Efficient Directed Densest Subgraph Discovery

Chenhao Ma
Department of Computer
Science, The University of
Hong Kong
chma2@cs.hku.hk

Laks V.S. Lakshmanan
Department of Computer
Science, The University of
British Columbia
laks@cs.ubc.ca

ABSTRACT

Given a directed graph G, the directed densest subgraph
(DDS) problem refers to the finding of a subgraph from
G, whose density is the highest among all the subgraphs
of G. The DDS problem is fundamental to a wide range
of applications, such as fraud detection, community mining,
and graph compression. However, existing DDS solutions
suffer from efficiency and scalability problems: on a three-
thousand-edge graph, it takes three days for one of the best
exact algorithms to complete. In this paper, we develop an
efficient and scalable DDS solution. We introduce the no-
tion of [z, y]-core, which is a dense subgraph for G, and
show that the densest subgraph can be accurately located
through the [z, y]-core with theoretical guarantees. Based
on the [z, y]-core, we develop both exact and approximation
algorithms. We have performed an extensive evaluation of
our approaches on eight real large datasets. The results
show that our proposed solutions are up to six orders of
magnitude faster than the state-of-the-art.

1. INTRODUCTION

In emerging systems that manage complex relationships
among objects, directed graphs are often used to model the
relationships [12, 4, 1, 17]. For example, in online microblog-
ging services (e.g., Twitter and Weibo), the “following” re-
lationships between users can be captured as directed edges
[12]. Figure la depicts a directed graph of the following re-
lationship for five users in a microblogging network. Here,
Alice has a link to David because she is a follower of David.
As another example, in Wikipedia, each article can be con-
sidered as a vertex, and each link between two articles is
represented by a directed edge from one vertex to another
[4]. As yet another example, the Web can also be viewed as
a huge directed graph [1].

In this paper, we study the problem of finding the densest
subgraph from a directed graph G, which was first proposed
in [13]. Conceptually, this directed densest subgraph (DDS)
problem aims to find two sets of vertices, S* and 7™, from

(©ACM 2020. This is a minor revision of the paper entitled “Efficient
Algorithms for Densest Subgraph Discovery on Large Directed Graphs”,
published in SIGMOD’20, ISBN 978-1-4503-6735-6/20/06, June 14-19,
2020, Portland, OR, USA. DOI: https://doi.org/10.1145/3318464.3389697

SIGMOD Record, March 2021 (Vol. 50, No. 1)

Yixiang Fang
School of Data Science, The
Chinese University of Hong
Kong, Shenzhen
fangyixianghku@gmail.com

Wenjie Zhang
School of Computer Science
and Engineerinng, University

of New South Wales
wenjie.zhang@unsw.edu.au Ixue@cse.unsw.edu.au

Reynold Cheng
Department of Computer
Science, The University of
Hong Kong
ckcheng@cs.hku.hk

Xuemin Lin
School of Computer Science
and Engineerinng, University

of New South Wales

(Ellen)
(Carl)/ ‘)

(Alice) (Bob)

(a) A directed graph (b) Directed DS (c) Undirected DS
Figure 1: Ilustrating the problem of densest subgraph dis-
covery (or DDS problem) on the directed graph.

G, where (1) vertices in S™ have a large number of outgoing
edges to those in T, and (2) vertices in T receive a large
number of edges from those in S*. To understand DDS, let
us explain its usage in fake follower detection [20, 11] and
community mining [15]:

Figure 2: An example of fake follower detection.

e Fake follower detection [11] aims to identify fraudulent
actions in social networks [11]. Figure 2 illustrates a mi-
croblogging network, with edges representing the “following”
relationship. By issuing a DDS query, two sets of users S™
and T*, are returned. Compared with other users, d (in
T*) has unusually a huge number of followers (a,e, f, g, h)
in S*. It may be worth to investigate whether d has bribed
the users in S* for following him/her.

e Community mining [15]. In [15], Kleinberg proposed the
hub-authority concept for finding web communities, based on
a hypothesis that a web community is often comprised of a
set of hub pages and a set of authority pages. The hubs are
characterized by the presence of a large number of edges to
the authorities, while the authorities often receive a large
number of links from the hubs. A DDS query can be issued
on this network to find hubs and authorities. In Figure 3,
for example, websites in S™ can be viewed as hubs providing

33

cars.usnews.com

\\ -

Figure 3: An example of web community.

car rankings and recommendations, while websites in T
play the roles of authorities, as the official websites for well-
known automakers.

Now let us give more details about the DDS query [13,
14, 5, 2]. Given a directed graph G = (V, E) and sets of
(not necesssarily disjoint) vertices S, C V, the density
of the directed subgraph induced by (S,7T) is the number
|E(S,T)| of edges linking vertices in S to the vertices in
T over the square root of the product of their sizes, i.e.,

p(S,T) = % Based on this definition, the DDS prob-
lem aims to find a pair of sets of vertices, S* and T, such
that p(S*,T*) is the maximum among all possible choices
of S,T C V. For instance, for the directed graph in Fig-
ure la, the DDS is the subgraph induced by S*={a, b} and
T*={c,d}, (see Figure 1b). Its density is p* = \/% = 2.
For each of the aforementioned applications, we can verify
that the required solution corresponds to a DDS.

