
A Framework for Adversarially Robust
Streaming Algorithms

[Extended Abstract]

Omri Ben-Eliezer
Harvard University

omribene@cmsa.fas.harvard.edu

Rajesh Jayaram
Carnegie Mellon University

rkjayara@cs.cmu.edu

David P. Woodruff
Carnegie Mellon University

dwoodruf@cs.cmu.edu

Eylon Yogev
Boston Univ. & Tel Aviv Univ.

eylony@gmail.com

ABSTRACT
We investigate the adversarial robustness of streaming algo-
rithms. In this context, an algorithm is considered robust if
its performance guarantees hold even if the stream is chosen
adaptively by an adversary that observes the outputs of the
algorithm along the stream and can react in an online man-
ner. While deterministic streaming algorithms are inher-
ently robust, many central problems in the streaming litera-
ture do not admit sublinear-space deterministic algorithms;
on the other hand, classical space-e�cient randomized al-
gorithms for these problems are generally not adversarially
robust. This raises the natural question of whether there
exist e�cient adversarially robust (randomized) streaming
algorithms for these problems.

In this work, we show that the answer is positive for
various important streaming problems in the insertion-only
model, including distinct elements and more generally Fp-
estimation, Fp-heavy hitters, entropy estimation, and oth-
ers. For all of these problems, we develop adversarially ro-
bust (1+")-approximation algorithms whose required space
matches that of the best known non-robust algorithms up
to a poly(log n, 1/") multiplicative factor (and in some cases
even up to a constant factor). Towards this end, we develop
several generic tools allowing one to e�ciently transform a
non-robust streaming algorithm into a robust one in various
scenarios.

1. INTRODUCTION
The streaming model of computation is a central and cru-

cial tool for the analysis of massive datasets, where the

This is a minor revision of the paper entitled “A Frame-
work for Adversarially Robust Streaming Algorithms”, pub-
lished in the Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Sys-
tems (PODS’20), June 14–19, 2020, Portland, OR, USA.
ACM ISBN 978-1-4503-7108-7/20/06.
http://dx.doi.org/10.1145/3375395.3387658

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2021 ACM 0001-0782/08/0X00 ...$5.00.

sheer size of the input imposes stringent restrictions on the
memory, computation time, and other resources available
to the algorithms. Examples of practical settings where
streaming algorithms are in need are easy to encounter.
These include internet routers and tra�c logs, databases,
sensor networks, financial transaction data, and scientific
data streams. Given this wide range of applicability, there
has been significant e↵ort devoted to designing and analyz-
ing extremely e�cient one-pass algorithms. We recommend
the survey of [26] for a comprehensive overview of streaming
algorithms and their applications.

Many central problems in the streaming literature do not
admit sublinear-space deterministic algorithms, and in these
cases randomized solutions are necessary. In other cases,
randomized solutions are more e�cient and simpler to im-
plement than their deterministic counterparts. While ran-
domized streaming algorithms are well-studied, the vast ma-
jority of them are defined and analyzed in the static setting,
where the stream is worst-case but fixed in advance, and
only then the randomness of the algorithm is chosen. How-
ever, assuming that the stream sequence is independent of
the chosen randomness, and in particular that future ele-
ments of the stream do not depend on previous outputs of
the streaming algorithm, may not be realistic [1, 4, 13, 14,
16, 25, 27], even in non-adversarial settings. For example,
suppose that a user sequentially makes queries to a database,
and receives an immediate response after each query. Natu-
rally, future queries made by the user in such a setting may
heavily depend on the responses given by the database to
previous queries. In other words, the stream updates are
chosen adaptively, and cannot be assumed to be fixed in
advance.

A streaming algorithm that works even when the stream
is adaptively chosen by an adversary (the precise definition
given next) is said to be adversarially robust. Determinis-
tic algorithms are inherently adversarially robust, since they
are guaranteed to be correct on all possible inputs. However,
the large gap in performance between deterministic and ran-
domized streaming algorithms for many problems motivates
the need for designing adversarially robust randomized al-
gorithms, if they even exist. In particular, we would like
to design adversarially robust randomized algorithms which
are as space and time e�cient as their static counterparts,
and yet as robust as deterministic algorithms. The study of

6 SIGMOD Record, March 2021 (Vol. 50, No. 1)

such algorithms is the main focus of our work.

The Adversarial Setting.
There are several ways to define the adversarial setting,

which may depend on the information the adversary (who
chooses the stream) can observe from the streaming algo-
rithm, as well as other restrictions imposed on the adver-
sary. For the most part, we consider a general model, where
the adversary is allowed unbounded computational power
and resources, though we do discuss the case later when
the adversary is computationally bounded. At each point
in time, the streaming algorithm publishes its output to a
query for the stream. The adversary observes these outputs
one-by-one, and can choose the next update to the stream
adaptively, depending on the full history of the outputs and
stream updates. The goal of the adversary is to force the
streaming algorithm to eventually produce an incorrect out-
put to the query, as defined by the specific streaming prob-
lem in question.

Formally, a data stream of length m over a domain [n]
is a sequence of updates of the form (a1, �1), . . . , (am, �m)
where at 2 [n] is an index and �t 2 Z is an increment or
decrement to that index. The frequency vector f 2 Rn of
the stream is the vector with ith coordinate fi =

P
t:at=i �t.

We write f (t) to denote the frequency vector restricted to the
first t updates, namely f (t)

i =
P

jt:aj=i �j . It is assumed at

all points t that the maximum coordinate in absolute value,
denoted kf (t)k1, is at most M for some M > 0, and that
log(mM) = O(log n). In the insertion-only model, the up-
dates are assumed to be positive, meaning �t > 0, whereas
in the turnstile model �t can be positive or negative.

