The CCUBE Constraint Object-Oriented Database System

Alexander Brodsky Victor E. Segal Jia Chen Pavel A. Exarkhopoulo
Department of Information and Software Engineering
George Mason University, Fairfax, VA 22030
U.S.A.
{brodsky, vsegal, jchenl}@gmu.edu

1 Introduction

CCUBE is the first implementation of a constraint
object-oriented database system. It is a result of a five-
year effort of the research group on Constraint Program-
ming and Databases at George Mason University.!

In CCUBE mathematical constraints are used as a
flexible and uniform way to represent and manipu-
late diverse data including spatial and temporal behav-
ior, complex modeling requirements, as well as partial
and incomplete information. Application examples, for
which no other unified technology exists today, include
(1) constraint-based design in the presence of large data
sets, (2) spatio-temporal data fusion and sensor man-
agement; (3) manufacturing, warehouse and logistics
support; (4) electronic trade with complex objectives;
and (5) computation of geo-physical parameters from
large volumes of raw multi-dimensional data.

CCUBE, unlike most research prototypes, focuses
on scalability and competitive performance, and is
designed for scalable massive data applications that
involve large constraint sets. To that end, the CCUBE
technology has been recently selected by NASA, for
the proof-of-concept phase, as a tool for high-level
specification and efficient generation of products in
NASA’s Earth Observing System Data and Information
System (EQSDIS).

Until now, most work on Constraint Databases
(CDBs) has been theoretical and focused on expressive-
ness and complexity. The area of CDBs is being chal-
lenged by the question whether it will lead to a technol-
ogy with a significant practical impact. This parallels,
in a sense, to the state of relational databases before

!'Thig effort has been supported by NSF, ONR and NASA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specitic permission and/or a fee.

SIGMOD '99 Phildelphia PA

Copyright ACM 1999 1-58113-084-8/99/05...$5.00

OFFICE_OBIECT DESK
, , DRAWER
int CatalogNo : DRAWER * drawer
' is-a string Color
string Name
CST(p. 1
string Color FILE CABINET > (p.g) center
= CST(wl,zt) extent
CST(w,z) extent /
C o lY » ¥y
- LIST(DRAWER¥) STl 2Lpan)
T isa drawers

Figure 1: A Constraint Object-Oriented Database

Schema,

the first two prototypes, Ingres and System-R were de-
veloped. To move the area of CDB’s from theory to
practice, the objective of the CCUBE project is pre-
cisely this: to demonstrate the practical viability of the
CDB technology, by building a system that can work
on real-life, real-size, real-performance applications. A
detailed description of the system, its theoretical under-
pinnings and the related work can be found in the full
paper describing CCUBE in CONSTRAINTS, Volume
2(8,4), December 1997, pp. 245 — 278.

2 CCUBE by Example

Consider a simple office design application, with the
schema depicted in Figure 1. The schema uses regular
object-oriented features, such as ISA and composition
hierarchies, and also what we call spatio-temporal
constraint (CST) classes, such as CST(w,z), which
means, intuitively, a constraint in free variables w and
z.

To illustrate, consider an example of a two-dimensional
desk ¢‘my-~desk’’ depicted in Figure 2 as the larger
rectangle. The smaller rectangle depicts the desk’s

my_desk

Z1 {x,y)

-2

1 (p.q) 8

Figure 2: An Instance Of A Desk With Drawer In The
Room

drawer, which may open, i.e. move relatively to the
desk. Similarly, the desk may be moved in the room.
In the figure, the extent of my~desk is the set of points
{(w, 2)](-4 < w < 4) A (-2 < z < 2)} which is cap-
tured as the CST object (4 <w <4)A(-2<2<2)
in free variables w, 2, i.e., of class CST(w, 2).