In undirected graphs, the density of a graph G = (V, E)
is defined to be p(G) = % [9], which is different from that
in directed graphs. Hence, finding the densest subgraph in
undirected graphs (DS problem for short) amounts to find-
ing the subgraph with the highest average degree [9, 7]. For
example, for the undirected graph G in Figure lc, the DS is
G itself and its density is g, since there is no subgraph with
higher density. We can observe that when S =T, the den-
sity of a directed graph reduces to the classical notion of the
density of undirected graphs. Thus, it naturally generalizes
the notion of the density of undirected graphs. On the other
hand, the solution to the DDS problem returns two sets, S*
and T, which provide the advantage to distinguish different
roles of vertices in the above applications.

Impact. The densest subgraph problem lies at the core
of large scale data mining [2]. DDS is an important primi-
tive for real-world applications, such as fake follower detec-
tion and community detection. Theoretically, the densest
subgraph problem closely connects to fundamental graph
problems such as network flow and bipartite matching [21].
Hence, the DDS problem receives much attention from the
communities of the database, data mining, theory, and net-
work analysis.

State-of-the-art. For a directed graph G=(V, E), we
denote its number of vertices and edges by n and m respec-
tively. In the literature, both exact [5, 14] and approxima-
tion algorithms [13, 5, 2] for DDS have been studied. The
state-of-the-art exact algorithm is a flow-based algorithm
[14], which mainly involves two nested loops: the outer loop
enumerates all the n? possible values of % 1< |87 <
n), while the inner loop computes the maximum density by
using binlarly search on a flow network, regarding a specific

s

value of R The inner and outer loops take O(nmlogn)

34

Table 1: Summary of exact algorithms.

Algorithm | Time complexity
LP-Exact [5] Q(nf)
Exact [14] O(n>mlogn)

DC-Exact (Ours) O(k - nmlogn)
Note: Theoretically, k < n?. But, k < n?, in practice.

Table 2: Summary of approximation algorithms.

Algorithm [Approx. ratio [Time complexity
KV-Approx [13] O(log n) O(s%n)
PM-Approx [2] 26(1 + ¢) 0(% log; . n(n +m))
KS-Approx [14] >2 O(n +m)
BS-Approx [5] 2 O(n? - (n+m))
Core-Approx (Ours) 2 O(y/m(n +m))

Note: s is the sample size; €, § are the error tolerance
parameters.

and O(n2) time respectively, so its overall time complexity
is O(n®*mlogn), which is prohibitively expensive for large
graphs.

To improve efficiency, approximation algorithms have been
developed, the most efficient one being the algorithm in [14],
which only costs O(n+m) time, since it iteratively peels the
vertex with the smallest in-degree or out-degree. However,
it was misclaimed to achieve an approximation ratio of 2,
as we will show in Section 3.2. Here, the approximation ra-
tio is defined as the ratio of the density of the DDS (i.e.,
the optimal solution) over that of the subgraph returned.
This makes the algorithm proposed by Charikar in [5] be
the best available 2-approximation algorithm, and its time
complexity is O(n?(n +m)). Clearly, it is still very expen-
sive, warranting more efficient algorithms. Tables 1 and 2
summarize the properties of the exact and approximation
algorithms, respectively.

Our technical contributions. To improve the state-
of-the-art exact algorithm [14], we optimize its inner and
outer loops. Specifically, for the inner loop, we introduce
a novel dense subgraph model on directed graphs, namely
[x, y]-core, inspired by the k-core [22] on undirected graphs.
That is, given two sets of vertices S and T' of a graph G,
the subgraph induced by S and T in G is an [z, y|-core, if
each vertex in S has at least x outgoing edges to vertices
in T, and each vertex in T has at least y incoming edges
from vertices in S. Theoretically, we show that DDS can
be accurately located through the [z, y]-cores, which are of-
ten much smaller than the entire graph. As a result, we can
build the flow networks on some [z, y|-cores, rather than the
entire graph, which greatly improves the efficiency of com-
puting the maximum flow. For the outer loop, we propose
a divide-and-conquer strategy, which dramatically reduces

the number of values of % examined from n? to k. Theo-

retically, k € O(n?). But, k < n?, in practice. Based on the
two optimization techniques above, we develop an efficient
exact algorithm DC-Exact.

We further show that theoretically, the [z*, y*]-core, where
z*y* is the maximum value among the values of x and y for
all the [z, y]-cores, is a 2-approximation solution to the DDS
problem. To compute the [z*, y*]-core, we propose an ef-
ficient algorithm, called Core-Approx, which completes in
O(yv/m - (n + m)) time. Therefore, compared to existing 2-
approximation algorithms, it has the lowest time complexity.

SIGMOD Record, March 2021 (Vol. 50, No. 1)

We have experimentally compared our proposed solutions
with the state-of-the-art solutions on eight real graphs, where
the largest one consists of around two billions edges. The
results show that for the exact algorithms, our proposed DC-
Exact is over six orders of magnitude faster than the baseline
algorithm on a graph with around 6,500 vertices and 51,000
edges. Besides, for approximation algorithms, our proposed
Core-Approx algorithm can scale well to billion-scale graphs,
and is also up to six orders of magnitude faster than the ex-
isting 2-approximation algorithm [5].

Outline. The rest of the paper is organized as follows. In
Section 2, we formally present the DDS problem. Section 3
reviews the state-of-the-art algorithms and discusses their
limitations. We present our exact and approximation al-
gorithm in Section 4. Experimental results are presented in
Section 5. We conclude this paper in Section 6. Our full ver-
sion [18] provides more complete details on our algorithms
and technical and empirical results.

