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1 Introduction 

CCUBE is the first implementation of a constraint 
object-oriented database system. It is a result of a five- 
year effort of the research group on Constraint Program- 
ming and Databases at George Mason University.l 

In CCUBE mathematical constraints are used as a 
flexible and uniform way to represent and manipu- 
late diverse data including spatial and temporal behav- 
ior, complex modeling requirements, as well as partial 
and incomplete information. Application examples, for 
which no other unified technology exists today, include 
(1) constraint-based design in the presence of large data 
sets, (2) spatiotemporal data fusion and sensor man- 
agement; (3) manufacturing, warehouse and logistics 
support; (4) electronic trade with complex objectives; 
and (5) computation of geophysical parameters from 
large volumes of raw multi-dimensional data. 

CCUBE, unlike most research prototypes, focuses 
on scalability and competitive performance, and is 
designed for scalable massive data applications that 
involve large constraint sets. To that end, the CCUBE 
technology has been recently selected by NASA, for 
the proof-of-concept phase, as a tool for high-level 
specification and efficient generation of products in 
NASA’s Earth Observing System Data and Information 
System (EOSDIS). 

Until now, most work on Constraint Databases 
(CDBs) has been theoretical and focused on expressive 
ness and complexity. The area of CDBs is being chal- 
lenged by the question whether it will lead to a technol- 
ogy with a significant practical impact. This parallels, 
in a sense, to the state of relational databases before 
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Figure 1: A Constraint Object-Oriented Database 
Schema 

the first two prototypes, Ingres and System-R were de- 
veloped. To move the area of CDB’s from theory to 
practice, the objective of the CCUBE project is pre- 
cisely this: to demonstrate the practical viability of the 
CDB technology, by building a system that can work 
on real-life, real-size, real-performance applications. A 
detailed description of the system, its theoretical under- 
pinnings and the related work can be found in the full 
paper describing CCUBE in CONSTRAINTS, Volume 
2(3,4), December 1997, pp. 245 - 278. 

2 CCUBE by Example 

Consider a simple office design application, with the 
schema depicted in Figure 1. The schema uses regular 
object-oriented features, such as ISA and composition 
hierarchies, and also what we call apatio-temporal 
constraint (CST) classes, such as CST(w,z), which 
means, intuitively, a constraint in free variables w and 
2. 

To illustrate, consider an example of a twodimensional 
desk ’ ‘my-desk ’ ) depicted in Figure 2 as the larger 
rectangle. The smaller rectangle depicts the desk’s 
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Figure 2: An Instance Of A Desk With Drawer In The 
Room 

drawer, which may open, i.e. move relatively to the 
desk. Similarly, the desk may be moved in the room. 
In the figure, the extent of my-desk is the set of points 
{(w,z)~(-4 5 w 5 4) A (-2 5 z 5 2)) which is cap- 
tured as the CST object (-4 5 zu 5 4) A (-2 5 z 5 2) 
in free variables w, ,r, i.e., of class CST(w, z). 

Similarly, the extent of the desk’s drawer in the 
drawer’s coordinates can be described by the CST 
object (-1 < wl 6 1) A (-1 5 zl 5 1). The possible 
locations (p,q) of the drawer’s center in the desk’s 
coordinates can be d.escribed by p = -2 A -3 5 q < -1; 
note that the horizontal component of the center, p, 
equals to a constant since the drawer in the example 
cannot move left or right; note also that the vertical 
component, q, is between -3, when the drawer is fully 
open, and -1 when it is closed. Also, the translation 
between the desk’s ‘W, Z and the room’s U, V systems 
of coordinates can be captured by the constraint u = 
2 + w A v = y + z, meaning that if the desk’s center is at 
(z, y), then a point (Iw, .z) in desk’s coordinates is (u, V) 
in the global room’s coordinates.2 

Constraints are also used in CCUBE queries to ma- 
nipulate, as well as express boolean conditions on CST 
objects. To illustrate, consider the following CCUBE 
query that retrieves all desks that intersect the room 
area (3 <= u <= 4 8tO 8 <= v C= lo>, assuming that 
the desk is centered at (6,4) and that its orientation is 
aligned with the room’s axes (i.e. the translation equa- 
tion is u=: w + x A IJ = a + y). For each such desk, the 
query also gives the desk’s extent in the room’s coordi- 
nates. 

SELECT pair(dsk, CST( (u,v> 1 dsk-glob >> 
INTO (B~~<CST*>) result 

‘CCUBE currently implements general linear constraints of 
any dimension, and thus can capture any object composed of 
multi-dimensional polyhedral sets. 

FROM all-desks AS (DESK*) dsk 
DEFINE area AS (CST) 

(3 <= u <= 4 && 8 <= v <= :LO) 
DEFINE transl AS (CST) 

(u cc x + w && v == y + 2) 
DEFINE dsk-glob AS (CST) 
(dsk->extent LL transl && x == 6 68 y =-: 4) 
WHERE SAT(area LL dsk-glob > 

The third DEFINE statement defines a 6-dimensional 
CST object dskglob (in variables u, V, x, y, w, z), which 
is than used in the WHERE and SELECT clauses. In the 
SELECT clause, it is projected to variables u, V, to find 
the extent in the room’s coordinates, which is done by 
existentially quantifying all the other variables. In the 
WHERE clause, SAT is a satisfiabily test of the constraint 
area conjuncted with dsk-glob, which finds, whether 
dsk in the room’s coordinates intersect the given area 
(3 <= u <= 4 && 8 <= v <= 10). 