The general task in streaming is to respond to some query
Q about the frequency vector f (t) at each point in time
t 2 [m]. Oftentimes, this query is to approximate some
function g : Rn ! R of f (t) (ideally, one might wish to
exactly compute the function g; however, in many cases,
and in particular for the problems that we consider here,
exact computation cannot be done with sublinear space).
For example, counting the number of distinct elements in
a data stream is among the most fundamental problems in
the streaming literature; here g(f (t)) is the number of non-
zero entries in f (t). Since exact computation cannot be done
in sublinear space [8], the goal is to approximate the value
of g(f (t)) to within a multiplicative factor of (1 ± "). An-
other important streaming problem (which is not directly
an estimation task) is the Heavy-Hitters problem, where the
algorithm is tasked with finding all the coordinates in f (t)

which are larger than some threshold ⌧ .
Formally, the adversarial setting is modeled by a two-

player game between a (randomized) StreamingAlgorithm
and an Adversary. At the beginning, a query Q is fixed,
which the StreamingAlgorithm must continually reply
to. The game proceeds in rounds, where in the t-th round:

1. Adversary chooses an update ut = (at, �t) for the
stream, which can depend, in particular, on all previ-
ous stream updates and outputs of StreamingAlgo-
rithm.

2. StreamingAlgorithm processes the new update ut

and outputs its current response Rt to the query Q.

3. Adversary observes Rt (stores it) and proceeds to
the next round.

The goal of the Adversary is to make the StreamingAl-
gorithm output an incorrect response Rt to Q at some point
t in the stream. For example, in the distinct elements prob-
lem, the adversary’s goal is that on some step t, the estimate
Rt will fail to be a (1+ ")-approximation of the true current

number of distinct elements |{i 2 [n] : f (t)
i 6= 0}|.

Streaming algorithms in the adversarial setting.
It was shown by Hardt and Woodru↵ [16] that linear

sketches are inherently non-robust in adversarial settings for
a large family of problems, thus demonstrating a major lim-
itation of such sketches. In particular, their results imply
that no linear sketch can approximate the Euclidean norm
of its input to within a polynomial multiplicative factor in
the adversarial (turnstile) setting. Here, a linear sketch is an
algorithm whose output depends only on values S · f and S,
for some (usually randomized) sketching matrix S 2 Rk⇥n.
This is quite unfortunate, as the vast majority of turnstile
streaming algorithms are in fact linear sketches.

Indeed, the typical guarantee is that for any fixed f , S · f
satisfies some property with good probability. If f is allowed
to depend on S, this property typically does not hold. For
example, if S is a random Gaussian matrix, then the Eu-
clidean norm kS · fk2 is close to kfk2 with large probability.
However, if f is allowed to depend on S, then one can choose
f to be a large non-zero vector orthogonal to the rows of S,
so that kS ·fk2 is zero while kfk2 is non-zero. One can show
that for a number of sketches, answers to previous queries
reveal information about S, and consequently an adversary
can later construct an f , depending on S, to break them.

On the positive side, recent works of Ben-Eliezer and Yo-
gev [4] and Alon et al. [1] show that random sampling is
quite robust in the adaptive adversarial setting, albeit with
a slightly larger sample size. While uniform sampling is a
rather generic and useful tool, it is not su�cient for solv-
ing many important streaming tasks, such as estimating fre-
quency moments (Fp-estimation), finding L2 heavy hitters,
and various other data analysis problems. This raises the
natural question of whether there exist e�cient adversarially
robust randomized streaming algorithms for these problems
and others, which is the main focus of this work. Perhaps
even more importantly, we ask the following.

Is there a generic technique to transform a
static streaming algorithm into an adversarially

robust streaming algorithm?

This work answers the above questions a�rmatively for a
large class of algorithms.

1.1 Our Results
We devise adversarially robust algorithms for various fun-

damental insertion-only streaming problems, including dis-
tinct element estimation, Fp moment estimation, heavy hit-
ters, entropy estimation, and several others. In addition,
we give adversarially robust streaming algorithms which can
handle a bounded number of deletions as well. The required
space of our adversarially robust algorithms matches that of
the best known non-robust ones up to a small multiplica-
tive factor. Our new algorithmic results are summarized in
Table 1.

In contrast, we demonstrate that some classical random-
ized algorithms for streaming problems in the static setting,

SIGMOD Record, March 2021 (Vol. 50, No. 1) 7

Table 1: A summary of our adversarially robust algorithms (in bold), as compared to the best known upper bounds for randomized
algorithms in the static setting and lower bounds for deterministic algorithms. Note that all stated algorithms provide tracking.
All results except for the last two (which hold in restricted versions of the turnstile model) are for insertion only streams. We
write Õ, ⌦̃ to hide log "�1 and log log n factors. The lower bound for deterministic entropy estimation follows from a reduction
from estimating Fp for p = 1 + ⇥̃("

log2 n
).

Problem Static Randomized Deterministic Adversarial Comments

Distinct elements
Õ("�2 + log n) [5] ⌦(n) [8]

Õ("�3 + "
�1 logn)

(F0-estimation) Õ("�2 + logn) crypto/random oracle

Fp-estimation, O("�2 log n) [6]
⌦̃(2�1/(1�p) · n) [8]

Õ("�3 logn)

p 2 (0, 2] \ {1} O("�3 log2 n) [22] Õ("�3 log3
n) � = ⇥(n�(1/") logn)

Fp-estimation, p > 2
O

⇣
n1� 2

p ("�3 log2 n
⌦(n) [8]

O

⇣
n

1� 2
p ("�3 log2

n
� = ⇥(n�(1/") logn)

+"�
6
p log

4
p+1 n)

⌘
[12] +"

� 6
p log

4
p+1

n)
⌘

`2 Heavy Hitters O("�2 log2 n) [7] ⌦(
p

n) [21] Õ("�3 log2
n)

Entropy Estimation
O("�2 log3 n) [9]

⌦̃(n) [17]
O("�5 log6

n)

Õ("�2) [20] O("�5 log4
n) crypto/random oracle

Turnstile Fp-estimation,
O("�2� log2 n) [22] ⌦(n) [2] O("�2

� log2
n)

�-bounded Fp flip
p 2 (0, 2] number, � = ⇥(n��)
Fp-estimation, p 2 [1, 2], Õ("�2 log ↵ log n

⌦̃(2�1/(1�p) · n) [8] O(↵"
�(2+p) log3

n) static only for p = 1
↵-bounded deletions + log2 n) [19]

such as the celebrated Alon-Matias-Szegedy (AMS) sketch
[2] for F2-estimation, are inherently non-robust to adaptive
adversarial attacks in a strong sense.