2. PROBLEM DEFINITION

Let G=(V, E) be a directed graph, n = |[V| and m = |E|
be the number of vertices and edges in G, respectively. Given
two sets S, C V which are not necessarily disjoint, we
use E(S, T) to denote the set of all the edges linking their
vertices, i.e., E(S, T)=E N (S x T). The subgraph induced
by S, T, and E(S, T) is called an (S, T)-induced subgraph,
denoted by G[S,T]. For a vertex v € G, we use d(v) and
d&(v) to denote its outdegree and indegree in G respectively.
Next, we formally present the density of a directed graph [13]
and the problem of Directed Densest Subgraph discovery, or
DDS problem. Unless mentioned otherwise, all the graphs
mentioned later in this paper are directed graphs.

Definition 1 (Density of a directed graph). Given a di-
rected graph G=(V, E) and two sets of vertices S,T C V,
the density of the (S, T')-induced subgraph G[S, T] is

|B(S,T)|
NERD

The reason why the directed density chooses /|S||T| (in-
stead of |S||T'|) as the denominator is that a pair of vertices
with an edge between them would have the highest density
and become a trivial solution if we use |S||T|. In Figure la,
if we use |S||T|, the densities of G[S™,T*] and G[{a}, {c}]
are both equal to 1. The former subgraph is denser than the
latter one. [13] provides more arguments about the directed
density definition.

p(S.T) = (1)

Definition 2 (DDS). Given a directed graph G=(V, E), a
directed densest subgraph (DDS) D is the (S*, T™)-induced
subgraph, whose density is the highest among all the possi-
ble (S, T)-induced subgraphs. Here, the highest density is
denoted by p*.

Problem 1 (DDS problem [13, 8, 5, 14, 2]): Given a
directed graph G=(V, E), find a DDS' D=G[S*, T*] of G.

3. EXISTING ALGORITHMS

In this section, we review the state-of-the-art exact algo-
rithm [14] and approximation algorithms [14, 5] for the DDS

There might be several directed densest subgraphs of a
graph, and our algorithm will find one of them.

SIGMOD Record, March 2021 (Vol. 50, No. 1)

problem. We remark that for approximation algorithms,
both the algorithms in [14] and [5] were claimed to achieve
an approximation raito of 2, but the former one runs much
faster than the latter one. However, we found that the ap-
proximation ratio of the former one was misclaimed, which
will be illustrated by a counter-example. Note that in this
paper, the approximation ratio is defined as the ratio of the
maximum density over the density of the subgraph returned.

3.1 The Exact Algorithm

The state-of-the-art exact algorithm [14] computes the
DDS by solving a maximum flow problem, which generally
follows the same paradigm of the exact algorithm [9] of find-
ing the densest subgraphs on undirected graphs. We denote
this algorithm by Exact. A flow network [10] is a directed
graph F=(Vp, EF), where there is a source node? s, a sink
node t, and some intermediate nodes; each edge has a ca-
pacity and the amount of flow on an edge cannot exceed the
capacity of the edge. The maximum flow of a flow network
equals the capacity of its minimum st-cut, (S, 7), which
partitions the node set Vr into two disjoint sets, S and T,
such that s€e Sand t € T.

Figure 4: Illustrating the flow network.

We describe the general idea of Exact. Our full version
[18] provides more details. It first enumerates all the possible
:%. Then, for each a, it guesses the value g
of the maximum density via a binary search. After that,
for each pair of a and g, it builds a flow network and runs
the maximum flow algorithm to compute the minimum st-
cut (S, T). Figure 4 depicts a flow network constructed in
Exact. Note that if S\{s} # 0, then there must be an (S,
T)-induced subgraph such that its density is at least g. If
such a subgraph exists and g is larger than p*, we update
the DDS D and its corresponding density p*.

Limitations. In Exact, the number of possible values
of a is n?, and for each a, the while loop of binary search
will have O(logn) iterations. Computing the minimum st-
cut of a flow network takes O(nm) time [19]. Consequently,
the total time complexity of Exact is O(n*mlogn), which is
thus very inefficient on even small graphs.

values of a

3.2 Approximation Algorithms

The state-of-the-art approximation algorithm KS-Approx
[14] follows the peeling paradigm. Specifically, it works in n
rounds. In each round, it removes the vertex whose indegree
or outdegree is the smallest, and recomputes the density of
the residual graph. Finally, the subgraph whose density is
the highest is returned.

ZWe use “node” to mean “flow network node” in this paper.

35

It was claimed in [14] that KS-Approx has an approxima-
tion ratio of 2. Unfortunately, as demonstrated by a counter-
example in our full version paper [18], this claim is incorrect
3. During our recent communication, the authors of [14]
have proposed a fix which is a correct 2-approximation al-
gorithm denoted by FKS-Approx, but costs O(n - (n + m))
time.

Since KS-Approx is not a 2-approximation algorithm?, the
most accurate published approximation algorithm is BS-
Approx [5], which is able to correctly find a 2-approximation
result. Similar to Exact, BS-Approx enumerates all the pos-
sible values of a:%,
removes the vertex with the minimum degree from S or 7'
based on a predefined condition, and then updates S and T,
as well as the approximate DDS D.

