TAM: A System for Dynamic Transactional Activity Management *

Tong Zhou

Ling Liu

Calton Pu

Department of Computer Science & Engineering

Oregon Graduate Institute
Portland, OR 97291-1000

{tzhou,lingliu,calton}@cse.ogi.edu

1 Introduction

Electronic commerce (EC) has remarkably reshaped today’s
business practices. The logic embedded in business trans-
actions are becoming more flexible and sophisticated; the
number of components within these business transactions
are fastly increasing; and business transactions are getting
more distributed and interactive as well. These, on the other
hand, make today’s business applications more vulnerable to
resource availability constraints and consistency problems
due to failures. For example, network congestion, server
overload, user absence, and other exceptions all might cause
temporary or permanent bottlenecks to ongoing business
workflows. Developing system support to make workflow
activities more reliable, efficient, and adaptive to changes or
exceptions therefore poses important yet challenging ques-
tions that call for practical solutions.

The TAM project at OGI aims at developing a flexible
framework and algorithms that address these challenges.
Comparing with other research efforts, our approach is
unique in that we combine advanced transaction processing
(TP) technologies with adaptive methods to guide our
system design, and build the mechanisms by extending the
functions of current TP systems.

On the theoretical side, we have developed a Transac-
tional Activity Model (TAM) for the specification and man-
agement of activities with transactional properties. TAM is
a careful combination of a compositional activity model [5]
with well-defined extended transaction models (ETMs) [3]
such as split/join transactions [9]. It provides simple and ef-
fective specification facilities that allow business process de-
signers to specify the behavioral composition and refinement

*The research was supported in part by the National
Science Foundation (NSF) under grant IRI-9510112, by the
U.S. Department of Defense Advanced Research Projects Agency
(DARPA) under contracts F19528-95-C-0193 and MDA972-97-
1-0016, by an Intel grant, and by NSERC under grants OGP-
0172859.

Permission to make digital or hard copics of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGMOD '99 Philadeiphia PA

Copyright ACM 1999 1-58113-084-8/99/05...$5.00

571

of complex activities and a wide variety of activity interac-
tion dependencies in a high-level and declarative way. The
embedded transactional semantics give business workflows
automatic shield from execution anomalies caused by con-
currency or failures. TAM also provides a set of dynamic
activity restructuring operations with well-defined seman-
tics [7, 11] that allow ongoing transactional activities to by-
pass execution bottlenecks or deal with failures.

On the practical side, we have built a system as a pro-
totype implementation of TAM, for effectively monitoring
and managing transactional applications. An important
novel feature of our system is that it is based on the stan-
dard OLTP reference architecture [4, 2], and is built on top
of a commercial OLTP product Transarc-Encina. Another
feature that distinguishes our system is its support for dy-
namic activity restructuring as an effective facility for activ-
ity adaptation. To our knowledge, it is the first implemen-
tation of activity restructuring with consideration of trans-
actional properties on OLTP systems. Our implementation
continues to follow a special method called ”Design for Im-
plementation”, which we carefully developed in our previous
work on distributed extended transaction management [8].
The method is largely based on component technology, open
implementation, program specialization, and plug-in adap-
tors for practical implementations. Our implementation also
utilizes and leverages on the system mechanisms from our
previous work, like RTF [1] and OCP [10]. We propose to
demonstrate our system prototype at SIGMOD, illustrat-
ing its activity visualization, management, and dynamic re-
structuring features.

2 TAM System Description

As shown in Figure 1, the TAM system has a three-tier
architecture: front-end, communication layer, and backend.

The front-end (the top tier) consists of Web-enabled
graphical user interfaces, implemented using a mixture
of Java applets, Javascript, and HTML. It currently has
two components: the Activity Specification Pilot and the
Activity Instance Monitor.

The Activity Specification Pilot allows activity de-
signers to visually specify, modify, and build transactional
activities. The graphically specified activities are mapped
into activity specifications written in the ActivityFlow Spec-
ification Language [6], and handed over (via Specification-
based wrappers) to the Activity Code Generator to generate

TAM 1
Monitor

Frontend

Communication
Layer

TAM System
| Services

Backend

! OLTP System
! Services

Figure 1: System Architecture

real activity code. This component also provides facilities
to start up and shut down the backend TAM System Server.
Besides, for a particular activity specification, this compo-
nent launches different Activity Instance Monitors, one per
running activity instance.

The Activity Instance Monitor administers and mon-
itors the execution of activity instances, generates alert no-
tifications for potential system problems (e.g., prolonged ac-
tivity execution delay), and provides a set of dynamic ac-
tivity restructuring operations for the modification of the
execution path of a particular activity instance. The ad-
ministration tasks include starting and stopping activity in-
stances, as well as querying activity instance execution histo-
ries and timing information. The monitoring tasks include
animated activity state changes, active execution tracing,
and problern alerts. The activity restructuring interface also
provides a facility for flexible change adaptation policy spec-
ifications on relevant affected activity instances (e.g., a set of
instances working for a cooperative task). This component
is launched by the Activity Specification Pilot for activity
instances on an one-to-one basis.

The communication layer (the middle tier) contains a
set of communication wrappers. These wrappers are classi-
fied into two categories: Specification-based wrappers that
serve as the mediators between the Activity Specification Pi-
lot and the backend, and Instance-based wrappers that me-
diate between the Activity Instance Monitor and the back-
end. This layer is designed to address some language com-
patibility and server capability concerns. For example, the
current version of the OLTP system on which we build our
prototype restricts us to use certain programming languages
for applications (e.g., C/C++), making it necessary to pro-
vide the hook between these languages and others (like those
used in the frontend). As another example, different web
servers (e.g., apache, Netscape commerce server, etc.) have
different capabilities, also bringing the need to accommodate
each in the middle tier.

