Phoenix: Making Applications Robust

Roger Barga
David B. Lomet

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

{barga,lomet}@microsoft.com

1. Introduction

Dealing with errors or exceptions is a very large part of getting
applications right. Failures are not only an application
programming problem but an operational and an availability
problem as well. The Phoenix goal is to increase the availability
of an application and in many cases avoid the operational task of
coping with an error. There are two aspects of this:

System Crashes: While database systems recover database state,
the state of applications using the database, and their sessions, are
"blown away" (erased). Our intent is to extend database recovery
to session and application state. This will enable stateful
applications to survive failures and continue execution.

Logical Errors: Transactions abort for logical errors as well as
crashes. Aborted transactions roll back to transaction start. Our
intent is to extend database recovery to support partial rollback
for application errors, where the rollback resets not only database
state (supported by savepoints) but also application state.

We are currently exploring technology that exploits database redo
recovery to enable applications to persist across system failures.
While forms of program persistence have been proposed, the
costs have been high in logging and checkpointing. Our
techniques [1,2,3] substantially reduce these execution costs and
leverage the database's recovery mechanisms to accomplish this.
Phoenix continues the trend of expending system resources to
conserve more expensive and error-prone human resources.

1.1 Phoenix/ODBC - Persistent Sessions

In the Phoenix project, we have focused first on client application
availability and persistence in the presence of database server
failures. Our initial systems effort avoids the difficulty involved
with making substantial changes to the internals of the database
system by focusing on session availability. We have built a
prototype Phoenix ODBC driver which provides persistent server
sessions to ODBC-enabled clients, sessions that can survive a
server crash without the client application being aware of the
outage, except for possible timing considerations.

Permission 1o make digital or hard copies of all or part ot this worI‘\‘ tor
personal or classroom usc is granted without fee provided that copics
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the ﬁrst_ page. TQ copy
otherwise, to republish, to post on scrvers Or o redistribute to lists.
requires prior specific permission and’or a fee.

SIGMOD '99 Philadelphia PA

Copyright ACM 1999 1-581 13-084-8/99/05...85.00

562

2. ODBC Background

ODBC (Open Database Connectivity) is a client application API
to SQL database servers based on the X/Open and ISO/CAE SQL
Call Level Interface standard. Applications can access data in any
DBMS supporting ODBC for access to their databases. An
application makes calls to ODBC using SQL statements written in
either ODBC SQL or DBMS-specific SQL syntax. The usual
components involved in going from an ODBC client application
to a DBMS Server are outlined below and illustrated in Figure 1.

ODBC Driver: a DBMS vendor provided dynamic link library
that responds to all client application calls to the ODBC APIL. The
driver translates SQL statements into DBMS-specific SQL syntax
and passes the statement to the server and reformats results
returned from the DBMS into ODBC format.

ODBC Driver Manager: a platform component that manages
communications between the application and vendor provided
ODBC drivers for any database with which the application works.
The driver manager loads the ODBC driver and passes all
application requests to it.

ODBC

Driver

Driver

Manager

G
)

Figure 1: Hlustration of the main components in the ODBC architecture.

2.1 An Example ODBC Database Session

To illustrate the use of ODBC and the likely result were a
database failure to occur, we consider the following example.
Our database session is centered on a data analysis query, similar
to those in the TPC-D benchmark, and involves three tables: a
master customer table, a detail orders table, and summary invoice
table. The task is to extract the appropriate records for a customer
with the last name “Smith,” find that customer’s current orders,
and aggregate the order totals into the invoice summary table.
This client application might be coded as follows:

1. Create an ODBC session by opening a connection to the
server, log on the database and set session specific attributes

2. Request the server create a result set from the customer table
(A) consisting of records with a last name of ‘Smith’

3. Fetch customer records from the result set, until the
appropriate customer record is found.

4.  Ask the server to open a cursor on the orders table (B) for
orders matching this customer’s ID

5. Fetch all matching order records for this customer ID.

6. Calculate the aggregate of those order detail records.

7. Send a command to update the invoices table (C) with the
calculated aggregate.

8. Close connection to database, terminating the session.



f

8§ 7 6

54321

Client Application

Figure 2: Client application using ODBC to access client database.