Limitations. Clearly, the time complexity of BS-Approx
is O(n”- (n+m)), where the main overhead comes from the
loop of enumerating all the n? values of a. Although it is
much faster than Exact, it is still inefficient for large graphs.
As shown in our experiments later, on a graph with about
3,000 vertices and 30,000 edges, it takes around 3 days to
compute the DDS. Therefore, it is imperative to develop
more efficient approximation algorithms.

and for each specific a, it iteratively

4. CORE-BASED ALGORITHMS

In this section, we develop novel efficient exact and ap-
proximation algorithms for the DDS problem. Our algo-
rithms rely on a new concept, namely [z, y]-core, which is
an extension of the classic k-core [22] for directed graphs. In
the following, we first introduce the [z, y]-core, then present
our core-based exact algorithm, further optimize it by ex-
ploiting a divide-and-conquer strategy, and finally present
our core-based 2-approximation algorithm. Our full version
[18] provides the proofs omitted in this section.

4.1 k-core and [z, y]-core

We first review the definition of k-core on undirected graphs.

Definition 3 (k-core [22, 3]). Given an undirected graph G
and an integer k (k > 0), the k-core, denoted by Hg, is the
largest subgraph of G, such that Yv € Hy, degy, (v) > k.

Definition 4 ([z,y]-core). Given a directed graph G=(V,
E), an (S, T)-induced subgraph H=G[S, T is called an [z,
y]-core, if it satisfies:

1. Yu € S,d5(u) > z and Vv € T,d}; (v) > v;

2. 3H' = G[S’,T'] # H, such that H is a subgraph of
H' ie,SCS TCT, and H' satisfies (1).

We call [z, y] the core number pair of the [z, y|-core,
abbreviated as cn-pair.

Example 1. The subgraph induced by (S*,T%), i.e., D =
G[S*,T"] in Figure 1b is a [2,2]-core. H = G[{a,b,c,d},
{¢,d,e}] is a [1, 2]-core, and D is contained in H. O

Similar to the classic k-core, the [z, y]-core also has some
interesting properties, derived from Definition 4.

3The authors of [14] have confirmed that the approximation
ratio of KS-Approx was misclaimed.

4We conduct an empirical study of various exact and approx-
imation algorithms for DDS in Section 5, where we include
a comparison with FKS-Approx and KS-Approx.

36

Lemma 1 (Nested property). An [z, y|-core is contained
by an [z',y']-core, where v > 2’ > 0 andy >y > 0. In
other words, if H=G[S,T] is an [z,y]-core, there must exist
an @, y']-core H'=G[S’, T"], such that S C S’ and T C T".

Given a pair of x and y, to compute the [z, y]-core, we
can borrow the idea of k-core decomposition [3]; that is,
we can first initialize an (S, T')-induced subgraph such that
S=T=V, then iteratively remove vertices whose indegrees
(resp., outdegrees) are less than z (resp., y) from S (resp.,
T), and finally return the residual subgraph as the [z, y]-
core. Clearly, computing a specific [z, y]-core takes O(n+m)
time by using the bin-sort technique in [3].

4.2 A Core-based Exact Algorithm

We first introduce an interesting lemma, then establish
the relationship between the DDS and [z, y]-core, and finally
present a core-based exact algorithm.

Lemma 2. Given a directed graph G=(V, E) and its DDS
D=G[S*, T"] with density p*, we have following conclu-
stons:

1. for any subset Us of S*, removing Us from S™ will result

in the removal of at least 2’1;5 x |Us| edges from D,

2. for any subset Ur of T™, removing Ur from T™ will result

in the removal of at least ‘/32"* x |Ur| edges from D,

_ 157
where a = 7

Proof. We prove the lemma by contradiction. For (1), we
assume that D is the DDS and removing Us from D results

in the removal of less than % x |Ug| edges from D. This
implies that, after removing Usg from S*, the density of the

residual graph, denoted by Dr=G[S™ \ Us, T™], will be

p* VIS - £521Us|

A5\ g 1) — B\ Us,)

~ VIS Us[IT] VST [UsNIT*]
* |Us|
P o e
152 — [5*[[Us]
* |U ‘
_ . |s*| - 5=
2
Vs - b2 - 15
> p*.

However, this contradicts the assumption that D is the
DDS, so the conclusion of (1) holds. Similarly, we can prove
that the conclusion of (2) holds as well. Hence, the lemma

holds. O
Theorem 1. Given a graph G=(V, E), the DDS D=G[S",
T*] 4s contained in the [[2% , (‘/Ezp*‘\]—core, where a =
187
[T*]"

Since the value of p* may not be known in advance, we
can only locate the DDS in some cores based on a:% and
g guessed, by exploiting the nested property of cores. For
example, given a specific @ and a lower bound [of p*, then

we can locate the DDS in the [[ﬁ], [@]] -core, since the

2
core. Since the DDS is in some [z, y]-cores which are often

[[%], [¥22"7 | core is nested within the [[ﬁ], [@] -

SIGMOD Record, March 2021 (Vol. 50, No. 1)

much smaller than G, we can build the flow network on these
cores, rather than the entire graph G, which will significantly
improve the overall efficiency.

Algorithm 1: Core-Exact

Input : G=(V, E)

Output: The exact DDS D=G[S*, T*]
1 ;; <run a 2-approximation algorithm;

2 p* « p%

3 foreach a € {%\0 < ni,ny <=n} do

a 1< p*, 1+ 2p%;

Y T s
5 while r — 1 > =T do
1

6 g Hre [521y « 14

7 Gy <Get-XY-Core (G, z,y);

8 F = (Vp,Ep) + BuildFlowNetwok(Gr,a,q);
9 (8,T) < Min-ST-Cut (F');
10 if S={s}then r+g;
11 else

12 I+ g;

13 if g > p* then D <+~ G[SN A, SN B), p* =g;

14 return D;

Based on the above core-based optimization techniques,
we develop a novel exact algorithm, called Core-Exact, which
follows the same framework of Exact, as shown in Algo-
rithm 1.

