World Wide Database - Integrating the Web, CORBA and Databases

Athman Bouguettaya and Boualem Benatallah and Lily Hendra
and James Beard and Kevin Smith and Mourad Ouzzani
Queensland University of Technology
School of Information Systems GPO Box 2434 Brisbane, QLD, 4001 Australia

{athman,boualem,lhendra,james,ksmith,ouzzani}@icis.qut.edu.au

1 Introduction

While most of the data published on the Web is
either semi-structured (e.g., HTML documents) or
unstructured (e.g., text files, images), the Web also
offers “hooks” to access non-Web centric structured
data (e.g., relational databases). CGI scripts are
usually used to access back-end databases. The Web
has so far been incongruous with databases. The reason
that the Web is database unfriendly is that it has been
developed for open data sources. Databases are closed
in nature in that communication with them is through a
rigid protocol (DBMS). One needs to know the schema
of a database to access or modify its state. This is
fundamentally different from the openness and freeform
type of Web data. Web protocols and search engines
have been developed for this kind of requirements and
environments. Therefore, it is important to note that
information retrieval and search techniques could not
be applied because of the different nature of, and the
fundamental assumptions about the data. However, we
could not discount the fact that the Web has made it
now possible to have one single interface to potentially
access all Internet accessible databases. The challenge
now is to make the Web database friendly. This
essentially means that we need to build an adequate
infrastructure on top of the Web that will provide for a
World Wide Database (WWD).

In order to address problems of scalability and
language support for Web accessible databases, the
WebFINDIT prototype has been developed {3, 1].
WebFINDIT is a system for describing, locating and
accessing data in Internet-accessible databases. We
present an architecture and supporting tools that enable
users to build complex and emerging Web applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGMOD '99 Philadelphia PA

Copyright ACM 1999 1-58113-084-8/99/05...55.00

594

in a simple and flexible way. The main idea is to
incorporate simple access to Web-accessible databases
as well as support for scalability and extensibility
into a flexible interoperable architecture for large
information spaces. Most existing techniques focused
extensively on either data sharing among small number
of heterogeneous databases or on information discovery
and brokering in the context of unstructured or semi-
structured Web-resident data [1]. In our research, we
consider issues to achieve the database equivalent of the
WWW. We call it the World Wide Database (WWD).
The WWD will be fundamentally different from the
WWW in that databases are relatively closed as
compared to traditional Web-resident data. Therefore,
we need to devise an infrastructure that will recognize
the specificities of accessing databases on the Web. Any
approach to support the WWD must support both
metadata and data queries.

We would like to note that the issues in achieving a
WWD are very much in line with those enumerated
by a committee of prominent and leading database
researchers gathered to assess the current state of the
database technology and where it should be by the year
2010 [2].

2 Design Overview

Our approach is mainly motivated by the fact that
in a dynamic and constantly changing network of
databases (e.g., Web accessible databases), there is
a need for a meaningful organization and segmenta-
tion of the information space. Key criteria that have
guided our approach are: scalability, design simplic-
ity, and easy to use structuring mechanisms based
on object-orientation. WebFINDIT aims to achieve
scalability through the incremental formation and dis-
covery of inter-relationships between Web accessible
databases. Clusters (groupings) of databases are es-
tablished through the sharing of high level meta-
information, and individual databases join and leave
these clusters at their own discretion. Users are incre-
mentally and dynamically educated about the available
information space rather than being presented with all

available information at once. We take advantage of
this architecture by using the information meta-type as
a unit of data sharing. As a result, databases need only
show and map the information types that need to be
shared.

A Two-level Approach for Information Space
Organization. In order to reduce the overhead of
locating information in large networks of databases,
the information space is organized as information type
groups. Each group forms a coalition to represent the
domain of interest (some portion of the information
space) of the related information sources. It also pro-
vides the terminology for formulating queries involving
a specific area of interest. Coalitions dynamically clump
databases together based on common areas of interest
into a single atomic unit.

Coalitions (first level) are related to each other by
service links (second level). A service link contains only
the portions of information that are directly relevant
to information exchange between coalitions. They
constitute the resources that are available to a coalition
to answer requests when they cannot be handled locally.
The amount of sharing in a service link will typically
involve a minimum amount of information exchange. In
this respect, service links are low overhead alternatives
to information sharing using coalitions.

Documentation is provided to document the behavior
of the information types being advertised. Actual
databases are responsible for generating and storing the
documentations of the information they are advertising,.
A documentation consists of a set of demonstrations
about the advertised item.

Metadata Repositories. Locating a set of databases
that fits user queries requires detailed information
about the contents of each database in the system. In
our approach, each participating database has a co-
database attached to it. A co-database (metadata repos-
itory) is an object-oriented database that stores infor-
mation about its associated database, coalitions, and
service links of this database. A set of databases ex-
porting a certain type of information is represented by
a class in the co-database schema. In particular, ev-
ery class contains a description about the participating
databases and a description about the type of infor-
mation they contain. Some attributes describe a type
of information while the other attributes describe the
databases that contain this type of information. We
should also mention that the documentation (demo)
associated with each information instance is stored in
actual databases. This is done for two reasons: (1)
database autonomy is maintained and, (2) documenta-
tions can be modified with little or no overhead on the
associated co-databases.

Queries over a Web of Databases. The WebTassili

595

language is designed to query the system at two levels:
metadata level (explore the available information, dis-
play meta information about a particular database, and
soon) and data level (query actual information stored in
databases). Beside the standard notions of a query lan-
guage, the syntax specifications of this language provide
constructs to educate users about the available space
of information, finding the target databases that are
most likely to hold the required type of information,
as well as for connecting databases and performing re-
mote queries. The information meta-type name, struc-
ture, and behavior are used as a handle for identifying
the appropriate information sources. WebTassili differs
from traditional query languages in that it operates in
a large and highly dynamic network of heterogeneous
databases. Since the unit of information sharing is the
type, this query language is able to query higher order
information in addition to querying actual information.