Similarly, the extent of the desk’s drawer in the
drawer’s coordinates can be described by the CST
object (—1 < wl < 1)A(~1 < z1 < 1). The possible
locations (p,q) of the drawer’s center in the desk’s
coordinates can be described by p = -2A-3 < ¢ < —-1;
note that the horizontal component of the center, p,
equals to a constant since the drawer in the example
cannot move left or right; note also that the vertical
component, ¢, is between —3, when the drawer is fully
open, and —1 when it is closed. Also, the translation
between the desk’s W, Z and the room’s U,V systems
of coordinates can be captured by the constraint u =
T+ wAv = y+ z, meaning that if the desk’s center is at
(x,y), then a point (w, z) in desk’s coordinates is (u, v)
in the global room’s coordinates.

Constraints are also used in CCUBE queries to ma-
nipulate, as well as express boolean conditions on CST
objects. To illustrate, consider the following CCUBE
query that retrieves all desks that intersect the room
area (3 <= u <= 4 && 8 <= v <= 10), assuming that
the desk is centered at (6,4) and that its orientation is
aligned with the room’s axes (i.e. the translation equa-
tion is u = w + z Av = z +y). For each such desk, the
query also gives the desk’s extent in the room’s coordi-
nates.

SELECT pair(dsk, CST((u,v) | dsk_glob))
INTO {Bag<CST*>} result

2CCUBE currently implements general linear constraints of
any dimension, and thus can capture any object composed of
multi-dimensional polyhedral sets.

578

FROM
DEFINE area

all_desks AS {DESK#*} dsk

As {CsT}

(3 <=u<=423& 8 <=v <= 10)

DEFINE transl AS {CST}
(u==x+w&kv==y+z)

DEFINE dsk_glob AS {CST}

(dsk->extent && transl && x == 6 && y

WHERE SAT(area && dsk_glob)

4)

The third DEFINE statement defines a 6-dimensional
CST object dsk_glob (in variables u, v, , y, w, 2), which
is than used in the WHERE and SELECT clauses. In the
SELECT clause, it is projected to variables u,v, to find
the extent in the room’s coordinates, which is done by
existentially quantifying all the other variables. In the
WHERE clause, SAT is a satisfiabily test of the constraint
area conjuncted with dsk_glob, which finds, whether
dsk in the room’s coordinates intersect the given area
(3<=u<=4& 8 <=v <= 10).

Note that only with linear constraints one can ex-
press any linear transformations such as rotation, trans-
lation and stretch; check convexity, discreteness and
boundness, emptiness, containment, disjointness; com-
pute convex hulls, augment objects, change coordinate
systems etc. In short, constraints are very expressive.
We also claim that query systems with constraints can
be implemented very efficiently for important constraint
domains.

3 CCUBE Main Features

The CCUBE data manipulation language, Constraint
Comprehension Calculus is an integration of a con-
straint calculus for extensible constraint domains within
monoid comprehensions, which were suggested as an
optimization-level language for object-oriented queries.

The data model for the constraint calculus is based
on constraint spatio-temporal (CST) objects, which
may hold spatio-temporal constraint data, conceptually
represented by constraints (i.e. symbolic expressions).
In the current version, linear arithmetic constraints
(i.e. inequalities and equations) over reals 3 are
implemented. New CST objects are constructed using
logical connectives, existential quantifiers and variable
renaming, within a multi-typed constraint algebra. The
constraint module also provides predicates such as for
testing satisfiability, entailment etc, that are used as
selecting conditions in hosting monoid comprehension
queries.

The general framework of the CCUBE language is the
monoid comprehensions language, in which CST objects
serve as a special data type, and are implemented as a
library of interrelated C++ classes. The data model
for the monoid comprehensions is based on the notion
of monoid, which is a conceptual data type capturing

3using finite precision arithmetic

uniformly aggregations, collections, and other types
over which one can “iterate”.