Analysis. To compute a specific [z, y]-core, we can com-
plete in O(n + m) time by using the idea of k-core decom-
position [3]. Besides, computing the minimum st-cut takes
O(nm) time. Thus, the time complexity of Core-Exact is
still O(n®mlogn). Nevertheless, since we locate the DDS
in some [z, y]-cores, the flow networks become smaller, so
Core-Exact performs much faster than Exact in practice.

4.3 A Divide-and-conquer Exact Algorithm

In Core-Exact, we mainly optimize the inner loop of Ex-
act, i.e., reducing cost of computing the minimum st-cut. A
natural question comes: can we improve the outer loop of
Exact so that we can enuemrate fewer values of a:“%? In
the following, we show that this is possible.

Our idea is based on a key observation that given a spe-
cific value of a, the results of the binary search (lines 5-13
in Algorithm 1) actually have provided insights for reduc-
ing the number of tries of a. As shown in [14], essentially
the binary search solves the following optimization problem,
where a is a pre-given value.

max
S,TeV g

ISl (1B, (BT
s (o=) + i (o Tx/&)g(;'

g is the maximum value the binary search can obtain when
a is fixed. Then, we can derive the following lemma.

Lemma 3. Gwen a graph G=(V, E) and a specific a,
assume that S’ and T' are the optimal choices for Equa-

tion (2). Let b:‘\jsﬂl and c:%. Then, for any (S, T)-

induced subgraph G[S, T of G, if min{b, ¢} < 15l < max{b, c},

Tl =
we have p(S,T)<p(S",T").

SIGMOD Record, March 2021 (Vol. 50, No. 1)

Algorithm 2: DC-Exact

Input : G=(V, E)
Output: The exact DDS D=G[S*, T*]

1 a4 Lar<n, p* < 0,D<« 0
2 Divide-Conquer(a;, ar);
3 return D;
4 Function Divide-Conquer (a;, a,):
5 Amid < al-;aT§
6 run Lines 4-13 of Algorithm 1 (replace
l 17 o i
A v A f@] with @« [5o=1,
1
v [
7 let G[S’, T'] be the DDS found by binary search;
S/
8 b+ :T—,“;
a2 .
9 ¢ —midy
10 if b > ¢ then Swap(b,c);
11 if a; < b then Divide-Conquer (a;, b);
12 if ¢ < a, then Divide-Conquer(c, a,);

Proof. We prove the lemma by contradiction. In Equa-
tion (2), given a specific a, let g*(a) be the optimal value of
g. Because S’ and T" are the optimal choices for S and T in
Equation (2), S’, T', and g*(a) have the following relation-
ship, according to [14]:

_ 2p(8",T")

vy =2 (3)
va ' Vb
Let ho(z) = % + % Then, we have the derivative of
h’ﬂ(x)7
’ _ —a+z
ho(z) = 72\/5503/2’ x> 0. (4)

It is easy to observe that when z=a, h/ (z)=0; when = €
(0,a), hy(z) < 0; when z € (a,+00), h,(z) > 0. Therefore,
ha(z) is a convex function, and we can get its minimum
value by setting x to a.

We now prove the lemma by contradiction. Assume that
there exists an [Sg, Ty]-induced subgraph, which satisfies
min{b,c} < z = }iﬂ < max{b,c}, but it has p(S.,T,) >
p(S",T"). Since hq(z) < hqa(b) and p(Sz, Ty) > p(S',T"), we

2p(Sz,Tx) 2p(S",T")
ha(@) © ha(d)

dicts the assumption that S” and T are the optimal choice
for Equation (2). Hence, the lemma holds. O

can conclude

However, this contra-

According to Lemma 3, after conducting the binary search
for a specific value of a, we can skip performing binary
search for all the possible values of a in the range (min{b, ¢},
max{b, c}), so the overall efficiency can be improved dramat-
ically. Note that since a®=bc, we always have a € (min{b, c},
max{b, c}).

Based on the discussions above, we develop a novel divide-
and-conquer algorithm, named DC-Exact, as shown in Algo-
rithm 2. First, it initialize a; to the smallest ratio %, a, to
the largest ratio n, p* to 0, and D to @ (line 1).

Complexity. The time complexity of DC-Exact is O(k -
nmlogn), where k denotes the number of times invoking the
binary search, which is at most n? since the binary search
is invoked at most n? times in the worst case. Nevertheless,
in practice we have k < n?. As shown by our experiments

later, k is often orders of magnitude smaller than n2.

37

4.4 A Core-based Approximation Algorithm

While our exact algorithm, DC-Exact, is significantly faster
than the state-of-the-art algorithm Exact, we can further
speed it up by trading accuracy: we develop an efficient ap-
proximation algorithm, called Core-Approx, which achieves
an approximation ratio of 2, within O(y/m(m+n)) time. In
the following, we first show the lower bound of density of an
[x, y]-core.

Lemma 4 (Lower bound of density of [z, y]-core). Given a
graph G and an [z, y]-core, denoted by H=G[S, T], in G,
the density of H is

p(S,T) > zy. (5)

Next, we derive an upper bound of p*. Before showing
this, we introduce a novel concept called the maximum cn-
pair.