3 Implementation

This section presents the overall architecture which
supports the WebFINDIT framework. This architec-
ture adopts a client-server approach to provide services
for interconnecting a large number of distributed, au-
tonomous and heterogeneous databases. It is based on
CORBA and Java technologies. CORBA provides a ro-
bust object infrastructure for implementing distributed
applications including multidatabase systems. These
applications are constructed seamlessly from their com-
ponents (e.g., legacy systems or newly developed sys-
tems) that are hosted at different locations on the net-
work and developed using different programming lan-
guages and operating systems. Java allows user inter-
faces to be deployed dynamically over the Web. Java
applets can be downloaded onto the client machine and
used to communicate with WebFINDIT components
(e.g., CORBA objects).

The WebFINDIT components are grouped into four
layers which interact among themselves to query a large
number of heterogeneous and distributed databases
using a Web-based interface. The basic components
of WebFINDIT are the query layer, the communication
layer, the metadata layer, and the data layer.

The query layer provides users with access to
WebFINDIT services. It has two components: The
browser and the query processor. The browser is the
user’s interface to WebFINDIT. It is implemented us-
ing Java applets. The query processor receives queries
from the browser, coordinates their execution and re-
turns their results to the browser. The query processor
is written in Java.

The communication layer manages the interaction
between WebFINDIT components. This component
is implemented using a network of CORBA ORBs
that communicate via IIOP. The query processor

D 110P
2 I Lo]
T
A
B
A
s
E JpBC spBC
WebFYNDIT
L
B
v
: Onacte pB2 mSQL. DB2
: Q] K 1
sume Royal Queensiand RMIT Qur ustralian
Brisbano Medicare Cancer Medica) T
Cen
F o ng relink Medibank Hoapital Pund Researc n Research

c
o
o
A
s L
3 [LLEC X
B L Insurance &y b Ly L
a A 3 = 3
s L Rosearc n L L

= 3
E L L Medical

3
L L
£ = 4
v
[eredd
C Tnsurance Research
I 1op
Legend
Co-databas CORBA object wrapper & =] ovtect Request Broker (0RE) . Oatabase @BP CORBA object wrapper to
i Pa¥ co-database » database

Figure 1: WebFINDIT Architecture

communicates with CORBA ORBs either directly when
the ORB is a client/server Java ORB or via another
Java ORB.

The meta-data layer consists of a set of co-database
servers that stores meta-data about the associated
databases. All co-databases are implemented in Ob-
jectStore (C++ interface).

The data layer has two components: databases and
Information Source Interfaces (ISIs). An information
source interface (wrapper) provides access to a specific
database server.

Software Environment. The prototype that we de-
veloped uses three IIOP compliant CORBA ORBs,
namely Orbix, OrbixWeb, and VisiBroker for Java.
These ORBs interconnect 13 databases (and their co-
databases). Each database (and co-database) is encap-
sulated in a CORBA server object. These databases
are implemented using four different DBMSs: Oracle,
mSQL, DB2, and ObjectStore. The JDBC bridge is
used to connect the CORBA server objects to their
relational databases. In this case, the CORBA ob-
jects are implemented in Java (OrbixWeb or VisiBroker
for Java). The object-oriented databases communicate
with the CORBA server objects that are implemented
in C++ (Orbix). The user interface is implemented
as a Java applet that communicates with the CORBA
objects. The current implementation of our system is
based on the Java Development Kit version 1.1.5 (which
includes JDBC version 2.0), three CORBA products
(Orbix version 2.3c, OrbixWeb version 3.0, and Visi-
Broker version 3.2 for Java). ObjectStore databases
are connected to Orbix ORBs. Oracle databases are
connected to VisiBroker, whereas mSQL and DB2 are
connected to OrbixWeb (see Figure 1).

Using a Healthcare Scenario. A Healthcare sce-
nario has been developed to demonstrate the viability

596

of the proposed WebFINDIT architecture. Healthcare
applications provide a very relevant context where tools
such as WebFINDIT can be used. The application sup-
ports queries about healthcare related services and en-
able a large number of heterogeneous and autonomous
healthcare providers to communicate with one another.
4 Conclusion
Our experience with the WebFINDIT project has
been that the combination of CORBA, Java, and
JDBC offers a very useful middleware infrastructure
to implement Web-resident data sharing architectures.
CORBA combined with meta-data repositories (co-
databases) provides support for dynamic location and
integration of information sources while maintaining
their autonomy. Java allows our system to be deployed
dynamically over the Web and provides users with
sophisticated interfaces to use it. JDBC is an API that
can be used to access relational databases from Java
applications.
Acknowledgment
The first author would like to acknowledge the support
of the Australian Research Council (ARC) through a
Large Grant number 95-7-191650010.

References

(1] A. Bouguettaya, B. Benatallah, and A. Elma-
garmid. Interconnecting Heterogeneous Information
Systerns. Kluwer Academic Publishers (ISBN 0-
7923-8216-1), 1998.

P. Bernstein et al. The asilomar report on database
research. ACM SIGMOD Record, 27(3), December
1998.

S. Milliner, A. Bouguettaya, and M. Papazoglou. A
scalable architecture for autonomous heterogeneous
database interactions. In Proceeedings of the VLDB
Conference, Zurich, Switzerland, September 1995.

[2]

(3]