The Robustification Framework: Flip number, Sketch
Switching, and Computation Paths.

Our adversarially robust algorithms make use of two generic
robustification frameworks that we develop, allowing one
to e�ciently transform a non-robust streaming algorithm
into a robust one in various settings. Both of the robusti-
fication methods rely on the fact that functions of interest
do not drastically change their value too many times along
the stream. Specifically, the transformed algorithms have
space dependency on the flip-number of the stream, which
is a bound on the number of times the function g(f (t)) can
change by a factor of (1 ± ") in the stream (see Section 2).

The first method, called sketch switching, maintains mul-
tiple instances of the non-robust algorithm and switches be-
tween them in a way that cannot be exploited by the ad-
versary. The second technique bounds the number of com-
putation paths possible in the two-player adversarial game.
This technique maintains only one copy of a non-robust al-
gorithm, albeit with an extremely small probability of er-
ror �. We show that a carefully rounded sequence of out-
puts generates only a small number of possible computation
paths, which can then be used to ensure robustness by union
bounding over these paths. The framework is described in
Section 2.

The two above methods are incomparable: for some stream-
ing problems the former is more e�cient, while for others,
the latter performs better, and we show examples of each.
Specifically, sketch switching can exploit e�ciency gains of
strong-tracking, resulting in particularly good performance
for static algorithms that can respond correctly to queries at
each step without having to union bound over all m steps.
In contrast, the computation paths technique can exploit an
algorithm with good dependency on � (the failure proba-
bility). Namely, algorithms that have small dependency in

update-time or space on � will benefit from the computation
paths technique.

For each of the problems we consider, we show how to
use the framework, in addition to some further techniques
which we develop along the way, to solve it. Interestingly,
we also demonstrate how cryptographic assumptions (which
were not commonly used before in the streaming context)
can be applied to obtain an adversarially robust algorithm
against computationally bounded adversaries for the distinct
elements problem at essentially no extra cost over the space
optimal non-robust one. See Table 1 for a summary of our
results in the adversarial setting compared to the state-of-
the-art in the static setting, as well as to deterministic algo-
rithms.

Distinct elements, Fp-estimation, and more.
Our first suite of results provides robust streaming algo-

rithms for estimating Fp, the pth frequency moment of the
frequency vector, defined as Fp = kfkpp =

Pn
i=1 |fi|p, where

we interpret 00 = 0. Estimating frequency moments has
a myriad of applications in databases, computer networks,
data mining, and other contexts. E�cient algorithms for
estimating distinct elements (i.e., estimating F0) are impor-
tant for databases, since query optimizers can use them to
find the number of unique values of an attribute without
having to perform an expensive sort on the values. E�cient
algorithms for F2 are useful for determining the output size
of self-joins in databases, and for computing the surprise
index of a data sequence [15]. Higher frequency moments
are used to determine data skewness, which is important in
parallel database applications [10].

We remark that for any fixed p 6= 1, including p = 0, any
deterministic insertion-only algorithm for Fp-estimation re-
quires ⌦(n) space [2, 8] (note that for the case p = 1 there
is a trivial O(log n)-bit insertion only Fp-estimation algo-
rithm: keeping a counter for

P
t �t). In contrast, we show

that randomized adversarially robust algorithms exist for
all p, whose space complexity either matches or has a small

8 SIGMOD Record, March 2021 (Vol. 50, No. 1)

multiplicative overhead over the best static randomized al-
gorithms.

We utilize an optimized version of the sketch switching
method to derive an upper bound for estimating the num-
ber of distinct elements. The result is an adversarially ro-
bust F0 estimation algorithm whose complexity is only a
⇥(1

" log "�1) factor larger than the optimal static (non-robust)
algorithm [5].

Theorem 1.1. There is an algorithm which, when run on
an adversarial insertion only stream, with probability at least
1�� produces at every step t 2 [m] an estimate Rt such that
Rt = (1 ± ")kf (t)k0 . The space used by the algorithm is

O

✓
log(1/")

"

✓
log "�1 + log ��1 + log log n

"2
+ log n

◆◆
.

A second result applies the computation paths method with
a new static algorithm for F0 estimation which has very
small update-time dependency on �, and nearly optimal
space complexity. As a result, we obtain an adversarially
robust F0 estimation algorithm with extremely fast update
time (note that the update time of the above sketch switch-
ing algorithm would be O("�1 log n) to obtain the same re-
sult, even for constant �).

A third result takes a di↵erent approach: it shows that
under certain standard cryptographic assumptions, there ex-
ists an adversarially robust algorithm which asymptotically
matches the space complexity of the best non-robust track-
ing algorithm for distinct elements.

Our next set of results provides adversarially robust algo-
rithms for Fp-estimation with p > 0. The following result
concerns the case 0 < p  2. It was previously shown that
for p bounded away from one, ⌦(n) space is required to
deterministically estimate kfkpp, even in the insertion only
model [2, 8]. On the other hand, space-e�cient non-robust
randomized algorithms for Fp-estimation exist. We leverage
these, along with an optimized version of the sketch switch-
ing technique to save a log n factor, and obtain an adversar-
ially robust algorithm for Fp-estimation, where 0 < p < 2.

