
Nodose Version 2.0
Brad Adelberg

Computer Science Department
Northwestern University
adelberg@cs.nwu.edu

ABSTRACT
This paper describes a tool, called Nodose, we have developed to
expedite the creation of robust wrappers. Nodose allows non-
programmers to build components that can convert data from the
source format to XML or another generic format. Further, the
generated code performs a set of statistical checks at runtime that
attempt to find extraction errors before they are propogated back
to users.

Keywords
Wrapper generation, data extraction, error detection.

1. INTRODUCTION
This paper describes Nodose, a GUI-based tool for building
robust translators, extractors, and wrappers for text sources. By
robust we mean that the generated code is able to detect extraction
errors even once it’s deployed so that users of the extracted data
can be confident in its quality. Even assuming bug free code,
there are three sources of errors that a deployed wrapper might
encounter:

1. The format of the wrapped source may change. Web sites
are particularly guilty of this.

2. Although a wrapper tests successfully on a set of example
data, it is possible that it will fail in actual operation if it
encounters a document with a previously unencountered
feature, such as an infrequent field. Given that wrappers
often need to be developed very quickly, particularly after a
previously supported web site has changed formats, the
likelihood of not testing with a fully representative set of
pages increases.

3. For sources where the documents are human generated or
OCRed, typos or OCR errors can wreak havoc with the
wrapper’s parser.

It is critical that wrappers that are part of production systems be
robust in the face of the problems above. Performance should
degrade gracefully in the presence of errors, and even more
importantly, errors must be detected before corrupt data is
returned to the user.

bmission to make digital or hard copies of all or part of this work fix
personal or classrnom use is granted without fee provided that topics
are tlot mnde or distributed for profit or commercial advantage and that
copies bear this notice and the full citntioil w the lirst page. 1-o copy
othcrwisc, to rcpubli~h, to post on scrvcrs or to rsdistrihute Lo lists.
requires prior specific permission arldlnr a fee.

SIGMOD ‘9!) Philadelphia PA
Copyright ACM 1999 l-581 I3-084-8/99/05...$5.00

Matthew Denny
Computer Science Department

Northwestern University
mattd77Qnwu.edu

2. EXAMPLE
We will describe how Nodose can be used to extract data from a
web site using the Internet Movie Database as an example. The
extraction process begins by loading a single page into Nodose.
The user then hierarchically decomposes the structure within the
page using a GUI and an automatic parsing component. Next,
additional pages corresponding to other movies are loaded into
the system and automatically parsed. Any errors are corrected by
using the GUI. The process is complete when all of the pages
have been successfully parsed. Once the rules for parsing the web
pages have been inferred, the extracted data can be output in many
different forms. Options in the current implementation include
XML and a tab-delimited format that can be imported into
spreadsheets and relational database systems for tabular sections
of the extracted data. Also, a standalone component can be
automatically generated that parses documents and outputs XML
or any of the other reporting formats.

The first step in decomposing a movie page is indicating its top-
level structure. We can view a single page as a record with many
fields. Some of the more interesting fields are shown already
extracted in Figure 1. The user will enter each of the fields into
Nodose by selecting the relevant portion of the text in the
document window and clicking on the “add structure” button in
the tool bar (see Figure 1). The type, type name, and label of each
field can be entered using the controls on the bottom portion of
the window. Since some of the fields of the record are complex
types (lists), the decomposition process must continue.

Suppose the user chooses to decompose the list of cast members
next. Double clicking on that node in the tree view panel will
display only the portion of the document mapped to the results
list. The user then selects the text of the first element of the list
and adds this as a structure. Next, the second element of the list is
added. The user could continue to add every element in this
manner but this would become tedious if there were many
elements. Instead, the user can ask Nodose to try to infer the
remaining elements by mining the text. If the tool mistakenly
identifies elements, the user can correct a few of the errors and ask
that the text be remined. In this way, the correct grammar for the
component will eventually be learned. Once it is, Nodose is able
to identify all of the other elements of the list correctly.

The decomposition process would continue until every interesting
structure in the web page had been identified. At that point,
Nodose is loaded with additional pages. These are automatically
parsed using the grammar inferred from the first page. It’s
possible, though, that parsing will fail on one of the additional
pages if it contains something that the first file did not. For
example, suppose that the second movie is in multiple languages.

