
The Cornell Jaguar Project: Adding Mobility to PREDATOR
Demonstration

Philippe Bonnet, Kyle Buza, Zhiyuan Chen, Victor Cheng, Randolph Chung, Takako Hickey,
Ryan Kennedy, IDaniel Mahashin, Tobias Mayr, Ivan Oprencak, Praveen Seshadri, Hubert Siu

http://www.cs.cornell.edu/database/jaguar
Cornell University
Ithaca, NY 14853

ABSTRACT
The Cornell Jaguar Project is exploring a variety of
issues related to mobility and query processing. One
broad theme is to break down the traditional client
and server boundaries, leading to ubiquitous query
processing. Another theme is to extend database
and query processing techniques to small-scale and
mobile devices. The project builds on and extends
the Cornell PREDATOR database engine.

Keywords
Mobile computing, ubiquitous query processing.

1. ISSUES

The Cornell PREDATOR system is a full-fledged
object-relational DBMS that developed efficient
database extensibility mechanisms. PREDATOR
was demonstrated at SIGMOD 1997. The Jaguar
project extends PREiDATOR with support for mobile
and portable execution. The demonstration includes
the following features:

4

b)

c)

The use of Java user-defined functions (UDFs)
that can be developed at the client and shipped
to the server where they are executed within
SQL queries.

The transparenlt execution of Java functions at
the client (instead of the server), along with
visualizations of query optimization decisions
that direct the choice of execution algorithm
[MS99].

The use of novel combinations of compression
techniques to effectively shrink the size of query
results that need to be shipped between the

Permission to make digil.al or hard topics of all or part of this work foi
personal or classroom use is granted without fee provided that copies
are not made 0” distributed I‘or profit or commercial advantage and that
copws heat this notice and the i’ull citation on the tirst page. To copy
otherwise, to rcpuhlish, lo post on scrvcrs or to rcdistributc to lists.
requires prior specific permission andior a fee.

SIGMOD ‘9!) Philadelphia PA
Copyright ACM 1999 l-581 13-084-8/99/05...$5.00

database server and mobile clients [CS99].

d) The incorporation of small-scale devices
(sensors, actuators, ‘smartcards, etc.) into ‘the
database system, including the ability to execute
partial, long-running queries over a mobile and
disconnected collection of devices.

e) The use of handheld computers in a data-
intensive “telepresence” application.

2. BACKGROUND
2.1 Extensibility in an OR-DBMS

Extensibility is an important goal of object-relational
database systems (OR-DBMSs). Two important
aspects of extensibility are the ability to add new
functions, and the ability to add new types for
complex data. Support for complex data types in
OR-DBMSs is based on Abstract Data Types (ADTs)
and user-defined functions (UDFs).

2.2 Security and Ease of Extension

The extensibility of OR-DBMSs usually comes at the
cost of security and reliability. Whenever new code is
added into the server, it has the potential to
(a) crash the server,
(b) interact undesirably with other server code,
(c) corrupt the server machine,
(d) monopolize resources, degrading performance,

It has therefore usually been the assumption that
database extensions are written by “database
developers” who are trained and trusted persons.
While this assumption may be valid in controlled
environments, it is certainly not true when the user
community is distributed over the WWW. For
instance, consider a database of stock market data,
made available to investors across the WWW. Each
investor might wish to specify his/her own prediction
functions to run in queries against the data. In such
a scenario, secure extensibility is an important
consideration. Another concern is scalability, and
how the database system behaves as hundreds or
thousands of users try to use new extensions.

580

2.3 Overview of PREDATOR

The Cornell PREDATOR system is a client-server
OR-DBMS. Data types are modeled as Enhanced
ADTs (E-ADTs) [Sesh98]; the enhancements involve
the specification of optimization semantics for
methods (this was demonstrated at SIGMOD 1997).
Several E-ADTs have been implemented, including
images, audio, video, documents, and geographic
types. Database clients may be implemented in any
programming language; currently C++ and Java
clients have been implemented. Java clients can run
as applets within a browser anywhere on the WWW.
Since Java is a portable language with security
features, it seems an ideal choice for database
extensibility. We have implemented mechanisms for
the database server to be extended with Java
functions. These functions can be tested on the
client, and then migrated to the server.

3. CONTENT OF DEMONSTRATION
3.1 Server Extensibility using Java

We demonstrate the ability to extend PREDATOR
with user-defined functions written in Java. The user
develops and tests these functions on the client site,
and transparently migrates them to the server site,
where they are used within queries. This form of
extensibility is secure, portable and easy to use,
without losing too much by way of performance.

This functionality is demonstrated in the context of a
realistic application involving financial data
management.

3.2 Client-side Java UDFs

When there are a very large number of users,
scalability issues dictate that UDFs stay on the client-
site, rather than migrate to the server. UDFs may
also use some client resources that should not be
shipped to the server. However, we would still like
the UDFs to participate in queries. We have
developed distributed database algorithms to apply
these client-site UDFs, and query optimization
algorithms to incorporate these algorithms into the
PREDATOR server. There are interesting network
utilization tradeoffs between the algorithms. We
demonstrate these using a client connected to the
server across a slow connection.

3.3 Result compression for clients

Results of queries are typically shipped to clients for
display to users. The client applications extract large
amounts of data from the database by running
queries and apply complex analyses to the query
result. We have developed algorithms that compress

query results utilizing the semantic information
available in the query. These result in compression
ratios that are 75% higher than standard
compression algorithms like LZW. High compression
ratios are critical when network bandwidths act as
the bottleneck between client and server, or when
the memory resources of the client are limited. We
demonstrate these techniques by using a handheld
device to access financial data. The compression
techniques used vary from query to query, and are
determined automatically using a “compression
optimizer”.

3.4 Device Databases

A new and very interesting form of mobile computing
involves small-scale devices like sensors, actuators
and smartcards. We have developed a data and
system architecture that integrates these devices
with a regular object-relational database system like
PREDATOR. Our demonstration uses JavaRings
and sensor devices. We show queries that run
partially over the central database and partly within
the devices. The interesting issues deal with the
mobility and intermittent connectivity of the devices.
We consider devices that are often disconnected as
well as devices that provide asynchronous “event”
data.

3.5 Handhelds and Scalable Telepresence

We also demonstrate the use of palmtops and
handheld computers as agents of telepresence. We
imagine a scenario in the not-too-distant future
where all our environments are compute-rich. This
means that we can interact with computers in the
office, walking down the corridor, in the elevator, in
the car, on the plane, in the taxi and in the hotel
room, without any seeming discontinuity. The key to
such seamless interaction is, of course, the ability to
transfer state along with the mobile individual. We
propose that handheld computers act as the bearers
of this state information. We demonstrate this
concept using simple applications. In the long term,
we expect this to evolve into another variant of
ubiquitous query processing, where a query
computation “moves” with the end-user across a
variety of environments.

4. REFERENCES
[CS991 Z.Chen and P.Seshadri. An Algebraic Compression
Framework for Query Results. Submitted to publication, 1999.

[MS991 T. Mayr and PSeshadri. Client-Site Query Extensions.
In Proceedings of ACM SIGMOD ‘99 International Conference
on Management of Data, Philadelphia, PA, 1999.

[Sesh98] P.Seshadri. Enhanced Abstract Data Types in Object-
Relational Databases. In VLDB Journal 7(3), 1998.

581