The next result concerns Fp-estimation for p > 2. Here
again, we provide an adversarially robust algorithm which
is optimal up to a small multiplicative factor. This result
applies the computation paths robustification method as a
black box. Notably, a classic lower bound of [3] shows that
for p > 2, ⌦(n1�2/p) space is required to estimate kfkpp
up to a constant factor (improved lower bounds have been
provided since, e.g., [24, 12]). By using our computation
paths technique, we obtain adversarially robust Fp moment
estimation algorithms as well for p > 2. Lastly, we show that
our techniques for Fp moment estimation can be extended to
data streams with a bounded number of deletions (negative
updates).

Additionally, we show how to get adversarial robust stream-
ing algorithms for a range of problems where it is not clear
a-priori how to apply our framework. We show how our
techniques can be used to solve the popular heavy-hitters
problem, and we show how to solve the Entropy estimation
problem. See Table 1 for a summary of our results.

Attack on AMS Sketch.
As discussed above, many important streaming problems

admit e�cient adversarially robust algorithms in the inser-
tion model. It is now natural to ask: are classical algorithms

for this problem generally adversarially robust?
We prove that the answer is negative: the classic Alon-

Matias-Szegedy sketch (AMS sketch) [2], the first and per-
haps most well-known F2 estimation algorithm (which uses
sub-polynomial space), is not adversarially robust in the
insertion-only model. (In the full turnstile model, in which
the adversary is more powerful, the fact that the AMS sketch
is not robust follows from the linear sketching lower bound of
Hardt and Woodru↵ [16].) Specifically, we demonstrate an
adversary which, when run against the AMS sketch, fools
the sketch into outputting a value which is not a (1 ± ")
estimate of the F2. The non-robustness of standard static
streaming algorithms, even under simple attacks, is a further
motivation to design adversarially robust algorithms.

In what follows, recall that the AMS sketch computes S ·
f throughout the stream, where S 2 Rt⇥n is a matrix of
uniform {t�1/2,�t�1/2} random variables. The F2-estimate
is then the value kSfk22.

Theorem 1.2. Let S 2 Rt⇥n be the AMS sketch, 1 
t  n/c for some constant c > 1. There is an adversary
which, with probability 99/100, succeeds in forcing the es-
timate kSfk22 of the AMS sketch to not be a (1 ± 1/2) ap-
proximation of the true norm kfk22. Moreover, the adversary
needs to only make O(t) stream updates before this occurs.

1.2 Subsequent Work and Open Questions
Based on this paper, a couple of very recent follow-up

works have improved upon the space e�ciency of our ro-
bustification techniques for di↵erent settings. Hassidim et
al. [18] use techniques from di↵erential privacy to obtain a
generic robustification framework in the same mold as ours,
where the dependency on the flip number is the improvedp

� as opposed to linear in � - the exact bound includes other
poly((log n)/✏) factors. Similar to our construction, they run
multiple independent copies of the static algorithm A with
independent randomness and feed the input stream to all of
the copies. Unlike our construction, when a query comes,
they aggregate the responses from the copies in a way that
protects the internal randomness of each of the copies using
di↵erential privacy. Using their framework, one may con-
struct an adversarially robust algorithm for Fp-moment esti-

mation that uses eO(log4 n
✏2.5

) bits of memory for any p 2 [0, 2].

This improves over our eO(logn
✏3

) bound for interesting pa-
rameter regimes.

Woodru↵ and Zhou [28] obtain further improvements for
a class of problems that have so-called di↵erence estima-
tors which in some cases are (almost) optimal even for the
static case. For example, they give an adversarially robust
algorithm for Fp-moment estimation that uses eO(logn

✏2
) bits

of memory for any p 2 [0, 2]. This improves upon both our
work and [18]. Interestingly, di↵erence estimators, which are
a new class of algorithms developed in their paper, turn out
to be useful also in the sliding windows (classical) model.

Many problems remain open, mainly for achieving optimal
bounds for all known streaming problems in the adversarial
setting. In particular, one may ask the following:

Do there exist natural streaming tasks that can be solved in
the classical setting using small memory, but which require

significantly more memory in the adversarial setting?

Very recently, this question was addressed by Kaplan et
al. [23] who constructed a streaming problem exhibiting such

SIGMOD Record, March 2021 (Vol. 50, No. 1) 9

a separation between the classical setting, where it only re-
quires a polylogarithmic amount of memory, and the adver-
sarial setting, where polynomial memory is required – that
is, an exponential separation. Their construction is based
on classical results in adaptive data analysis.

One particular question of interest that remains wide open
is related to the turnstile streaming model. The large major-
ity of results in this paper (and in subsequent papers) apply
in the insertion-only model. The full turnstile model, where
arbitrary insertions and deletions are allowed, is much less
understood. In particular we ask the following.

Do there exist small memory streaming algorithms in the
adversarial turnstile model for the problems in this paper?

2. TOOLS FOR ROBUSTNESS
In this section, we establish two methods, sketch switching

and computation paths, allowing one to convert an approxi-
mation algorithm for any su�ciently well-behaved streaming
problem to an adversarially robust one for the same prob-
lem. The central definition of a flip number, bounds the
number of major (multiplicative) changes in the algorithm’s
output along the stream. As we shall see, a small flip number
allows for e�cient transformation of non-robust algorithms
into robust ones. We remark that the notion of flip number
we define here also plays a central role in subsequent works
([18], [28]); for example, the main contribution of the for-
mer is a generic robustification technique with an improved
(square root type instead of linear) dependence in the flip
number. The latter improves the poly(1/✏) dependence on
the flip number.