The ability to treat disjunctive and conjunctive
constraints uniformly as collections is a very important
feature of CCUBE: it allows to express and implement
many constraint operations through nested queries,
i.e. in the same language as hosting queries. For
example, the satisfiability test of a disjunction of
conjunctions of linear inequalities is expressed as a
monoid comprehension query that iterates over the
disjuncts (each being a conjunction), and tests the
satisfiability of every conjunction (using the simplex
algorithm).

In turn, the ability to express a constraint opera-
tion as a sub-query in the hosting query is crucial for
what we call deeply interleaved optimization: it gives the
flexibility to re-shuffle and interleave parts of the con-
straint algorithm (sub-query) with the hosting query.
This re-shuffling can be done by additional global query
transformations involving approximations, indexing, re-
grouping, pushing cheaper selections earlier, replac-
ing sub-queries with special-purpose algorithms, and so
forth.

4

Here we discuss in more detail two examples of potential
applications for CCUBE.

Examples Of Applications

Electronic Trade with Complex Objectives

A typical scenario of electronic trade over the Internet is
this: (1) products and services are specified and priced
by numerous suppliers; and (2) bids for products and
services imposed by numerous consumers. An example
of a simple objective in such trades is to achieve a
deal that meets specified minimal or maximal prices as
sufficient conditions.

In realistic situations, however, suppliers and con-
sumers may have considerably more complex trade ob-
jectives. To illustrate, consider a chemicals manufac-
turer M, capable of producing a variety of products
using different raw materials. M has limitations in re-
sources and can use a variety of manufacturing pro-
cesses each corresponding to a possibly different profit
function. An example of a complex trade objective for
M could be finding a set of electronic bids for products
M is capable of producing and a set of electronic trades
of raw materials that would satisfy the existing busi-
ness constraints and maximize the profit function. Fur-
thermore, an analyst working for M may ask a variety
of what-if questions, which go much beyond optimize-
a-function-subject-to-constraints questions, typical in
mathematical programming: Is it possible to improve
profits by 5% by making an electronic trade with a raw
materials supplier, and then using a better manufactur-
ing process? How much of each raw material should be

579

purchased to satisfy all electronic bid with profitabil-
ity more than 15%? An electronic trade system, built
upon CCUBE can provide 2 single efficient platform to
all these deeply integrated aspects.

Spatio-Temporal Data Fusion and Sensor
Management

A typical scenario in an air-space command and control
application is this: Sensors are periodically assigned to
areas of responsibility. The sensor output is collected,
correlated, fused, and analyzed to form a representation
of the environment. A database stores information
on sensors, targets (hostile planes), target complexes
{formations) and platforms (friendly planes).

Constraints are used in this application as a uniform
data type for a variety of heterogeneous data: 4D-
trajectories, fields of vision, interconnections among
different coordinate systems, geographic regions and
layers, and and templates (such as formation types)
used to define expected behavior of of targets for
situation assessment.

In turn, CCUBE queries capture various application
activities: (1) All legal sensor assignments (i.e., targets
within fields of vision of sensors) are described using
constraints and constitute a search space. Finding legal
sensor assignments that are optimal according to some
criteria, e.g., maximal time until reassignment, is a con-
straint query. (2) Various coordinate transformations
need to be performed. For example, since the sensor re-
portg are relative to the platforms, spatio-temporal data
is first translated into a global (uniform) system of coor-
dinates. (3) In a number of states, the decision is made
on whether separately reported targets are in fact the
same one (based on their spatial and velocity proximity
over a period of time); or, vice-versa, whether a target
is in fact several targets. The criteria for being the same
target is naturally described by constraints and is cap-
tured by a constraint query. (4) Formations of targets
(e.g., a squadron of fighter jets flying a standpoint tier
formation) need to be identified and maintained in the
database. The type of a formation is also naturally de-
scribed by CCUBE queries expressing the geometrical
interposition of targets over a period of time.

5 Acknowledgments

This research was sponsored in part by the National
Science Foundation (NSF) grants I1S-9734242 and IRI-
9409770, and Office of Naval Research under prime
grant No. N00014-94-1-1153.

