations in those fields (and
more generally and traditionally, in Science and Philosophy).
There is still much debate about what is an explanation, and
even more, about what is a good ezplanation.

Many approaches in the broad areas we just mentioned
are based on some sort of causal analysis, and more specif-
ically, on counterfactual analysis. We could say that the
Shapley value has a rather implicit counterfactual compo-
nent, through the average of the game outcome depending
on the presence or not of a particular player, under different
scenarios related to the other players.

Explanations are usually, but not always, expressed as nu-
merical scores that represent the importance of a player, a
database tuple, a feature value (c.f. below), etc., for the out-
come of a function, a database, or a computational model.
In this work, we have adopted this approach to the expla-
nations for query answers from relational databases.

In Section 1, we mentioned the causal-effect [31] as an
explanation score for database tuples and query answering,
as an alternative to responsibility. All of our complexity
results for the exact computation of the Shapley value are
also applicable to the causal-effect measure (and Banzhaf
power index). However, we can show that the “gap” property
does not hold for this measure, and the question of whether
there exists a multiplicative approximation remains open for
future investigation.

The Shapley value has been used in a similar yet different
manner for another fundamental task in data management:
measuring the responsibility of a tuple to the level of incon-
sistency [28,36]. For such a measure to be applicable, one

84

needs first to adopt a measure for quantifying the amount
of inconsistency of the database. More concretely, such a
measure should indicate the extent to which the database’s
integrity constraints are violated. In a more recent work [24],
we have studied the complexity of the Shapley value of tuples
under various natural measures of inconsistency: the num-
ber of violations, the number of tuples that participate in
violations, the number of repairs, and the minimal number
of tuples that one needs to delete to retain consistency [5].

It is worth mentioning, for a broader view of things, that
the Shapley value has been used lately in machine learning,
to quantify the relevance of a feature value for the outcome of
a model (e.g., the result of a classifier), which is important
in Explainable AI (XAI). In this area, it is known as the
SHAP-score [25]; and has been applied both with black-box
and open-box models. Only the input/output relation is
needed for its computation. However, the availability of the
model may make the computation much more efficient [2,37],
actually tractable in some cases. In [7], the SHAP-score was
experimentally compared with other scores, such as, RESP,
an adaptation of the responsibility score to the classification
setting, and the Rudin-score for FICO data [11].

There are many directions in which our and related work
could be extended. Ome that looks particularly promising
and relevant has to do with the definition or computation
of explanation scores in combination with domain knowl-
edge or, semantics, in more general terms [6]. In particular,
this additional knowledge could inform the scores about the
explanations, such as database tuples, feature values, etc.,
that become useful, or more technically, actionable or algo-
rithmic recourses [21], i.e. something we can do something
with. For example, if a loan application is rejected due to
blurry personal payment history, we might be in a position
to clarify our records. However, if it is due to our low ed-
ucational level, it might be too late (or impossible) to do
anything about it.

Acknowledgments

The work of L. Bertossi was funded by ANID - Millen-
nium Science Initiative Program- Code ICN17002. The work
of Ester Livshits, Benny Kimelfeld, and Moshe Sebag was
supported by the Israel Science Foundation (ISF), grants
1295/15 and 768/19, and the Deutsche Forschungsgemein-
schaft (DFG) project 412400621 (DIP program). The work
of Ester Livshits was also supported by the Technion Hiroshi
Fujiwara Cyber Security Research Center and the Israel Cy-
ber Bureau.

6. REFERENCES

[1] A. Amarilli and B. Kimelfeld. Model counting for
conjunctive queries without self-joins. CoRR,
abs/1908.07093, 2019. To appear at ICDT 2021.

[2] M. Arenas, P. Barcel6, L. Bertossi, and M. Monet.
The tractability of SHAP-scores over deterministic
and decomposable boolean circuits. In Proceedings of
AAAI 2021. CoRR abs/2007.14045.

[3] S. Arora and B. Barak. Computational Complezity - A
Modern Approach. Cambridge University Press, 2009.

[4] H. Aziz and B. de Keijzer. Shapley meets Shapley. In
STACS, pages 99-111, 2014.

SIGMOD Record, March 2021 (Vol. 50, No. 1)

(5]

(6]

(7l

8

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

L. Bertossi. Repair-based degrees of database
inconsistency. In LPNMR, volume 11481 of LMCS,
pages 195-209. Springer, 2019.

L. Bertossi. Declarative approaches to counterfactual
explanations for classification. CoRR, abs/2011.07423,
2020. Extended version of RuleML+RR’20 paper.

L. Bertossi, J. Li, M. Schleich, D. Suciu, and

Z. Vagena. Causality-based explanation of
classification outcomes. In DEEM@SIGMOD, pages
6:1-6:10. ACM, 2020.

L. Bertossi and B. Salimi. Causes for query answers
from databases: Datalog abduction, view-updates, and
integrity constraints. Int. J. Approz. Reason.,
90:226-252, 2017.

L. Bertossi and B. Salimi. From causes for database
queries to repairs and model-based diagnosis and
back. Theory Comput. Syst., 61(1):191-232, 2017.