2.1 Flip Number

Definition 2.1 (flip number). Let " � 0 and m 2 N,
and let ȳ = (y0, y1, . . . , ym) be any sequence of real numbers.
The "-flip number �"(ȳ) of ȳ is the maximum k 2 N for
which there exist 0  i1 < . . . < ik  m so that yij�1 /2
(1 ± ")yij for every j = 2, 3, . . . , k.

Fix a function g : Rn ! R and a class C ✓ ([n] ⇥ Z)m of
stream updates. The (", m)-flip number �",m(g) of g over C
is the maximum, over all sequences ((a1, �1), . . . , (am, �m)) 2
C, of the "-flip number of the sequence =̄(y0, y1, . . . , ym) de-
fined by yi = g(f (i)) for any 0  i  m, where as usual
f (i) is the frequency vector after stream updates (a1, �1), . . . ,
(ai, �i) (and f (0) is the n-dimensional zeros vector).

The class C may represent, for instance, the subset of all
insertion only streams, or bounded-deletion streams. For
the rest of this section, we shall assume C to be fixed, and
consider the flip number of g with respect to this choice of
C. We note that a somewhat reminiscent definition, of an
unvarying algorithm, was studied by [11] (see Definition 5.2
there) in the context of di↵erential privacy. While their def-
inition also refers to a situation where the output undergoes
major changes only a few times, both the motivation and
the precise technical details of their definition are di↵erent
from ours.

Note that the flip number is clearly monotone in ": namely
�"0,m(g) � �",m(g) if "0 < ". One useful property of the flip
number is that it is nicely preserved under approximations.
As we show, this can be used to e↵ectively construct ap-
proximating sequences whose 0-flip number is bounded as a

function of the "-flip number of the original sequence. This
is summarized in the following lemma.

Lemma 2.2. Fix 0 < " < 1. Suppose that ū = (u0, . . . , um),
v̄ = (v0, . . . , vm), w̄ = (w0, . . . , wm) are three sequences of
real numbers, satisfying the following:

• For any 0  i  m, vi = (1 ± "/8)ui.

• w0 = v0, and for any i > 0, if wi�1 = (1 ± "/2)vi then
wi = wi�1, and otherwise wi = vi.

Then wi = (1 ± ")ui for any 0  i  m, and moreover,
�0(w̄)  �"/8(ū).

In particular, if (in the language of Definition 2.1) u0 =
g(f (0)), u1 = g(f (1)), . . . , um = g(f (m)) for a sequence of up-
dates ((a1, �1), . . . , (am, �m)) 2 C, then �0(w̄)  �"/8,m(g).

Proof. The first statement, that wi = (1 ± ")ui for any
i, follows immediately since vi = (1 ± "/8)ui and wi = (1 ±
"/2)vi and since " < 1. The third statement follows by
definition from the second one. It thus remains to prove
that �0(w̄)  �"/8(ū).

Let i1 = 0 and let i2, i3, . . . , ik be the collection of all
values i 2 [m] for which wi�1 6= wi. Note that k = �0(w̄)
and that vij�1 = wij�1 = wij�1+1 = · · · = wij�1 6= vij for
any j = 2, . . . , k. We now claim that for every j in this range,
uij�1 /2 (1±"/8)uij . This would show that k  �"/8(ū) and
conclude the proof.

Indeed, fixing any such j, we either have vij�1 > (1 +
"/2)vij , or wij�1 < (1� "/2)vij . In the first case (assuming
uij 6= 0, as the case uij = 0 is trivial),

uij�1

uij

�
vij/(1 + "

8)

vij�1/(1� "
8)
�

⇣
1 +

"
2

⌘
·
1� "

8

1 + "
8

> 1 +
"
8

.

In the second case, an analogous computation gives that
uij�1/uij < 1� "/8.

Note that the flip number of a function g critically depends
on the model in which we work, as the maximum is taken
over all sequences of possible stream updates; for insertion-
only streams, the set of all such sequences is more limited
than in the general turnstile model, and correspondingly
many streaming problems have much smaller flip number
when restricted to the insertion only model. We now give
an example of a class of functions with bounded flip number.

Proposition 2.3. Let g : Rn ! R be any monotone
function, meaning that g(x) � g(y) if xi � yi for each
i 2 [n]. Assume further that g(x) � T�1 for all x > 0,
and g(M · ~1)  T , where M is a bound on the entries of
the frequency vector and ~1 is the all 1’s vector. Then the
flip number of g in the insertion only streaming model is
�",m(g) = O(1

" log T).

Proof. Observe that g(f (0)) = 0, g(f (1)) � T�1, and
g(f (m))  g(~1 · M)  T . Since the stream has only positive
updates, g(f (0))  g(f (1))  · · ·  g(f (m)). Let y1, . . . , yk 2
[m] be any set of points such that g(f (yi)) < (1+")g(f (yi+1))
for each i. Since there are at most O(1

" log T) powers of
(1 + ") between T�1 and T , by the pigeonhole principle if
k > C

" log(T) for a su�ciently large constant C, then at least

two values must satisfy (1 + ")j  g(f (yi))  g(f (yi+1)) 
(1 + ")j+1 for some j, which is a contradiction.

10 SIGMOD Record, March 2021 (Vol. 50, No. 1)

Stream:

!!"! !#"" !$"# !%"$

!! !" !# !$

Output:

Figure 1: The sketch switching method, one of our tech-
niques for transforming a streaming algorithm into an adver-
sarially robust algorithm. As we prove, the following strategy
is useful for e�ciently robustifying streaming algorithms in a
wide range of contexts: maintain several copies R1, R2, . . .
of the algorithm, but at any given time t, only communicate
to the adaptive adversary the output Rti

i of a single “active”
copy Ri, where ti < t is the step where Ri became active. We
then switch the active sketch from Ri to Ri+1 on the time
step ti+1 in which the value of R

ti+1
i diverges significantly

from Rti
i . This will ensure that the algorithm always returns

a good approximation, without leaking any meaningful infor-
mation about its internal state to the adversary.

