Technical Perspective: Optimistically Compressed
Hash Tables & Strings in the USSR

Marcin Zukowski
) Snowflake Inc.
marcin.zukowski@snowflake.com

Hash tables are possibly the single most researched ele-
ment of the database query processing layers. There are
many good reasons for that. They are critical for some key
operations like joins and aggregation, and as such are one
of the largest contributors to the overall query performance.
Their efficiency is heavily impacted by variations of work-
loads, hardware and implementation, leading to many re-
search opportunities. At the same time, they are sufficiently
small and local in scope, allowing a starting researcher, or
even a student, to understand them and contribute novel
ideas. And benchmark them... Oh, the benchmarks... :)

This paper by Tim Gubner, Viktor Leis and Peter Boncz
addresses less frequently researched aspects of hash tables, in
particular string processing, and presents some useful real-
system implementation ideas. It improves the main aspects
of the (in-memory) hash table performance, CPU operations
and memory accesses, with 3 techniques.

Domain-Guided Prefix Compression (DGPC), a combina-
tion of FOR coding and bit packing, is used to reduce the
memory footprint. While similar methods have been pro-
posed at the scan level, authors discuss how the range meta-
data can be propagated up and used in the higher layers of
the query. This technique, while not discussed much in liter-
ature, is used by some systems and allows various optimiza-
tions. For example, the discussed idea of using this info to
avoid the overflow checks is beneficial for both interpreted
and compiled systems. In the case of this paper, DGPC sig-
nificantly improves the memory usage and hence cache effi-
ciency, with negligible processing overhead. Unfortunately,
for optimal performance, the implementation complexity is
far from trivial, esp. in a not-compiled engine.

Optimistic Splitting proposes dividing the per-row data
stored in the hash table into a frequently accessed hot-set,
and rarely accessed cold-set. The authors present a few con-
crete ideas for such a split, for example overflows in aggrega-
tions. This idea can be generalized to other techniques that
pull information from later stages to earlier-accessed data
structures. I am sure we will see additional ideas in this
space in the future. Importantly, techniques like this can
have a negative effect on performance, so triggering them in
a safe and robust manner is very important.

The final technique, Unique Strings Self-aligned Region

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2021 ACM 0001-0782/08/0X00 ...$5.00.

SIGMOD Record, March 2021 (Vol. 50, No. 1)

(USSR), besides having a cool name, provides a simple but
powerful mechanism that can improve string processing per-
formance without the complexity of maintaining a full, global
string dictionary. USSR does all that without changing the
data format (assuming strings are kept as pointers). The
USSR-aware operations can easily and quickly determine
which strings belong to the USSR Data Region and opti-
mize for them. This can dramatically simplify the complex-
ity of implementing this in an existing system. At the same
time, the price paid here is that USSR is partial and, while
beneficial in many cases, in some situations it will not work.

If we treat the self-aligned block as the main building idea
behind USSR, the implementation from this paper can be
seen as one of the many choices from a broad design space:

e All strings stored in USSR are unique. An implemen-
tation without this can still provide some benefits

e A single USSR structure is used for all columns. With,
e.g., per-attribute structures, some additional optimiza-
tions are possible (e.g., narrower codes for low cardi-
nality key columns, useful for DGPC).

e The paper tightly couples the Data Region and the
supporting Linear Hash Table structure, but other op-
tions could be used for the latter structure.

e Data Region size is fixed at 512KB. It is possible to
envision different sizes, or even dynamic sizing.

e USSR stores strings 8-byte aligned and preceded by
hash values. Both of these reduce space utilization
and are not strictly needed.

USSR presents some additional opportunities, common to
dictionary-compressed strings, that are not discussed in the
paper. For example, USSR-strings can use faster serializa-
tion methods than other, non-persistent, strings. Another
opportunity is fast memoization of various operations for
USSR-strings during processing.

While simple in many aspects, USSR also introduces some
implementation challenges. For example, some database op-
erations (e.g., serializing data to disk or network) might not
produce original string pointers, removing the ability to ben-
efit from USSR-strings further in the query plan. Addition-
ally, maintaining the USSR encoding can be tricky in par-
allel and, especially, distributed systems. While all these
challenges can be addressed, they can significantly add to
the implementation complexity.

In summary, if you are a database researcher or, especially,
a database system engineer, do study this paper. Problems
discussed here are real, the improvement ideas are valuable
not only for hash table processing, and some presented tech-
niques are (relatively) easy to add to an existing system.

59