559

Nodose may misparse thle languages list, in which case the user
must correct the parsed tree of the new file, describing the list
using the GUI as before. The extractor will then update its
grammar to account for the multiple element list so that future
pages will be parsed correctly.

In order to help find direct users to extraction errors, a statistical
analyzer (described in Section 3) is run after the miner. Nodes
that are flagged as quest:ionable are shown in red; those that are
not questionable are shown in green. Also, the analyzer results
box will contain details of the check that failed for flagged nodes.
An example is shown in Figure 1 in which the cast list has been
flagged since its range is; more than 1 standard deviation longer
than other cast lists (from other pages).

The user should examine nodes shown in red to determine if they
were mined incorrectly. If so, the node should be edited by hand
and then remined. If the node is correct but is marked in red, the
user checks the “node is correct” box which notifies the analyzer
that it must loosen its thresholds. After a number of example
pages have been correctly parsed and their nodes correctly
analyzed, the analyzer will be loose enough to avoid most false
positives but strict enough to catch most true errors.

3. DETECTING IERRORS
The error reporting system we have implemented is based on
finding statistical outliers, or instances of a type that have
characteristics that deviate greatly from the average instance of
that type. For instance, if SO instances of a given type are 10
characters long and a new instance is found with 200 characters,
the extractor has probably made a mistake.

In order for the system to find statistical outliers, the following
statistics are incrementally maintained per type:

average node range ~ The length of the node.

percentage of a node covered by its children (record and
collection types only) - Average percent of node range that is
covered by its children.

percentage of records with field (record types only) - The
percentage of nodes of a given record type in which a certain
field is present. For example, 90% of the employee records
have a salary field.

average number of unused fields (record types only) - The
average number of fields used in a record type subtracted
from the number of fields defined for the record. If records
always contain every field, this number will be 0.

percentage of time JPield A precedes field B (record types
only) - The percentage of records of a given type in which
field A directly prece:des field B. For example, name might
precede birthdate in 80% of all employee records.

average number of children (collection types only) - The
average number of elements in a collection.

list of acceptable cha.racters (atomic types only) - For atomic
nodes, Nodose stores a list of all of the permissible
characters. The default starting lists for all of the atomic
types are shown in Table 1.

The statistics are generally kept as a series of running totals in the
document manager. This implementation not only bounds the
space used by the type information, it also keeps the statistical

Atomic Type Initial Legal Characters
Integer ‘O’-‘9’

Float ‘0’s‘g’,‘.‘,‘E’,‘+‘,‘-‘

String ‘a’-‘z’,‘K-‘Z

Date ‘O’-‘g’,‘/‘,‘-’

Email address ‘,‘_‘,‘,‘A’-‘Z’,‘O’-IO’,‘.‘,‘@’

URL ‘,‘_‘,‘,,A’-‘Z’,‘O’-‘O’,‘.‘,‘-’ i

Table 1: Initial lists of legal characters by atomic type.

information independent from the text of the documents, thus
allowing the statistical data to persist even in the presence of
impermanent documents (e.g. outdated documents that are
deleted, documents entering the system as streams but never
materialized as a tile, etc.).

Whenever new nodes are parsed, the analyzer checks the newly
created nodes to see if any is a statistical outlier. If any of lthe
node’s attributes lie outside of the threshold, one or more warning
messages are generated for that node and the node is marked in
red in the GUI. From the user standpoint, a flagged node in lthe
GUI means that the node is an error or a false positive generated
by the analyzer. If the flagged node is indeed an error, the user
should edit the node manually, and mine the node again so tlhat
the miner may learn the new variant on the structure. If the
flagged node is not an error, it is a false positive; a node that is
not an error, but still a statistical outlier. To correct this problem,
the user should explicitly accept the node (by clicking on a
checkbox). If the node is accepted, the analyzer thresholds will be
expanded to accommodate the node. For example, consider a
node of type A that has a range that lies 1.5 standard deviations
away from the mean. If the node is accepted and the current
threshold for the range of that type is 1 .O standard deviations, then
the threshold is expanded to 1.5 standard deviations.

The threshold information maintained by the analyzer can be
used by stand-alone wrappers. When the wrapper generated by
Nodose receives warning messages from the analyzer, they are
written out to stable storage so that users may check for potential
problems in documents mined non-interactively. They can also be
included as attributes if the data is written out as XML.