The backend (the bottom tier) has a coarser demarcation

572

in the figure, Conceptually, it actually consists of three
sublayers: TAM System Services, ETM System Services,
and native OLTP System Services.

OLTP System Services sit at the lowest level in
the backend. These are native functions provided by a
commercial OLTP system (e.g., Encina), like transaction
management, concurrency control, logging and recovery, etc.
Our prototype currently uses Transarc’s TPM Encina at this
sublayer.

The middle sublayer holds what we call ETM System
Services that support extended transactions [3]. These in-
clude the system mechanisms we developed in our previous
distributed ETM work [8]}, like extended transaction man-
ager [1], semantic concurrency control [1], open transaction
coordination protocol [10], etc. These services either uti-
lize or extend the functions provided in the bottom OLTP
sublayer.

TAM System Services are at the top sublayer of the
backend. These include the actual functions that support
the frontend capabilities, and either utilize or extend the
functions in the two sublayers below. Some of the key com-
ponents are: the Transactional Activity Manager that actu-
ally performs the activity management tasks, like activities’
begin, commit, abort, and dynamic restructuring; the Activ-
ity Dependency Manager that coordinates with the Trans-
actional Activity Manager to preserve both inter- and intra-
activity dependencies; the Activity Monitor component that
keeps track of activity instances’ execution information, like
states, execution traces, timing, etc.; and the Activity Code
Generator that generates actual activity code from their
specifications.

3

We will demonstrate the following extensions to the under-
lying OLTP system in our TAM prototype:

Demo Description

e Visual display of specification information about trans-
actional activities, such as activity composition hierar-
chies and activity dependencies.

Web-based administration of the TAM system backend,
like startup and shutdown of the system servers.

Execution control and monitoring of ongoing transac-
tional activity instances, like start, stop, animated state
changes, execution tracing, and query capabilities. The
query interface allows one to conduct simple queries
about a single activity, quantified queries over multiple
activity instances’ execution history, as well as activity
execution timing information.

Figure 2 is a snapshot of the TAM Instance Monitor,
along with the Activity Restructuring Interface window
on the top and the activity dependency query result win-
dow on the left. The canvases show a telecommunication
activity instance executing, with colors representing dif-
ferent activity states.

Problem alerts, and dynamic restructuring of ongoing
activity instances based on the alerts (manually done in
the demo). This also demonstrates the effects of different
change adaptation policies on relevant activity instances
when a restructuring happens.

self precede InstallN ewCircuit

self precede AllocateLines

self precede AllocateSwitchl

self precede AllocateSwitch2

self precede PrepareBill

abort(self) enable abort{AllocateLines)
abort(self) enable abort(AllocateSwitchl)
abort(self) enable abort{AllocateSwitch2)
abort(self) enable abort(PrepareBill)
abort{AllocateLines) ~> abort(self)
abort{AllocateSwitchl) -» abort{self)
abort{AllocateSwitch2) -> abort(self)
abort(PrepareBill) -> abort(self)
commit{self) enable
commit(AllocateLines)

commit(self) enable

commit(AllocateSwitchl)

InstallNew Circuit

Figure 2! Activity Instance Monitor

The top pop-up window in Figure 2 is a snapshot
of the Activity Restructuring Interface. Each image
button represents a specialized restructuring primitive
with built-in semantics. The interface then guides
through the restructuring process via other dialogs,
like pinpointing involved activity instances and change
adaptation policies.

References

(1]

(2]
3l

(4]
(5]

[6)

R. S. Barga and C. Pu. A practical and modular
method to implement extended transaction models. In
Proceedings of the 21st International Conference on
Very Large Data Bases, Zurich, Switzerland, Septem-
ber 1995.

P. A. Bernstein. Transaction processing monitors.
Communications of the ACM, 33(11):75-86, 1990.

A. K. Elmagarmid, editor. Database Transaction
Models for Advanced Applications. Morgan Kaufmann,
1993.

J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993.

L. Liu and R. Meersman. The Basic Building Blocks
for Modeling Communication Behavior of Complex Ob-
jects: an Activity-driven Approach. ACM Transactions
on Database Systems, 21(3):157-207, 1996.

L. Liu and C. Pu. Activityflow: Towards incremen-
tal specification and flexibile coordination of workflow
activities. In Proceedings of the 16th International Con-
ference on Conceptual Modeling (ER’97), November
1997. Los Angeles, California, USA.

573

7}

(8]

[9]

(10]

[11]

L. Liu and C. Pu. Methodical Restructuring of
Complex Workflow Activities. In Proceedings of the
1998 IEEE Conference on Data Engineering, Orlando,
Florida, February 1998.

C. Pu, R. Barga, T. Zhou, and S.-W. Chen. Imple-
menting Extended Transaction Models. In High Perfor-
mance Transaction Systems (HPTS) Workshop 1997,
Pacific Grove, California, September 1997.

C. Pu, G. E. Kaiser, and N. Hutchinson. Split-
transactions for open-ended activities. In Proceedings of
the 14th International Conference on Very Large Data
Bases, 26-37, August 1988.

T. Zhou, C. Pu, and L. Liu. Adaptable, Efficient,
and Modular Coordination of Distributed Extended
Transactions. In Proceedings of the 4th International
Conference on Parallel and Distributed Information
Systems, Miami Beach, Florida, December 1996.

T. Zhou, C. Pu, and L. Liu. Dynamic Restructuring
of Transactional Workflow Activities: A Practical Im-
plementation Method. In Proceedings of the Tth In-
ternational Conference on Information and Knowledge
Management, Washington, D.C., November 1998.