P. Buneman, S. Khanna, and W. C. Tan. Why and
where: A characterization of data provenance. In
ICDT, volume 1973 of Lecture Notes in Computer
Science, pages 316-330. Springer, 2001.

C. Chen, K. Lin, C. Rudin, Y. Shaposhnik, S. Wang,
and T. Wang. An interpretable model with globally
consistent explanations for credit risk. CoRR,
abs/1811.12615, 2018.

H. Chockler and J. Y. Halpern. Responsibility and
blame: A structural-model approach. J. Artif. Intell.
Res., 22:93-115, 2004.

N. N. Dalvi, C. Ré, and D. Suciu. Probabilistic
databases: diamonds in the dirt. Commun. ACM,
52(7):86-94, 20009.

N. N. Dalvi and D. Suciu. Efficient query evaluation
on probabilistic databases. In VLDB, pages 864-875.
Morgan Kaufmann, 2004.

N. N. Dalvi and D. Suciu. The dichotomy of
probabilistic inference for unions of conjunctive
queries. J. ACM, 59(6):30:1-30:87, 2012.

P. Dubey and L. S. Shapley. Mathematical properties
of the Banzhaf power index. Mathematics of
Operations Research, 4(2):99-131, 1979.

G. Greco, F. Lupia, and F. Scarcello. Structural
tractability of Shapley and Banzhaf values in
allocation games. In IJCAI, pages 547-553, 2015.

T. J. Green and V. Tannen. The semiring framework
for database provenance. In PODS, pages 93-99.
ACM, 2017.

J. Y. Halpern. A modification of the Halpern-Pearl
definition of causality. In IJCAI pages 3022-3033.
AAAT Press, 2015.

J. Y. Halpern and J. Pearl. Causes and Explanations:
A Structural-Model Approach. Part I: Causes. The
British Journal for the Philosophy of Science,
56(4):843-887, 2005.

A. Karimi, B. J. von Kiigelgen, B. Schélkopf, and

SIGMOD Record, March 2021 (Vol. 50, No. 1)

(22]

23]

(24]

(25]

[26]

27]

28]

29]

(30]

(31]

(32]
(33]

(34]

(35]

(36]

37]

I. Valera. Algorithmic recourse under imperfect causal
knowledge: a probabilistic approach. In NeurIPS,
2020.

B. Kenig and D. Suciu. A dichotomy for the
generalized model counting problem for unions of
conjunctive queries. CoRR, abs/2008.00896, 2020.

E. Livshits, L. Bertossi, B. Kimelfeld, and M. Sebag.
The shapley value of tuples in query answering. In

ICDT, volume 155 of LIPIcs, pages 20:1-20:19, 2020.
E. Livshits and B. Kimelfeld. The shapley value of
inconsistency measures for functional dependencies.
CoRR, abs/2009.13819, 2020. To appear at ICDT
2021.

S. M. Lundberg, G. Erion, H. Chen, A. D. Grave,

J. Prutkin, B. Nair, R. Katz, J. Himmelfarb,

N. Bansal, and S.-I. Lee. From local explanations to
global understanding with explainable Al for trees.
Nature Machine Intelligence, 2(1):56-67, 2020.

A. Meliou, W. Gatterbauer, J. Y. Halpern, C. Koch,
K. F. Moore, and D. Suciu. Causality in databases.
IEEFE Data Eng. Bull., 33(3):59-67, 2010.

A. Meliou, W. Gatterbauer, K. F. Moore, and

D. Suciu. The complexity of causality and
responsibility for query answers and non-answers.
Proc. VLDB Endow., 4(1):34-45, 2010.

K. Mu, W. Liu, and Z. Jin. Measuring the blame of
each formula for inconsistent prioritized knowledge
bases. Journal of Logic and Computation,
22(3):481-516, 02 2011.

A. Reshef, B. Kimelfeld, and E. Livshits. The impact
of negation on the complexity of the shapley value in
conjunctive queries. In PODS, pages 285-297. ACM,
2020.

D. G. Saari and K. K. Sieberg. Some surprising
properties of power indices. Games Econ. Behav.,
36(2):241-263, 2001.

B. Salimi, L. Bertossi, D. Suciu, and G. V. den
Broeck. Quantifying causal effects on query answering
in databases. In TaPP. USENIX Association, 2016.
L. S. Shapley. A Value for n-Person Games. RAND
Corporation, Santa Monica, CA, 1952.

L. S. Shapley and A. E. Roth. The Shapley value :
essays in honor of Lloyd S. Shapley. Cambridge, 1988.
P. Struss. Model-based problem solving. In Handbook
of Knowledge Representation, volume 3 of Foundations
of Artificial Intelligence, pages 395—465. Elsevier, 2008.
D. Suciu, D. Olteanu, C. Ré, and C. Koch.
Probabilistic Databases. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2011.
M. Thimm. Measuring inconsistency in probabilistic
knowledge bases. In UAI pages 530-537, 2009.

G. Van den Broeck, A. Lykov, M. Schleich, and

D. Suciu. On the tractability of SHAP explanations.
In Proceedings of AAAI 2021. CoRR abs/2009.08634.

85