4. RELATED WORK
We are not aware of any other work that explicitly addresses the
correctness of extracted data. The most similar work in spirit is
that of [6] in which the authors attempt to learn rules for data
mining that are robust in the face of changes to the underlyi:ng
data. The authors propose a metric for the robustness of a rule
and use the metric to prune the rules produced by the data mining
algorithms.

While there is very little work on the correctness of extracted data,
there has recently been a flurry of work on extraction systems in
general [2,3,4,5,7]. Due to space constraints (and given that the
focus of this paper is not Nodose in general), we cannot addre:ss
these systems here, and instead refer the interested reader to tlhe
cited papers.

5. REFERENCES
[1] B. Adelberg. “NoDoSE - A Tool for Semi-Automatically
Extracted Structured and Semistructured Data from Text
Documents.” In Proceedings of SIGMOD, Seattle, WA. 1998.

560

[2] N. Ashish and C.A. Knoblock. “Wrapper generation for semi-
structured Internet sources.” In Workshop on Management of
Semistructured Data, 1997.

[3] J.-R. Gruser, L. Raschid, M. E. Vidal, L. Bright. “Wrapper
Generation for Web Accessible Data Sources.” In Proceedings
CoopIS, 1998.

[4] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A.
Crespo. “Extracting semistructured information from the web.”
In Workshop on Management of Semistructured Data, 1997.

Add Add Del. Del. Del. Del.
le Child Tree Children Node Siblings b

-!- c\- ,
b.$Ft title = Citizen Kane
k@year= 1941
/+$I?< director= Orson Welles

$l-a (Writerlist) writers
i I”:$ Element = Herman J. Mankiewicz
! ‘--.$~ Element= Orson Welles

$-@ (GenreList) Genres
; ‘.-?% Element = Drama
\--~~ rating = 8.5
p&g plot= Powerful newspaper o...

$I-@
f-:,9< country= USA

I$@ (LangList) Languages
; ‘,--?@ Element = English
~--.S color = Black and White

l5.m (CertList) certifications
$I-@$ (Rating) Element
i I.....:& Country= UK
\ L...#I rating = U

I$-@ (Rating) Element
i i---~k country= Finland

line

[S] C. Hsu. “Initial Results on Wrapping Semistructured Web
Pages with Finite State Transducers and Contextual Rules.” In
Proceedings of AAAIP8 Workshop - AI and Information
Integration, 1998.

[6] C. Hsu and CA. Knoblock. “Discovering Robust Knowledge
from Databases that Change.” Available at
www.isi.edu/sims/chunnan.

[7] N. Kushmerick, D.S. Weld, and R. Doorenbos. “Wrapper
induction for information extraction.” In Proceedings of IJCAI,
1997.

Mine Document
r Recursive Analyze Text

ast overview, first billed only: </TD></m

<TRXTD VALIGN="TOP"><A HREF="/Name?Cotten,+Josep:
<TRXTD VALIGN="TOP"><A BPXF="/Name?Comingore,+Do
<TfU<TD VALIGN="TOP"><A H.FZF="/Name?Noorehead,+Ag.
<TRXTD VALIGN="TOP"><A HREF="/Name?Warrick,+Ruth
<TR><TD VALIGN="TOP"><A IiREF="/Name?Collins,+Ray+
<TI0<TD VALIGN="TOP"><A HREF="/Name?Sanford,+Ersk
<TF+<TD VALIGN="TOP"><A HREF="/Name?Sloane,+Evere
<TR><TD VALIGN="TOP"><A HREF="/Name?Alland,+Willi
<TR><TD VALIGN="TOP"><A HREF="/Name?Stewart,+Paul.
<m<TD VALIGN="TOP"><A IIREF="/Name?Coulouris,+Ge
<TI0<TD VALIGN="TOP"><A HREF="/Name?Bonanova,+For
<l'RXTD VALIGN="TOP"><A WREF="/Name?Schilling,+Gu
<TRXTD VALIGN="TOP"><A HREF="/Name?Ven+Zandt,+Ph
<TR><TD VALIGN="TOP"><A HREF="/Name?Trosper,+Kath
<m<lD VALIGN="TOP"><A IiREF=“/Name?Backus,+Georg

“,.I s ’ >:. ._L

T&e’t$ame CastList ‘I 1 4 Fast\hasa rangei

Figure 1: Screenshot of Nodose wrapping the Internet Movie Database.

561