Definition 5 (Maximum cn-pair). Given a graph G=(V,
E), a cn-pair [z, y] is called the maximum cn-pair, if -y
achieves the maximum value among all the possible [z, y]-
cores. We denote the maximum cn-pair by [z*, y*].

Lemma 5 (Upper bound of p*). Given a graph G=(V, E)
and its mazimum cn-pair [, y*|, the density p* of the DDS
18

Pt < 2VTryr (6)
Combining Lemmas 4 and 5, we obtain:

Theorem 2. Given a graph G=(V, E), the core whose
cn-pair is the mazimum cn-pair, i.e., [*, y*]-core, is a 2-
approximation solution to the DDS problem.

To compute the [z*, y*]-core, a straightforward method is
to compute all the cores of G and then return the one with
maximum core number pair. It is easy to observe that this
method takes O(n(n+m)) time, because for each specific z,
it costs O(n+m) time to compute all the [z, y]-cores where y
ranges from 0 to its maximum value. This, however, is costly
and unnecessary because we only need to find the [z*, y*]-
core. To boost the efficiency, we propose a more efficient
algorithm which takes only O(y/m(n + m)) time. Next, we
introduce two concepts to facilitate the elaboration.

Definition 6 (Maximum equal cn-pair). Given a graph
G=(V, E), a cn-pair [z, z] is the maximum equal cn-
pair, if x achives the maximum value among all the possible
[, z]-cores. We denote the maximum equal cn-pair by [y,

7]

Lemma 6. Given a graph G=(V, E) and its mazimum
equal cn-pair [y, 7], for any cn-pair [z, y], we have either
z <7 ory <7, or both of them.

Definition 7 (Key cn-pair). Given a graph G=(V, E) and
its maximum equal cn-pair [v,7], the cn-pair of an [z, y]-
core is a key cn-pair, if one of the following conditions is
satisfied:

1. ifx <7, A [z, y]-core in G, such that 3’ > y;
2. if y <, P [/, y]-core in G, such that =’ > .

Clearly, the maximum cn-pair is also a key cn-pair. We
illustrate these concepts by Example 2.

38

. key cn-pair

. maximum equal cn-pair

. maximum cn-pair

=N WA U N e

123 456 7 8 x

Figure 5: Illustrating the concepts of cn-pairs.

Algorithm 3: Core-Approx
Input : G=(V, E)
Output: An approximate DDS D, i.e., the [z*, y*]-core

1 2* 0, y* < 0;

2 [v, 7] + compute the [y, v]-core;

3 for x < 1 to v do

a y +GetMaxY (G, z);

5 ‘ if zy > 2*y* then z* « x, y* <y ;

6 for y < 1 to v do

7 T +GetMaxX (G, y);

8 if zy > 2*y* then z* « z, y* <y ;

9 return compute the [z*, y*]-core;
10 Function GetMaxY (G, x):

11 S<—V,T<—V,ymax<—0,y<—LI*Zy*JJrl;
12 if y > maxueT{dJG“(u)} then return ymax;
13 while |[E| > 0 do

14 while Ju € T, dg(u) <y do

15 E— E\{(v,u)lve S}, T+ T\ {u};

16 while Jv € S,d(v) < z do

17 | E+«~ E\{(v,u)|lueT}, S+ S\ {vh
18 if ‘E‘ > 0 then Ymax < Y;

19 y+—y+1;

20 return Ymax;

21 Function GetMaxX(G, y):
22 reuse lines 11-20 by interchanging w with v, S with T,
z with y, and changing ymax t0 Tmax;

Example 2. Suppose that we have a graph whose cn-pairs
are presented in Figure 5, where each colored cell (z,y) de-
notes the cn-pair of the [z, y]-core. Note that the blank cells
do not correspond any [z, y]-cores. Then, the cn-pairs of the
blue cells are key cn-pairs, in which the one with a star is
the maximum cn-pair. The cn-pair of the black cell, i.e., [3,
3], is the maximum equal cn-pair.

Lemma 7. Given a graph G=(V, E) and its mazimum
equal cn-pair [y, 7], we have v < y/m.

By combining Lemmas 6 and 7, we get Lemma 8.

Lemma 8. Given a graph G=(V, E), there are at most
2y/m key cn-pairs in G.

Based on the above discussions, we develop Core-Approx,
which returns the [z*, y*]-core as an approximate DDS.
We further illustrate Core-Approx by Example 3.

Example 3. Reconsider the graph and its cn-pairs in Ex-
ample 2. Core-Approx will run steps as follows: (1) finds
the maximum equal cn-pair [3,3]; (2) iterates z from 1 to
3 to compute the key cn-pairs whose first elements are z,
ie, [1,8], [2,7], and [3,5]; (3) iterates y from 1 to 3 to

SIGMOD Record, March 2021 (Vol. 50, No. 1)

search the key cn-pairs whose second elements are y, i.e.,
[8,1], [8,2] and [6, 3]; and (4) returns the [z*, y*]-core, i.e.,
[6, 3]-core. O

Complexity. Computing the [y, 7]-core takes O(m +
n) time as it iteratively peels vertices with the minimum
indegrees or outdegrees. Similarly, functions GetMaxY and
GetMaxX also complete in O(m +n) time. Since there are at
most 24/m key cn-pairs by Lemma 8, the total time cost of
Core-Approx is bounded by O(y/m(n +m)).