Note that a special case of the above are the Fp moments
of a data stream. Recall here kxk0 = |{i : xi 6= 0}| is the
number of non-zero elements in a vector x.

Corollary 2.4. Let p > 0. The (", m)-flip number of
kxkpp in the insertion only streaming model is �",m(k · kpp) =
O(1+p

" log m).

Proof. We have k~0kpp = 0, kzkpp � 1 for any non-zero

z 2 Z, and kf (m)kpp  Mpn  ncp for some constant c,
where the second to last inequality holds because kfk1 
M for some M = poly(n) is assumed at all points in the
streaming model. Moreover, for p = 0 we have kf (m)k0  n.
The result then follows from applying Proposition 2.3 with
T = nc·max{p,1}.

Having a small flip number is very useful for robustness,
as our next two robustification techniques demonstrate.

2.2 The Sketch Switching Technique
Our first technique is called sketch switching, and is de-

scribed in Algorithm 1. The technique maintains multiple
instances of a static strong tracking algorithm, where each
time step only one of the instances is “active”. The idea is
to change the current output of the algorithm very rarely.
Specifically, as long as the current output is a good enough
multiplicative approximation of the estimate of the active
instance, the estimate we give to the adversary does not
change, and the current instance remains active. As soon
as this approximation guarantee is not satisfied, we update
the output given to the adversary, deactivate our current
instance, and activate the next one in line. By carefully ex-
posing the randomness of our multiple instances, we show
that the strong tracking guarantee (which a priori holds only
in the static setting) can be carried into the robust setting.
By Lemma 2.2, the required number of instances, corre-
sponding to the 0-flip number of the outputs provided to
the adversary, is controlled by the (⇥("), m)-flip number of
the problem.

Lemma 2.5 (Sketch Switching). Fix any function g :
Rn ! R and let A be a streaming algorithm that for any
0 < " < 1 and � > 0 uses space L(", �), and satisfies the

Algorithm 1: Adversarially Robust g-estimation by
Sketch Switching

1 � �"/8,m(g)
2 Initialize independent instances A1, . . . , A� of

("
8 , �

�)-strong g-tracking algorithm
3 ⇢ 1

4 g̃ g(~0)
5 while new stream update (ak, �k) do
6 Insert update (ak, �k) into each algorithm

A1, . . . , A�

7 y current output of A⇢

8 if g̃ /2 (1 ± "/2)y then
9 g̃ y
10 ⇢ ⇢ + 1
11 Output estimate g̃
12 end

("/8, �)-strong g-tracking property on the frequency vectors
f (1), . . . , f (m) of any particular fixed stream. Then Algo-
rithm 1 is an adversarially robust algorithm for (1 + ")-
approximating g(f (t)) at every step t 2 [m] with success
probability 1 � �, whose space is O (L("/8, �/�) · �), where
� = �"/8,m(g).

Proof. Note that for a fixed randomized algorithm A we
can assume the adversary against A is deterministic without
loss of generality (in our case, A refers to Algorithm 1). This
is because given a randomized adversary and algorithm, if
the adversary succeeds with probability greater than � in
fooling the algorithm, then by a simple averaging argument,
there must exist a fixing of the random bits of the adversary
which fools A with probability greater than � over the coin
flips of A. Note also here that conditioned on a fixing of
the randomness for both the algorithm and adversary, the
entire stream and behavior of both parties is fixed.

We thus start by fixing such a string of randomness for
the adversary, which makes it deterministic. As a result,
suppose that yi is the output of the streaming algorithm
on step i. Then given y1, y2, . . . , yk and the stream up-
dates (a1, �1), . . . , (ak, �k) so far, the next stream update
(ak+1, �k+1) is deterministically fixed. We stress that the
randomness of the algorithm is not fixed at this point; we
will gradually reveal it along the proof.

Let � = �"/8,m(g) and let A1, . . . , A� be the � independent
instances of an ("/8, �/�)-strong tracking algorithm for g.
Since �0 = �/�, later on we will be able to union bound over
the assumption that for all ⇢ 2 [�], Ai satisfies strong track-
ing on some fixed stream (to be revealed along the proof);
the stream corresponding to A⇢ will generally be di↵erent
than that corresponding to ⇢0 for ⇢ 6= ⇢0.

First, let us fix the randomness of the first instance, A1.
Let u1

1, u
1
2, . . . , u

1
m be the updates u1

j = (aj , �j) that the

adversary would make if A were to output y0 = g(~0) at every
time step, and let f (t),1 be the stream vector after updates
u1
1, . . . , u

1
t . Let A1(t) be the output of algorithm A1 at time

t of the stream u1
1, u

1
2, . . . , u

1
t . Let t1 2 [m] be the first time

step such that y0 /2 (1 ± "/2)A1(t1), if exists (if not we can
set, say, t1 = m+1). At time t = t1, we change our output to
y1 = A1(t1). Assuming that A1 satisfies strong tracking for g
with approximation parameter "/8 with respect to the fixed
stream of updates u1

1, . . . , u
1
m (which holds with probability

SIGMOD Record, March 2021 (Vol. 50, No. 1) 11

at least 1� �/�), we know that A1(t) = (1 ± "/8)g(f (t)) for
each t < t1 and that y0 = (1 ± "/2)A1(t). Thus, by the first
part of Lemma 2.2, y0 = (1 ± ")g(f (t)) for any 0  t < t1.
Furthermore, by the strong tracking, at time t = t1 the
output we provide y1 = A1(t1) is a (1 ± "/8)-approximation
of the desired value g(f (t1)).

