Evolvable View Environment (EVE): Non-Equivalent View
Maintenance under Schema Changes *

E.A. Rundensteiner, A. Koeller, X. Zhang
A. VanWyk, Y. Li
Department of Computer Science
Worcester Polytechnic Institute
‘Worcester, MA 01609
{rundenst,koeller,xinz,avanwyk,yongli} @cs.wpi.edu

1 Overview

Supporting independent ISs and integrating them in
distributed data warehouses (materialized views) is be-
coming more important with the growth of the WWW.
However, views defined over autonomous ISs are sus-
ceptible to schema changes. In the EVE project we
are developing techniques to support the maintenance
of data warehouses defined over distributed dynamic
ISs [5, 6, 7]. The EVE system is the first to allow
views to survive schema changes of their underlying ISs
while also adapting to changing data in those sources.
EVE achieves this in two steps: applying view query
rewriting algorithms that exploit information about al-
ternative ISs and the information they contain, and in-
crementally adapting the view extent to the view defi-
nition changes. Those processes are referred to as view
synchronization and view adaption, respectively. They
increase the survivability of materialized views in chang-
ing environments and reduce the necessity of human
interaction in system maintenance.

1.1 Background: Relaxed Query Semantics

and Meta Information
E-SQL or Evolvable-SQL is an extension of SQL that
allows the view definer to express preferences for view
evolution [5, 8, 6]. A user defining a view can specify
what information is indispensable, what information

This work was supported in part by several grants from
NSF, namely, the NSF NYI grant #IRI 94-57609, the NSF CISE
Instrumentation grant #IRIS 97-29878, and the NSF grant #IIS
97-32897. Dr. Rundensteiner would like to thank our industrial
sponsors, in particular, IBM for the IBM partnership award and
for the IBM corporate fellowship for one of her graduate students.
§Current address: Sybase Inc., Waterloo, Ontario, Canada N2L
3X2.

Permission to make digital or hard copics of all or part of this work for
personal or classroom use is granted without fee provided that copics
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, 1o republish, to post on servers or to redistribute to lists.
requires prior specific permission and/or a fee.

SIGMOD '99 Philadelphia PA

Copyright ACM 1999 1-58113-084-8/99/05...35.00

Dept. of Information and Systems Mgmt.
HK University of Science and Technology University of Michigan
Clear Water Bay, Hong Kong

553

A.J. Lee A. Nical

Department of EECS

Ann Arbor, MI 48109

alee@ust.hk anica@eecs.umich.edu

is replaceable by similar information from other ISs,
and whether a changing view extent is acceptable.
Relaxed query semantics provided by E-SQL is the key
to obtaining non-equivalent but useful query rewritings
as it provides the EVE system with the flexibility to
evolve a view under schema changes in a controlled way
while preserving the user’s intended semantics.

In order to enable view adaptation and rewrite view
definitions affected by IS evolution, our system needs to
be able to identify view component replacements from
other ISs. Through a model for meta knowledge, we ex-
press relationships between ISs using constraints (e.g.,
agreeing data types, functional dependencies between
attributes, extent overlaps between relations). These
descriptions form an information pool that is critical in
finding appropriate replacements for view components
(i.e., attributes, relations, WHERE-conditions) when
view definitions become undefined. The meta knowl-
edge about the information space is stored in our system
in the Meta Knowledge Base (MKB) whereas E-SQL
view definitions are stored and maintained in the View
Knowledge Base (VKB) as depicted in Figure 1.

2
2.1

An ideal (equivelent) rewriting should preserve the
original view interface and generate an identical result
set (view extent) without introducing any surplus tuples
nor dropping any of the original ones, and it should
be efficiently maintainable in the long run. Locating
such a perfect rewriting is difficult and sometimes
impossible in practical environments. Thus, we relax
the requirement of rewriting view queries to now also
generate non-equivalent view definitions. We specify
through E-SQL which deviations in view extents and
view interfaces are acceptable to a user.

Depending on the type of meta information main-
tained in the MKB and the relaxed query seman-
tics specified by E-SQL, we apply different view syn-
chronization algorithms [6] in order to obtain new le-
gal query rewritings (i.e., queries that can be exe-

Concepts Presented

Non-Equivalent View Synchronization



cuted against the changed information space and ful-
fill the given user requirements). Algorithms devel-
oped for EVE include Project-Containment View Syn-
chronization (POC) [7), Complez View Synchronization
(CVS) [6], and Optimized CVS [2]. The EVE-demo ap-
plies these algorithms to generate view rewritings.

2.2 Tradeoffs of Cost and Quality

After a schema change, the EVE-demo adapts all af-
fected materialized views to work on the new informa-
tion space. The view extents and schemas contained in
the data warehouse after the schema change may dif-
fer from the original. Schemas may differ in the set of
attributes retained in the view, and view extents may
contain surplus tuples and may lack tuples that have
been in the view before. We have introduced a measure
of quality (non-equivalent maintenance) [3] which allows
to compare view rewritings with the original view and
determine a ranking among alternative views. A value
estimating this “usefulness” of a rewriting to a view user
plus an assessment of future view maintenance costs is
given for a view rewriting (QC-Value) (3, 4]. In the
demo, the best view rewritings according to the QC-
Value are ordered by preference and presented to the
user after a schema change.

2.3 Scalable View Maintenance and
Adaption

Our long-term goal is the development of scalable
middle-ware technology in support of efficient dis-
tributed data warehousing applications. We have de-
veloped incremental view maintenance techniques that
parallelize the handling of concurrent data updates (as
an extension of the sequential SWEEP algorithm [1]).
Our algorithm, called Parallel SWEEP or PSWEEP,
significantly increases the data maintenance perfor-
mance and thus guarantees up-to-date view extents
even in dynamic distributed environments. This algo-
rithm is presented in the demo.