Consider what would happen were the database server to fail
during this ODBC database session. The main problems are:
Server Failure: ODBC functions can have undefined behavior
when the server is down and frequently require that the
application be terminated.

Application Availability: After application termination, the
application must be restarted, a new connection to the SQL Server
must be created, and a new ODBC session must be established.
Partial execution can leave the application state confused,
requiring long outages in order to reconstruct it manually.

Loss of Transient State. If a failure occurs after the application
has created volatile state, e.g. result sets from SQL statements,
this state is lost.

For an application to cope with database server failure requires
additional code to deal with these problems. This increases
application complexity, delays deployment, contributes to bugs,
and can further reduce overall application availability.

3. Overview of Phoenix/ODBC
3.1 The Phoenix/ODBC Architecture

To provide session availability we introduce Phoenix/ODBC, a
Phoenix-enabled ODBC Driver Manager. Phoenix/ODBC wraps
any native ODBC driver, intercepting application requests going
to the database as well as responses returned from the server.

Phoenix/ODBC
Driver ODBC

Driver

Manager

Figure 3: ODBC architecture with a Phoenix-enhanced ODBC Driver
Manager.

563

3.2 Phoenix/ODBC Actions

Phoenix/ODBC creates a virtual ODBC database session for an
application (statement 1 of our example) and maps it to one or
more real ODBC database sessions. It detects server failures and
recovery by timing out requests and pinging the server until it
recovers. It then re-associates the virtual session to a new ODBC
session by reconnecting to the server and re-associating saved
information with this new session. Finally, when the session
terminates it cleans up any persistent session state that was
created (statement 8).

Phoenix/ODBC captures transient session state and makes it
persistent. It logs statements that alter session context (statement
1). It rewrites SQL statements to force the creation of persistent
database tables that capture application session state, before
passing the request on to the native ODBC driver (result sets of
statements 2 and 4 will be made to persist). Phoenix/ODBC
intercepts server responses, variously caching, filtering, and
reshaping result sets, and synchronizing with state materialized on
the database server (partially delivered result sets in statements 3
and 5 are synchronized to provide seamless delivery).

3.3 Decomposing Application State

Our first step towards providing ODBC persistent sessions was to
decompose server session state into elements, each of which could
be materialized as a distinct data object.  These elements of
session state have different lifetimes and recovery requirements
that we exploit. These include:

ODBC Session Context — All client settable attributes of a
session, including Database Connection — refers to connection
request and user login information.

Environment, connection, and statement attributes — Context,
not associated with attributes, includes user identification, current
database, user temporary objects, and unacknowledged messages
sent by the server to the client.

Result Generating SQL Statement — SQL statement that will
return one of following:

e A result set returned from a SELECT statement.

e A global cursor that can be referenced outside the SQL

statement.
Return codes, which are always an integer value.

Output parameters, which can return either data or a cursor
variable.

Database Procedures — A procedure stored at the server, usually
one or more SQL statements that have been precompiled.

SQL Command Batch — Group of two or more SQL statements
or a single SQL statement that has the same effect as a group of
two or more SQL statements.

Transactional SQL Statements — State includes transaction
manager state, uncommitted database changes, locks held,
memory images of execution plans, buffers, and intermediate
results such as sorts.



3.4 Delivery of SQL Statement Results

A challenging aspect of masking server failures is ensuring
seamless delivery of results to the client. Phoenix/ODBC enables
this by making the result of a SQL statement a persistent table and
re-accessing the result set table after a failure.

Phoenix/ODBC intercepts each application SQL request and
performs a one-pass parse to determine statement type. If the
statement generates a result, Phoenix/ODBC takes the following
steps to ensure it will be recoverable in case of server failure.

Step 1. Phoenix/OBDC accesses the metadata describing the
columns in the result set. ODBC results include this metadata
with the result data. Phoenix/ODBC acquires only the metadata
by appending the clause “WHERE 0=1" to the original SQL
statement, guaranteeing both that no result data will be returned
and that the query will not actually access database data in
generating the result. It then sends this request to the database
server.

Step 2: Phoenix/ODBC reads the metadata and uses it to generate
a CREATE TABLE statement specifying a persistent table to hold
the result. It then sends the CREATE statement to the database
server to create an empty table at the server to hold the result set.

