The Jungle Database Search Engine

Michael Bohlen
boehlen@cs.auc.dk

Linas Bukauskas
linb@cs.auc.dk

Curtis Dyreson
curtis@cs.auc.dk

Dept. of Comp. Science, Aalborg University Frederik Bajers Vej 7E, 9220 Aalborg st, Denmark

Abstract

Information spread in in databases cannot be found by
current search engines. A database search engine is capable
to access and advertise database on the WWW. Jungle is
a database search engine prototype developed at Aalborg
University. Operating through JDOBC connections to remote
databases, Jungle extracts and indexes database data and
meta-data, building a data store of database information.
This information is used to evaluate and optimize queries
in the AQUA query language. AQUA is a natural and
intuitive database query language that helps users to search
for information without knowing how that information is
structured. This paper gives an overview of AQUA and
describes the implementation of Jungle.

1

A recent study estimates that 80% of the data on
the WWW is in the hidden web [LG98]. The hidden
web refers to information that can be accessed on the
WWW, but which current search engines cannot find
(nor can the internet users who subsequently use those
search engines). A major part of the hidden web
consists of information tucked away in databases.

A database offers many advantages for maintaining a
large information repository. Unfortunately, a database
is a closed box to current search engines. Existing
search engines are limited to searching the web of
HTML text documents. There is no protocol to permit
a search engine to look inside a database and index the
information it finds. This means that search engines
miss a lot of important information that is available on
the WWW.

The ultimate goal of this project is to open a database
to search engines. We call this opening of a database to

Introduction

Permission to make digitzl or hard copics of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a tee.

SIGMOD '99 Philadelphia PA

Copyright ACM 1999 1-58113-084-8/99/05...$5.00

584

external inspection database advertising. In database
advertising, a database designer chooses to advertise
some or all of the information in a database, making it
available to search engines.

Currently the only way to advertise a database is
to publish it in HTML. To publish a database, data
is dumped into an HTML page, which a search engine
subsequently indexes. Unfortunately, HTML is a very
poor intermediary between a database and a search
engine. HTML is a language to format text for
presentation, not a data exchange language. Once data
is put into HTML, it loses the structure that it had in
the database. Indications are that XML will be a better
data exchange language, however, there are many other
problems to advertising in this manner.

A fundamental problem with publishing is that
information in a database is highly inter-related. For
example, in a library database, information about
Niklaus Wirth may be spread among a number of
stored tables. A database query dynamically constructs
transient relationships between individual pieces of
data. So a user could query for the books authored
by Niklaus Wirth, or the books about Niklaus Wirth,
or the publishers of books by Niklaus Wirth, etc. The
number of potential, sensible, ordinary queries is quite
large. Should all such queries be tried and the results
published in HTML pages? Should only a few? If so,
how few and how does a database advertiser determine
which queries in advance? QOur position is that it
is unreasonable and far too expensive to publish the
results of an exhaustive set of database queries.

In the rest of this paper we describe the implemen-
tation of the Jungle database advertiser. Jungle has a
simple, yet usable query language, called AQUA, which
is introduced in Section 2. Section 3 gives a detailed dis-
cussion of Jungle’s architecture. We learned some im-
portant lessons in implementing Jungle which we sum-
marize in Section 4. A short summary concludes this
paper.

Jungle is currently available on the World-Wide Web
at http://www.cs.auc.dk/~linb/aqua. All AQUA
queries mentioned in the paper can be tried at the site.

2 AQUA

2.1 Vertical queries

A database can be thought of as having a hierarchy of
levels, from the database, to tables within the database,
to columns within a table, to individual attribute values
within the columns. A user can look for databases
about libraries as follows.

DB: "library"

AQUA interprets this query as a search for all databases
described by the string "library". This can be the
name of the database, or additional text comments
about the database (some DBMS support text com-
ments, and JDBC can extract these comments). The
query returns the handle of each database object found.

The other levels (table, column, and value) can be
queried in an analogous manner. So

TAB: "publication"

would find all the tables that are described by the string
"publication", whereas

VAL: "Java"

will find all the tuples that contain the string "Java"
in some attribute value.

The user can then narrow the search space to
publication tables within the library databases as
follows.

DB: "library" TAB: "publication"

Levels can be skipped in a vertical query, for instance
the following query would obtain author values from any
table in any database.

COL: "author" VAL: "¢

In the above example, observe the difference between
the levels higher than the specified COL: level and the
levels lower than the COL: level. Higher levels can either
be omitted or an empty string can be specified (DB:
""). There’s no semantic difference. The reason is
that a column can only be identified with respect to
a database. Thus, the database has to be identified in
any case. The situation is quite different for the value
level. Omitting VAL: "" changes the semantics of the
query. Specifically, no tuples will be returned.

2.2 Horizontal queries

One of the most useful features of AQUA is the ability
to automatically join related information. AQUA users
are naive, and will not know how the underlying
databases structure their information. For instance a
user looking for a book by Niklaus Wirth will usually
not know, nor care, that this information is split into
several tables in the Library database. AQUA, however,

585

has enough intelligence to automatically construct this
relationship during a horizontal query.

The relationships are derived from the imported and
exported key information in the underlying databases.
Conceptually, keys record the basic set of relationships
between different tables in a database. AQUA uses
the keyword AND to join information at the same level
between tables in a horizontal query. For example, the
relationship(s) of (Niklaus) Wirth to Java can be found
as follows.

VAL: "Wirth" AND VAL: "Java"

3 Jungle Architecture

The Jungle prototype consists of a Robot that visits
each remote database to populate Jungle’s data store,
and the AQUA query evaluation engine.