5. EXPERIMENTS

We now present the experimental results. We first discuss
the setup in Section 5.1, then describe the results of exact
and approximation algorithms in Sections 5.2 and 5.3.

5.1 Setup

Datasets. We use eight real datasets® (named MO, TC,
OF, AD, AM, AR, BA, and TW in ascending order w.r.t.
graph size) up to billion scale [16]. These graphs cover var-
ious domains, including social network (e.g., Twitter and
Advogato), e-commerce (e.g., Amazon), and infrastructures
(e.g., flight network).

Algorithms. In the experiments, we used our newly pro-
posed exact algorithms Core-Exact and DC-Exact, and ap-
proximation algorithm Core-Approx to compute the DDS.
Besides, we tested the following existing algorithms: Exact
[14], KS-Approx [14], FKS-Approx [18], PM-Approx [2], and
BS-Approx [5].

All the algorithms above are implemented in C++ with
STL used. We run all the experiments on a machine having
an Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz processor,
and 256GB memory, with Ubuntu installed.

5.2 Exact Algorithms

Inf.

10° 7

Running Time (sec)

-

T T T T T
MO TC OF AD AM

L lll|lll1 lll|ll1 lll|ll1 lll|ll1 lll|lll1 lll|ll1 T

dataset
O DC-Exact O Core-Exact MExact
Figure 6: Efficiency of exact algorithms.
In Figure 6, we report the efficiency results of exact al-
gorithms on the first five datasets (i.e., MO, TC, OF, AD,

and AM). As these solutions cannot finish in a reasonable
time on larger datasets, we do not report their results here.

®The datasets are available online at http://konect.uni-
koblenz.de/networks/

SIGMOD Record, March 2021 (Vol. 50, No. 1)

Note that Exact and Core-Exact cannot compute the DDS
within 600 hours on OF, AD, and AM.

We can observe that Core-Exact is at least 2x and up to
100x faster than the state-of-the-art exact algorithm Exact.
This is mainly because Core-Exact locates the DDS in some
[, y]-cores, which are often much smaller than the entire
graph, so the flow networks built on these cores become
much smaller, resulting in less time cost on computing the
minimum st-cut of the flow networks. Our full version [18]
provides extra results about the flow network sizes during
the binary search iterations.

Meanwhile, from Figure 6, we can see that DC-Exact is up
to six and five orders of magnitude faster than Exact and
Core-Exact, respectively. The main reason is that DC-Exact
exploits a divide-and-conquer strategy, which dramatically
reduces the number of a:% examined. To analyze the
speedup of DC-Exact over Exact, we compare the number
of values of a examined in these two algorithms, which is
essentially the number of times the loop of binary search is
invoked. As discussed in Section 4, a is examined n? times
in Exact, and k times in DC-Exact. Empirically, we find that
k is less than 100 in the five smaller datasets. Clearly, n? is
much larger than k. Thus, DC-Exact runs much faster than
Exact.

5.3 Approximation Algorithms

fm\ . Inf.
10
\E{ |
o
E 5
g
o0
g
o
s 10°
=]
a<

T
MO TC OF AD AM AR BA TW

dataset

B Core-Approx [PM-Approx B BS-Approx
u] KS—App};gx O FKsS- }gprox PP

Figure 7: Efficiency of approximation algorithms.

In Figure 7, we show the running time of approximation
algorithms on all the eight datasets, where bars touching the
upper boundaries mean that the corresponding algorithms
cannot finish within 200 hours. We can make the following
observations: (1) BS-Approx and FKS-Approx are the two
most inefficient algorithms, because their time complexities,
i.e., O(n®(n +m)) and O(n(n +m)), are higher than those
of other algorithms. (2) KS-Approx is the most efficient one
almost on all the datsets, since it takes only linear time cost,
i.e., O(n 4+ m). However, its approximation ratio could be
larger than 2, as analyzed in Section 3. (3) Core-Approx
is the second most efficient one on almost all the datasets,
followed by PM-Approx. (4) Among all the 2-approximation
algorithms, Core-Approx is the fastest one, since it is up to
six orders of magnitude faster than BS-Approx, and three
orders of magnitude faster than FKS-Approx. Moreover, it
can process billion-scale graphs. Thus, it not only obtains

39

high quality results, but also achieves high efficiency.

6. CONCLUSION AND FUTURE WORK

This paper studies the densest subgraph discovery on di-
rected graphs. We show that a previous algorithm [14],
which was claimed to achieve an approximation of 2, fails
to satisfy the approximation guarantee. To boost the effi-
ciency of finding DDS, we introduce a novel dense subgraph
model, namely [z, y]-core, on directed graphs, and estalish
bounds on the density of the [z, y]-core. We then propose
a core-based exact algorithm, and further optimize it by in-
corporating a divide-and-conquer strategy. Besides, we find
that the [z*, y*]-core, where z*y* is the maximum value
of zy for all the [z, y]-cores, is a good approximation solu-
tion to the DDS problem, with theoretical guarantee. To
compute the [z*, y*]-core, we develop an efficient algorithm.
Extensive experiments on eight real large datasets show that
both our exact and approximation algorithms are up to six
orders of magnitude faster than state-of-the-art approaches.