In a related effort, we have also incorporated incre-
mental strategies for the adaptation of the view extent
of a data warehouse whose information sources have
undergone dynamic schema changes. The adaptation
algorithm efficiently adapts the extent of the view af-
ter the view synchronization, hence avoiding expensive
re-computations. One issue addressed is the correct
execution of such maintenance even over ISs that are
themselves affected by changes during the maintenance
task. We are also working on supporting concurrency
between schema changes and data updates [9].

3 EVE-Demo Implementation

We will briefly describe the main functionality of the
demo. Essentially, the interface to the EVE sys-
tem is divided into two parts: a meta and view

knowledge browser and a schema change request in-
terface. This software implements a fully functional
data warehouse tool suite over distributed information.
sources. The EVE demo homepage is available under
http://davis.wpi.edu/dsrg/EVE.

e Meta and View Knowledge Browser

The MKB/VKB browser displays the current states
of the Meta Knowledge Base and the View Knowl-
edge Base (Figure 2). Information displayed in-
cludes the set of information sources and relations
in the information space and the constraints on each
relation or pair of relations, as well as the views de-
fined in the data warehouse and their extents. The
extent of each base relation can also be browsed.

VIEW SITE

.2 .
View Concarreat View QC-Value
Adaptor Maintainer Synchronizer Computation
View Evolution x capability changes

Mecta
Knowledge

ase

updat

querie/query results notifications

Wrapper Wrapper Weapper
e | R e [f

e
INFORMATION SPACE

Figure 1: The EVE Framework: View Synchronization
in an Evolving Environment.

e Schema Change Request Interface

With this interface, relational schema changes (such

1S5 HOTEL

Figure 2: The Meta Knowledge Browser.



as add-attribute, delete-relation) can be initi-
ated. Each schema change can be applied to any re-
lation or attribute defined in the MKB. The schema
change is executed against the IS specified and the
EVE system is then notified of the schema change
which causes the view synchronization to take effect.
The effect of the schema change (view synchroniza-
tion as well as view maintenance) can immediately
be seen in the following windows (Figure 3), but can
also be browsed later in the MKB/VKB browser.

{CREATE VIEW
POTENTIALCUSTOMER
SELECT
151.CUSTOMER CNAME
151,CUSTOMER STREET

(VE = SUPERSET) AS {"

(AD=FALSE AR = TRUE ).

5 Central
4 North iMpls iMN

Figure 3: An Example for a Changed View Extent After
a Schema Change.

3.1 EVE System Implementation

The demo is implemented in Java 1.1 using Java
Foundation Classes (Swing). It has a three-tier
architecture consisting of a GUI, a middleware layer
and a database layer. The middleware connects to
several SQL-Databases through JDBC and contains
modules to compute data warehouse extents, maintain
view knowledge, meta knowledge, parse E-SQL, apply
view synchronization and compute QC-Values. The
GUI consists of two applets for schema change requests
and meta/view knowledge browsing. The whole system
currently consists of over 160 Java classes and runs
under JDK 1.1.6 on Windows NT 4.0 as well as Linux
2.0.

References

[1] D. Agrawal, A. El Abbadi, and A. Singh. Efficient
View Maintenance at Data Warehouses. In Proceed-
ings of SIGMOD, pages 417-427, 1997.

[2] A. Koeller, E. A. Rundensteiner, and N. Hachem.
Integrating the Rewriting and Ranking Phases of

(3!

(5]

[6)

7]

(9]

View Synchronization. In Proceedings of the ACM
First International Workshop on Data Warehousing
and OLAP (DOLAP’98), November 1998.

A. J. Lee, A. Koeller, A. Nica, and E. A. Runden-
steiner. Data Warehouse Evolution: Trade-offs be-
tween Quality and Cost of Query Rewritings. In
Proceedings of IEEE International Conference on
Data Engineering, 1999.

A. J. Lee, A. Koeller, A. Nica, and E. A. Runden-
steiner. Non-Equivalent Query Rewritings. In In-
ternational Database Conference, Hong Kong, July
1999.

A. J. Lee, A. Nica, and E. A. Rundensteiner. Keep-
ing Virtual Information Resources Up and Running.
In Proceedings of IBM Centre for Advanced Stud-
ies Conference (CASCON’97), Best Paper Award,
pages 1-14, November 1997.

A. Nica, A. J. Lee, and E. A. Rundensteiner. The
CVS Algorithm for View Synchronization in Evolv-
able Large-Scale Information Systems. In Pro-
ceedings of International Conference on Extending
Database Technology (EDBT’98), pages 359-373,
Valencia, Spain, March 1998.

A. Nica and E. A. Rundensteiner. Using Contain-
ment Information for View Evolution in Dynamic
Distributed Environments. In Proceedings of Inter-
national Workshop on Data Warehouse Design and
OLAP Technology (DWDOT’98), Vienna, Austria,
August 1998.

E. A. Rundensteiner, A. J. Lee, and A. Nica. On
Preserving Views in Evolving Environments. In Pro-
ceedings of 4th Int. Workshop on Knowledge Repre-
sentation Meets Databases (KRDB’97): Intelligent
Access to Heterogeneous Information, pages 13.1-
13.11, Athens, Greece, August 1997.

X. Zhang and E. A. Rundensteiner. Data Warehouse
Maintenance Under Concurrent Schema and Data
Updates. In Proceedings of IEEE International
Conference on Data Engineering, 1999.