Note that only with linear constraints one can ex- 
press any linear transformations such as rotation, trans- 
lation and stretch; check convexity, discreteness and 
boundness, emptiness, containment, disjointness; c’om- 
pute convex hulls, augment objects, change coordinate 
systems etc. In short, constraints are very expressive. 
We also claim that query systems with constraints can 
be implemented very efficiently for important constraint 
domains. 

3 CCUBE Main Features 
The CCUBE data manipulation language, Constraint 
Comprehension cakdus is an integration of a con- 
straint calculus for extensible constraint domains within 
monoid COmprehen8iOn8, which were suggested as an 
optimization-level language for object-oriented queries. 

The data model for the constraint calculus is barsed 
on constraint apatio-temporal (CST) objects, which 
may hold spatio-temporal constraint data, conceptually 
represented by constraints (i.e. symbolic expressions). 
In the current version, linear arithmetic constraints 

( i.e. inequalities and equations) over reals 3 are 
implemented. New CST objects are constructed using 
logical connectives, existential quantifiers and variable 
renaming, within a multi-typed constraint algebra. The 
constraint module also provides predicates such as for 
testing satisfiability, entailment etc, that are usedi as 
selecting conditions in hosting monoid comprehension 
queries. 

The general framework of the CCUBE language is the 
monoid COmpreheTWiOn8 language, in which CST objects 
serve as a special data type, and are implemented as a 
library of interrelated C++ classes. The data model 
for the monoid comprehensions is based on the notion 
of monoid, which is a conceptual data type capturing 

%sing finite precision arithmetic 
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uniformly aggregations, collections, and other types 
over which one can “iterate”. 

The ability to treat disjunctive and conjunctive 
constraints uniformly as collections is a very important 
feature of CCUBE: it allows to express and implement 
many constraint operations through nested queries, 
i.e. in the same language as hosting queries. For 
example, the satisfiability test of a disjunction of 
conjunctions of linear inequalities is expressed as a 
monoid comprehension query that iterates over the 
disjuncts (each being a conjunction), and tests the 
satisfiability of every conjunction (using the simplex 
algorithm). 

In turn, the ability to express a constraint opera- 
tion as a sub-query in the hosting query is crucial for 
what we call deeply interleaved optimization: it gives the 
flexibility to reshuffle and interleave parts of the con- 
straint algorithm (sub-query) with the hosting query. 
This reshuffling can be done by additional global query 
transformations involving approximations, indexing, re- 
grouping, pushing cheaper selections earlier, replac- 
ing sub-queries with special-purpose algorithms, and so 
forth. 

4 Examples Of Applications 
Here we discuss in more detail two examples of potential 
applications for CCUBE. 

Electronic Trade with Complex Objectives 

A typical scenario of electronic trade over the Internet is 
this: (1) products and services are specified and priced 
by numerous suppliers; and (2) bids for products and 
services imposed by numerous consumers. An example 
of a simple objective in such trades is to achieve a 
deal that meets specified minimal or maximal prices as 
sufficient conditions. 

In realistic situations, however, suppliers and con- 
sumers may have considerably more complex trade ob- 
jectives. To illustrate, consider a chemicals manufac- 
turer M, capable of producing a variety of products 
using different raw materials. M has limitations in re- 
sources and can use a variety of manufacturing pro 
cesses each corresponding to a possibly different profit 
function. An example of a complex trade objective for 
M could be finding a set of electronic bids for products 
M is capable of producing and a set of electronic trades 
of raw materials that would satisfy the existing busi- 
ness constraints and maximize the profit function. Fur- 
thermore, an analyst working for M may ask a variety 
of what-if questions, which go much beyond optimize- 
a-function-subject-to-constraints questions, typical in 
mathematical programming: Is it possible to improve 
profits by 5% by making an electronic trade with a raw 
materials supplier, and then using a better manufactur- 
ing process? How much of each raw material should be 

purchased to satisfy all electronic bid with profitabil- 
ity more than 15%? An electronic trade system, built 
upon CCUBE can provide a single efficient platform to 
all these deeply integrated aspects. 

Spatio-Temporal Data Fusion and Sensor 
Management 

A typical scenario in an air-space command and control 
application is this: Sensors are periodically assigned to 
areas of responsibility. The sensor output is collected, 
correlated, fused, and analyzed to form a representation 
of the environment. A database stores information 
on sensors, targets (hostile planes), target complexes 
(formations) and platforms (friendly planes). 

Constraints are used in this application as a uniform 
data type for a variety of heterogeneous data: 4D- 
trajectories, fields of vision, interconnections among 
different coordinate systems, geographic regions and 
layers, and and templates (such as formation types) 
used to define expected behavior of of targets for 
situation assessment. 

In turn, CCUBE queries capture various application 
activities: (1) All legal sensor assignments (i.e., targets 
within fields of vision of sensors) are described using 
constraints and constitute a search space. Finding legal 
sensor assignments that are optimal according to some 
criteria, e.g., maximal time until reassignment, is a con- 
straint query. (2) Various coordinate transformations 
need to be performed. For example, since the sensor re- 
ports are relative to the platforms, spat&temporal data 
is first translated into a global (uniform) system of coor- 
dinates. (3) In a number of states, the decision is made 
on whether separately reported targets are in fact the 
same one (based on their spatial and velocity proximity 
over a period of time); or, vice-versa, whether a target 
is in fact several targets. The criteria for being the same 
target is naturally described by constraints and is cap- 
tured by a constraint query. (4) Formations of targets 
(e.g., a squadron of fighter jets flying a standpoint tier 
formation) need to be identified and maintained in the 
database. The type of a formation is also naturally de 
scribed by CCUBE queries expressing the geometrical 
interposition of targets over a period of time. 
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