3.1 Robot

Jungle has a minimal amount of configuration. Basi-
cally, the only configuration information that Jungle
requires is the location of each database’s JDBC server,
and a login name and password for that database. Jun-
gle’s robot then visits each remote database and per-
forms the following steps to extract and index the in-
formation it finds.

First, the schema grabber lifts the schema, that is,
the names of tables, the names of columns, any addi-
tional table or column descriptions such as synonyms
(supported in some databases), column types, and the
names of domains. The meta-data information is in-
dexed. The meta-data index maps strings to database,
table, column, or domain objects. The index is used in
the evaluation of single-level and vertical AQUA queries
to locate the appropriate object. Since it stores only
meta-data, this index is relatively small.

Next, using the meta-data, Jungle generates and
executes a sequence of SQL queries via JDBC to extract
the values in text and numeric columns from each table.
This data is also indexed. The data index maps strings
or numbers to tuple objects. The data index is relatively
large, but its only role is to improve performance,
so that value-level queries can quickly identify which
tuples contain relevant information.

Jungle applies different indexing techniques for text
and numeric data. AQUA uses substring search inside
a text field, so strings are indexed by decomposing
(tokenizing) the string into a list of words. Only the
first n letters of every word are stored to save space.
In addition, all indexed words are translated to upper-
case for case-insensitive searching. Numeric data is
indexed by storing the minimal and maximal values
from an entire column. This method could be improved
since some numeric values occur more frequently than
others, and ranges of values are common. So storing

< o 3

htp /feer o3 ave dk/-Linb/oga-binjaqia p

be: KARY " ”!
{TAS: "PUELICATION" P
COL: "AUTHOR™ el
VAL: "

H 4

Advertised database: AALBORG UNIVERSITY LIBRARY. . -

[TYPE
- -Proceeding .
Personal life of Jay Leno |Baok N
Daiabassand JAVA - ook
The SO giide s Omacle [Book .
World ol JAVA N [Book

ARUA Doneesnnasivn L
Muchoxd iahlen, s, Bukuabus Qurds Dyreson sy 1998, Al cights meeeved.

Figure 1: Authors of publications in a library database

a distribution or a range of known values may improve
query optimization.

Finally, imported/ezported key information, if avail-
able, is retrieved. This key information will be used
by AQUA to construct horizontal relationships among
tuples in an underlying database.

3.2 AQUA query evaluation engine

The most complicated part of Jungle is the AQUA
query evaluation engine. An AQUA query is a query
for information in some advertised database. Some of
the queries (e.g., single or vertical queries on the meta-
data) can be answered directly from the information in
Jungle’s data store, but in general, Jungle (intelligently)
converts an AQUA query to a set of SQL queries,
has the queries evaluated by the appropriate remote
database System, and collects and formats the results.

1. The AQUA parser is a recursive descent parser au-
tomatically generated from a BNF specification by
JavaCup. The parser builds a parse tree of data extrac-
tion operations (e.g., database-level-search(“library”)).

2. The plan generator converts the data extraction
operations to a set of SQL queries on the advertised
databases. The SQL is generated using the meta-data
and data indexes described in the previous section. For
example, a horizontal value-level query will result in SQL
queries to join related tables. ’

3. The plan optimizer determines those queries that can
be answered without querying the underlying database
(e.g., meta-data queries). Such queries have their results
sent directly to the HTML formatter. The data index
can be used to fursher prune unnecessary joins from the
query evaluation plan.

4. The query is evaluated by opening a remote connection,
feeding the generated SQL to the connected database,
and collecting the results.

5. The HTML formatter formats the output in HTML
as illustrated in Figure 1. A fixed HTML format is
currently the only choice for reporting results. In future,

586

we plan to add support for formatting with user-supplied
templates.

4 Lessons learned

Jungle demos the feasibility of database search engines.
Throughout the project we got many insights of which
we would like to share the most important areas.

Value-level indexes A standard feature of every DBMS
should be a value-level index that maps a string to the
location (table, column, and/or tuple) of every value
in the database that matches the string. This would
help to create a new class of “value-added” database
services such as database advertisers. Jungle currently
has to build a value-level index on top of a database by
ertracting the relevant data from the database, thereby
duplicating a part of the data in a database.

Database APIs Constructing this prototype would have
been impossible without a standardized interface to
database services. We found JDBC to be a very good
API for our purposes, especially for extracting meta-
data [HCF97]. The JDBC server technology was easy to
use and provides an adequate level of security.

Database browsing It is important to combine declara-
tive and browsing-based query languages. The Jun-
gle search engine does do by integrating AQUA with
the possibility for interactive heterogeneous [LSS93]
database browsing [Mot86]. The result of queries is en-
riched with HTML links with encapsulated calls to the
search engine. As shown in Figure 1 advertised database
and table names are associated with an HTML link to
support intuitive and ease-to-use browsing.

5 Summary

The paper describes the Jungle database search engine.
Jungle allows users to query databases using AQUA.
Vertical and horizontal AQUA queries allow to query
advertised databases without knowing the underlying
databases structures. We described the main compo-
nents of the Jungle architecture, its robot, search en-
gine, and data store. We described the main steps of the
database advertisement and query evaluation phases.

References

[HCF97] G. Hamilton at al. JDBC Database Access
with JAVA: A Tutorial and Annotated Reference.
Addison Wesley, 1997.

S. Lavrence et al. Searching the world wide web.
Science, 280(4):98-100, 1998.

{LSS93] L. Lakshmanan et al. On the logical of schema in-
tegration and evolution in heterogenous database
systems. In DOOD’93, December 1993.

[Mot86] A. Motro. Baroque: A browser for relational
databases. In ACM Trans.] on Office Information
Systems, volume 4, pages 164-181, 1986.

[LG98]