In the future, there are several interesting research di-
rections: (1) It would be interesting to investigate how to
efficiently find the DDS with size constraints on directed
graphs, such as finding a subgraph with exactly k vertices
such that its density is the highest among possible subgraphs
with k vertices. This problem is even more challenging than
the DDS problem because of its NP-hardness. (2) In real
applications, the real-world graphs often change as the time
goes on, where vertices and edges may be inserted or deleted
frequently. Thus, it is desirable to study how to efficiently
maintain the DDS dynamically without recomputing it from
scratch. (3) Recently, some researchers have developed el-
egant algorithms [23, 6] to decompose an undirected graph
into a chain of dense subgraphs such that each one is nested
within the next one and the former one has higher density
than the latter one. Therefore, another exciting research
direction is to perform the graph decomposition according
to the directed density. (4) To the best knowledge, almost
all the existing works of densest subgraph discovery model
the density purely based on graph vertices and edges. How-
ever, real-world graphs are often associated with labels or
attributes. As a result, it would be interesting to formu-
late a novel definition of graph density by considering both
the links and labels or attributes, and then study how to
efficiently find the densest subgraphs under this definition.

Acknowledgement

Chenhao Ma and Reynold Cheng were supported by the Re-
search Grants Council of Hong Kong (RGC Projects HKU
17229116 and 106150091), University of Hong Kong (Projects
104005858, 104005994), the Innovation and Technology Com-
mission of Hong Kong (ITF project MRP/029/18), and the
HKU-TCL Joint Research Center for Artificial Intelligence
(200009430). Lakshmanan’s research was supported in part
by a discovery grant and a discovery accelerator supplement
grant from NSERC (Canada). Wenjie Zhang was supported
by PS53783, DP200101116 and DP180103096. Xuemin Lin

was supported by NSFC61232006, 2018YFB1003504, U1636215,

DP200101338, DP180103096, and DP170101628.

7. REFERENCES

[1] R. Albert, H. Jeong, and A.-L. Barabési. Internet:
Diameter of the world-wide web. nature,

40

2l

B8l

(4]

(5]

(6]

[7]

(8]

[9

(10]

(11]

(12]

(13]
(14]
(15]
(16]

(17]

(18]

(19]

(20]

(21]
(22]

(23]

401(6749):130, 1999.

B. Bahmani, R. Kumar, and S. Vassilvitskii. Densest
subgraph in streaming and mapreduce. PVLDB,
5(5):454-465, 2012.

V. Batagelj and M. Zaversnik. An o(m) algorithm for
cores decomposition of networks. 2003.

A. Capocci, V. D. Servedio, F. Colaiori, L. S. Buriol,
D. Donato, S. Leonardi, and G. Caldarelli.
Preferential attachment in the growth of social
networks: The internet encyclopedia wikipedia.
Physical Review E, 74(3):036116, 2006.

M. Charikar. Greedy approximation algorithms for
finding dense components in a graph. In APPROX,
pages 84-95. Springer, 2000.

M. Danisch, T.-H. H. Chan, and M. Sozio. Large scale
density-friendly graph decomposition via convex
programming. In WWW, pages 233-242, 2017.

Y. Fang, K. Yu, R. Cheng, L. V. Lakshmanan, and
X. Lin. Efficient algorithms for densest subgraph
discovery. PVLDB, 12(11):1719 — 1732, 2019.

A. Gionis and C. E. Tsourakakis. Dense subgraph
discovery: Kdd 2015 tutorial. In KDD, pages
2313-2314, 2015.

A. V. Goldberg. Finding a mazximum density subgraph.
University of California Berkeley, CA, 1984.

G. Heineman, G. Pollice, and S. Selkow. Network flow
algorithms. algorithms in a nutshell, 2008.

B. Hooi, H. A. Song, A. Beutel, N. Shah, K. Shin, and
C. Faloutsos. Fraudar: Bounding graph fraud in the
face of camouflage. In KDD, pages 895-904, 2016.

A. Java, X. Song, T. Finin, and B. Tseng. Why we
twitter: understanding microblogging usage and
communities. In WebKDD, pages 5665, 2007.

R. Kannan and V. Vinay. Analyzing the structure of
large graphs. University of Bonn, 1999.

S. Khuller and B. Saha. On finding dense subgraphs.
In ICALP, pages 597-608. Springer, 2009.

J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. JACM, 46(5):604-632, 1999.
J. Kunegis. KONECT — The Koblenz Network
Collection. In WWW, pages 1343-1350, 2013.

C. Ma, R. Cheng, L. V. Lakshmanan, T. Grubenmann,
Y. Fang, and X. Li. Linc: a motif counting algorithm
for uncertain graphs. PVLDB, 13(2):155-168, 2019.
C. Ma, Y. Fang, R. Cheng, L. V. Lakshmanan,

W. Zhang, and X. Lin. Efficient algorithms for densest
subgraph discovery on large directed graphs. In
SIGMOD, pages 1051-1066, 2020.

J. B. Orlin. Max flows in o (nm) time, or better. In
STOC, pages 765-774, 2013.

B. A. Prakash, A. Sridharan, M. Seshadri,

S. Machiraju, and C. Faloutsos. Eigenspokes:
Surprising patterns and scalable community chipping
in large graphs. In PAKDD, pages 435-448, 2010.

S. Sawlani and J. Wang. Near-optimal fully dynamic
densest subgraph. In STOC, pages 181-193, 2020.

S. B. Seidman. Network structure and minimum
degree. Social networks, 5(3):269-287, 1983.

N. Tatti and A. Gionis. Density-friendly graph
decomposition. In WWW, pages 1089-1099, 2015.

SIGMOD Record, March 2021 (Vol. 50, No. 1)