At this point, A“switches”to the instance A2, and presents
y1 as its output as long as y1 = (1 ± "/2)A2(t). Recall
that randomness of the adversary is already fixed, and con-
sider the sequence of updates obtained by concatenating
u1
1, . . . , u

1
t1 as defined above (these are the updates already

sent by the adversary) with the sequence u2
t1+1, . . . , u

2
m to

be sent by the adversary if the output from time t = t1 on-
wards would always be y1. We condition on the "/8-strong
g-tracking guarantee on A2 holding for this fixed sequence of
updates, noting that this is the point where the randomness
of A2 is revealed. Set t = t2 as the first value of t (if exists)
for which A2(t) = (1 ± "/2)y1 does not hold. We now have,
similarly to above, y1 = (1 ± ")g(f (t)) for any t1  t < t2,
and y2 = (1 ± "/8)g(f (t2)).

The same reasoning can be applied inductively for A⇢, for
any ⇢ 2 [�], to get that (provided "/8-strong g-tracking holds
for A⇢) at any given time, the current output we provide to
the adversary y⇢ is within a (1 ± ")-multiplicative factor of
the correct output for any of the time steps t = t⇢, t⇢ +
1, . . . , min{t⇢+1� 1, m}. Taking a union bound, we get that
with probability at least 1 � �, all instances provide "/8-
tracking (each for its respective fixed sequence), yielding the
desired (1 ± ")-approximation of our algorithm.

It remains to verify that this strategy will succeed in
handling all m elements of the stream (and will not ex-
haust its pool of algorithm instances before then). Indeed,
this follows immediately from Lemma 2.2 applied with ū =
((g(f (0)), . . . , g(f (m))), v̄ = (g(f (0)), A1(1), . . . , A1(t1), A2(t1+
1), . . . , A2(t2), . . .), and w̄ being the output that our algo-
rithm A provides (y0 = g(f (0)) until time t1 � 1, then y1

until time t2 � 1, and so on). Observe that indeed w̄ was
generated from v exactly as described in the statement of
Lemma 2.2.

2.3 The Computation Paths Technique
With our sketch switching technique, we showed that main-

taining multiple instances of a non-robust algorithm to es-
timate a function g, and switching between them when the
rounded output changes, is a recipe for a robust algorithm
to estimate g. We next provide another recipe, which keeps
only one instance, whose success probability for any fixed
stream is very high; it relies on the fact that if the flip num-
ber is small, then the total number of fixed streams that we
should need to handle is also relatively small, and we will be
able to union bound over all of them. Specifically, we show
that any non-robust algorithm for a function with bounded
flip number can be modified into an adversarially robust one
by setting the failure probability � small enough.

Lemma 2.6 (Computation Paths). Fix g : Rn ! R
and suppose that the output of g uses log T bits of precision.
Let A be a streaming algorithm that for any ", � > 0 satisfies
the (", �)-strong g-tracking property on the frequency vectors
f (1), . . . , f (m) of any particular fixed stream. Then there is
a streaming algorithm A0 satisfying the following.

1. A0 is an adversarially robust algorithm for (1 + ")-
approximating g(f (t)) in all steps t 2 [m], with success

probability 1� �.

2. The space complexity and running time of A0 as above
(with parameters " and �) are of the same order as
the space and time of running A in the static setting

with parameters "/8 and �0 = �/
⇣�

m
�

�
TO(�)

⌘
, where

� = �"/8,m(g).

Proof. The algorithm A0 that we construct runs by em-
ulating A with the above parameters, and assuming that
the output sequence of the emulated A up to the current
time t is v0, . . . , vt, it generates wt in exactly the way de-
scribed in Lemma 2.2: set w0 = v0, and for any i > 0, if
wi�1 2 (1 ± "/2)vi then wi = wi�1, and otherwise wi = vi.
The output provided to the adversary at time t would then
be wt.

As in the proof of Lemma 2.5, we may assume the ad-
versary to be deterministic. This means, in particular, that
the output sequence we provide to the adversary fully de-
termines its stream of updates (a1, �1), . . . , (am, �m). Take
� = �"/8,m(g). Consider the collection of all possible output
sequences (with log T bits of precision) whose 0-flip number
is at most �, and note that the number of such sequences is
at most

�
m
�

�
TO(�). Each output sequence as above uniquely

determines a corresponding stream of updates for the deter-
ministic adversary; let S be the collection of all such streams.

Pick �0 = �/|S|. Taking a union bound, we conclude that
with probability 1� �, A (instantiated with parameters "/8
and �0) provides an "/8-strong g-tracking guarantee for all
streams in S. We fix the randomness of A, and assume this
event holds.

At this point, the randomness of both parties has been re-
vealed, which determines an output sequence v0, . . . , vm for
the emulated A and the edited output, w0, . . . , wm, that our
algorithm A0 provided to the adversary. The proof now fol-
lows by induction over the number t of stream updates that
have been seen. The inductive statement is the following:

1. The sequence of outputs that the emulated algorithm
A generates in response to the stream updates up to
time t, v0, . . . , vt, is a (1±"/8)-approximation of g over
the stream up to that time.

2. The sequence of outputs that the adversary receives
from A0 until time t, (w0, . . . , wt), has 0-flip number
at most � (and is a prefix of a sequence in S).

The base case, t = 0, is obvious; and the induction step
follows immediately from Lemma 2.2.

Acknowledgments
The authors wish to thank Arnold Filtser for invaluable feed-
back. This work was done in part in the Simons Institute for
the Theory of Computing. Part of this work was conducted
while Omri Ben-Eliezer was at Tel Aviv University. Ra-
jesh Jayaram and David P. Woodru↵ are supported by the
O�ce of Naval Research (ONR) grant N00014-18-1-2562,
and the National Science Foundation (NSF) under Grant
No. CCF-1815840. Eylon Yogev is funded by the ISF grants
484/18, 1789/19, Len Blavatnik and the Blavatnik Founda-
tion, The Blavatnik Interdisciplinary Cyber Research Cen-
ter at Tel Aviv University, and The Raymond and Beverly
Sackler Post-Doctoral Scholarship.