Step 3: The SQL statement is executed so as to insert its result set
into the just created persistent table at the server. What gets
materialized depends on both the original SQL statement and on
how the application requests the result set from the server. With
ODBC, the “how” is determined by the statement options set prior
to executing a SELECT.

Step 4: To ensure seamless result set delivery, Phoenix/ODBC
keeps track of the current location in the now persistent result set
as data is fetched. Should a failure occur, subsequent database
recovery ensures the result set exists after the failure.
Phoenix/ODBC resumes access to the result set at the
remembered location of the last fetch before the failure.

To make a default result set persistent, Phoenix/ODBC stores it in
its entirety into the persistent table created at step 2 prior to
returning rows to the client application. Phoenix/ODBC creates
a stored procedures that encapsulates the original application SQL
statement and takes only one parameter, the name of the empty
database table. The advantage of using a stored procedure to
execute the original SQL statement and load the persistent table is
that all the data is moved locally at the server, not sent first to the
client. This procedure, using only ANSI-standard SQL, is created
as follows:

CREATE PROCEDURE P (@T string) AS

INSERT <original application SQL statement>

INTOT
The procedure execution is itself an atomic SQL statement. Once
the server has returned a response indicating the procedure was
successfully executed, the result set is stable and will persist
across server failures.  Phoenix/ODBC then issues the SQL
statement SELECT * FROM T to open the table and returns
control to the application program for normal processing.

When Phoenix/ODBC detects that the database server has failed,
it “pings” the server until it detects that the server has recovered.
It then reconnects and reestablishes an ODBC session.

564

Phoenix/ODBC then identifies the application's last completed
request and asks the server to re-send the result set if necessary

4. Phoenix/ODBC Performance

Using queries from the TPC-D benchmark, we conducted an
evaluation of Phoenix/ODBC to measure the costs of persisting
and recovering ODBC database sessions[4]. We found the
following:

Phoenix/ODBC overhead to persist result sets for queries with a
high degree of complexity, such as those found in the TPC-D
benchmark, is modest. For benchmark query Q5 the response
time difference between Phoenix/ODBC and ‘vanilla’ ODBC is
less than 4%, while for query Q11 there was less than a 30%
difference in response time for result sets up to 100 tuples.

For computationally simple queries that generate small result sets
the response time difference is small, but the response time ratio
between Phoenix/ODBC and vanilla ODBC is more pronounced.
The difference is due not only to run-time overheads of
Phoenix/ODBC (request interception, scanning and parsing),
which are quite small, but also due to table creation costs. Total
Phoenix/ODBC costs contribute only about one third of a second
to response time, but for simple queries this has a large impact on
the response time ratio.

The time to fetch tuples from a Phoenix/ODBC persistent result
set is within 5% of the fetch cost for an ODBC volatile result set.
Response time measurements for ODBC fetch averaged .00380
seconds, while response time for Phoenix/ODBC fetch averaged
.00397 seconds.

Once the database system recovers from server failure,
Phoenix/ODBC can recover the entire database session and
continue application execution in less than one second.
Comparing this to the execution time for TPC-D query Q11, we
note this is less than a tenth of the time required simply to
recompute the query and send its results to the client.

5. Summary

Phoenix/ODBC relieves the application developer from coping
with the programming complexity of handling server failures,
increases the availability of the application, and in many cases
avoids the operational task of coping with an error. Indeed, a user
of the application, end user or other software, may not even be
aware that a database server crash has occurred, except for some
delay. While there is an extra cost for application persistence,
Phoenix continues the trend of expending system resources to
conserve more expensive and error-prone human resources.

6. References

1. Lomet, D.B. and Weikum, G. Efficient Transparent Application
Recovery in Client-Server Information Systems. ACM SIGMOD’98
Conference, Seattle, WA (June 1998) 460-471.

2. Lomet, D.B. Persistent Applications Using Generalized Redo
Recovery. ICDE’98 Conference, Orlando, FL (Feb. 1998) 154-163.

3. Lomet, D.B. and Tuttle, M. Redo Recovery after System Crashes.
VLDB’95 Conference, Zurich, Switzerland (Sept. 1995) 457-468.

4. Barga, R.S., and Lomet, D.B.
Sessions, Feb. 1999, Microsoft Technical

Persistent Client-Server Database
Report  (submitted).