12 SIGMOD Record, March 2021 (Vol. 50, No. 1)

3. REFERENCES
[1] N. Alon, O. Ben-Eliezer, Y. Dagan, S. Moran,

M. Naor, and E. Yogev. Adversarial laws of large
numbers and optimal regret in online classification.
CoRR, abs/2101.09054, 2021.

[2] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
Journal of Computer and System Sciences, 58(1):137 –
147, 1999.

[3] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and
D. Sivakumar. An information statistics approach to
data stream and communication complexity. Journal
of Computer and System Sciences, 68(4):702–732,
2004.

[4] O. Ben-Eliezer and E. Yogev. The adversarial
robustness of sampling. In Proceedings of the 39th
ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS, pages 49–62.
ACM, 2020.

[5] J. B lasiok. Optimal streaming and tracking distinct
elements with high probability. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 2432–2448. SIAM,
2018.

[6] J. B lasiok, J. Ding, and J. Nelson. Continuous
monitoring of lp norms in data streams. In
Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques,
APPROX/RANDOM, pages 32:1–32:13, 2017.

[7] V. Braverman, S. R. Chestnut, N. Ivkin, J. Nelson,
Z. Wang, and D. P. Woodru↵. Bptree: An `2 heavy
hitters algorithm using constant memory. In
Proceedings of the 36th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS, pages 361–376. ACM,
2017.

[8] A. Chakrabarti and S. Kale. Strong fooling sets for
multi-player communication with applications to
deterministic estimation of stream statistics. In IEEE
57th Annual Symposium on Foundations of Computer
Science, FOCS, pages 41–50, 2016.

[9] P. Cli↵ord and I. Cosma. A simple sketching
algorithm for entropy estimation over streaming data.
In Proceedings of the 16th International Conference on
Artificial Intelligence and Statistics, AISTATS, pages
196–206, 2013.

[10] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and
S. Seshadri. Practical skew handling in parallel joins.
In Proceedings of the 18th International Conference on
Very Large Data Bases, VLDB, pages 27–40, 1992.

[11] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum.
Di↵erential privacy under continual observation. In
Proceedings of the Forty-Second ACM Symposium on
Theory of Computing, STOC, page 715–724. ACM,
2010.

[12] S. Ganguly and D. P. Woodru↵. High probability
frequency moment sketches. In 45th International
Colloquium on Automata, Languages, and
Programming, ICALP, pages 58:1–58:15, 2018.

[13] A. C. Gilbert, B. Hemenway, A. Rudra, M. J. Strauss,
and M. Wootters. Recovering simple signals. In 2012
Information Theory and Applications Workshop, pages

382–391. IEEE, 2012.
[14] A. C. Gilbert, B. Hemenway, M. J. Strauss, D. P.

Woodru↵, and M. Wootters. Reusable low-error
compressive sampling schemes through privacy. In
2012 IEEE Statistical Signal Processing Workshop,
SSP, pages 536–539. IEEE, 2012.

[15] I. J. Good. C332. surprise indexes and p-values.
Journal of Statistical Computation and Simulation,
32(1–2):90–92, 1989.

[16] M. Hardt and D. P. Woodru↵. How robust are linear
sketches to adaptive inputs? In Proceedings of the
45th Annual ACM Symposium on Theory of
Computing, STOC, pages 121–130, 2013.

[17] N. J. Harvey, J. Nelson, and K. Onak. Sketching and
streaming entropy via approximation theory. In 49th
Annual IEEE Symposium on Foundations of
Computer Science, FOCS, pages 489–498, 2008.

[18] A. Hassidim, H. Kaplan, Y. Mansour, Y. Matias, and
U. Stemmer. Adversarially robust streaming
algorithms via di↵erential privacy. In Advances in
Neural Information Processing Systems 33, NeurIPS,
2020.

[19] R. Jayaram and D. P. Woodru↵. Data streams with
bounded deletions. In Proceedings of the 37th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS, pages 341–354. ACM,
2018.

[20] R. Jayaram and D. P. Woodru↵. Towards optimal
moment estimation in streaming and distributed
models. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM, pages 29:1–29:21,
2019.

[21] A. Kamath, E. Price, and D. P. Woodru↵. A simple
proof of a new set disjointness with applications to
data streams, 2020.

[22] D. M. Kane, J. Nelson, and D. P. Woodru↵. On the
exact space complexity of sketching and streaming
small norms. In Proceedings of the twenty-first annual
ACM-SIAM symposium on Discrete Algorithms,
SODA, pages 1161–1178, 2010.

[23] H. Kaplan, Y. Mansour, K. Nissim, and U. Stemmer.
Separating adaptive streaming from oblivious
streaming. CoRR, abs/2101.10836, 2021.

[24] Y. Li and D. P. Woodru↵. A tight lower bound for
high frequency moment estimation with small error. In
Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques,
APPROX/RANDOM, pages 623–638. Springer, 2013.

[25] I. Mironov, M. Naor, and G. Segev. Sketching in
adversarial environments. SIAM Journal on
Computing, 40(6):1845–1870, 2011.

[26] S. Muthukrishnan. Data Streams: Algorithms and
Applications. Foundations and Trends in Theoretical
Computer Science, 1(2):117–236, 2005.

[27] M. Naor and E. Yogev. Bloom filters in adversarial
environments. In Advances in Cryptology - CRYPTO -
35th Annual Cryptology Conference, pages 565–584,
2015.

[28] D. P. Woodru↵ and S. Zhou. Tight bounds for
adversarially robust streams and sliding windows via
di↵erence estimators. CoRR, abs/2011.07471, 2020.

SIGMOD Record, March 2021 (Vol. 50, No. 1) 13

