
Database Patchwork on the Internet * 

Reinhard Braumandl Alfons Kemper 

Universitat Passau 
94030 Passau, Germany 

(lustname) @db.fmi.uni-passau.de 

1 Overview 
Naturally, data processing requires three kinds of resources: 

l the data itself, 

l the functionality (i.e. database operations) and 

l the machines on which to run the operations. 

Because of the Internet we believe that in the long run there 
will be alternative providers for all of these three resources 
for any given application. Data providers will bring more 
and more data and more and more different kinds of data 
to the net. Likewise, ,finction providers will develop new 
methods to process and work with the data; e.g., function 
providers might devellop new algorithms to compress data 
or to produce thumbnails out of large images and try to sell 
these on the Internet. It is also conceivable, that some people 
allow other people to use spare cycles of their idle machines 
in the Internet (as in the Condor system of the University 
of Wisconsin) or that some companies (cycle providers) 
even specialize on selling computing time to businesses that 
occasionally need to carry out very complex operations for 
which regular hardware is not sufficient. 

Unfortunately, we are still a far cry from such an open data 
processing marketplace. What we can already see today is a 
growing number of data (content) providers, but we can only 
see a few function providers and virtually no cycle providers. 
The reason is that there is an asymmetry in the Internet: due 
to protocols like http or OLE or CORBA, it is possible to 
move data around in the Internet, but it is not yet as easily 
possible to move functionality around in the Internet. The 
only two ways to provide new functionality is (1) to develop 
Java applets or browser plug-ins, which can be executed at 

*This work is part of the ObjectGlobe project, which is supported by 
the German National Research Foundation DFG under contract Ke 401/7-l 

Permission to make digital or hard topics ofall or part ofthis work fat 
personal or classroom use i:j gmntecl without fee provided that copies 
are nut made or distributed for profit or commercial advantage and that 
copies hear this no~icc and the fill1 citation on the lirst page. To copy 
otlwrwisc, to republish, to post on scrvcrs or to rcdistrihutc to lists. 
requires prior specific pun-ission and/or a kc. 

SIGMOD ‘99 Philaclelpl~ia PA 
Copyright ACM 1999 I-581 13-084~8/99/05...$5.00 

Donald Kossmann 

client machines, or (2) to develop middleware systems--in 
both ways, the data must be shipped to the functionality, 
which can be prohibitively expensive, if large amounts of 
data must be processed, and it is not possible to ship the 
functionality to the data or to ship both the functionality and 
the data to machines, which are located near the data and 
particularly suited to carry out the operations. 

At the University of Passau, we are currently developing 
a distributed database system to be used in the Internet. The 
goal is to ultimately have a system which is able to run on 
any machine, manage any kind of data, import any kind of 
data from other systems and import any kind of database op- 
erations. The system is entirely written in Java. One of the 
most important features of the system is that it is capable 
of dynamically loading (external) query operators, written 
in Java and supplied by any function provider, and execut- 
ing these query operators in concert with pre-defined a.nd 
other external operators in order to evaluate a query. Com- 
pared to object-relational database systems, which allow to 
integrate external data and functionality by the means of ex- 
tensions (datablades, extenders or cartridges) or heteroge- 
neous database systems such as Garlic [MS971 or Tsimmis 
[GMPQ+97], our approach makes it possible to place exter- 
nal query operators anywhere in a query evaluation plan as 
opposed to restricting the placement of external operatiaas 
to the “access level” of plans. It would, for example, be pos- 
sible to make our system execute a completely new relational 
join method, if somebody finds a new join method which is 
worth-while implementing. Because our system is written in 
Java, it is highly portable and could be used by data, function 
and cycle providers with almost no effort. Furthermore, our 
query engine is, of course, completely distributed providing 
all the required infrastructure for server-server communic,a- 
tion, name services, etc. 

2 Example Applications 
In the following we describe some applications, which could 
benefit from the usage of our query engine or just become 
possible by the use of a system like ours. 

Travel Agency: There are a lot of web pages available 
today, which help to plan an individual journey by 

550 



finding hotel rooms, flights and special events, taking 
place at the chosen destination. But these web sites 
normally work by materializing the whole information 
in a local database. Therefore the given information 
may be outdated or inaccurate. A further weak point 
is the lacking possibility to perform joins on several 
interesting entities. For example, if you want to book 
a flight to Sydney and a hotel room there, you normally 
have to consult two different forms and do the join on 
date on your own. It is also hard work to integrate a new 
data source for example a car rental agency or a foreign 
railway company. 

Such an application developed within our system would 
integrate remote data sources for hotels, flights, car 
rentals and so on by the means of wrappers. Therefore 
the data would be as up-to-date and as consistent as 
the original data source is providing them. A classic 
middleware system could also solve the join problem, 
but it does not scale well in the Internet. Suppose we 
want to compute a join between hotels and car rentals 
in the surroundings of New York, Tokyo and Rome. 
The middleware system has to fetch all the data from 
the different sources located near the mentioned cities 
and performs the join at a second tier server. In our 
system we could perform a local join at servers located 
near the mentioned cities and unite the results at an 
intermediate server or the client. New data sources can 
be embedded in our system at run time by dynamically 
loaded wrappers. 

Research in Distributed Database Systems: A great hand- 
icap in research efforts for distributed database systems 
is the lack of real world testing possibilities. No research 
group has the chance to test new plans or operators in an 
environment with several hundred participating sites dis- 
tributed over the whole Internet. 

Since our query processor is very portable, it would be 
no problem to install a version of it at computers be- 
longing to interested research groups. All these instal- 
lations could form one big distributed database accessi- 
ble by every participating group. Due to the dynamic 
extensibility, tests and benchmarks with new operators 
and wrappers would not need any administrative effort 
by any other group except the one doing the test. But 
this group will only have to do some configuration on 
their own installation. The other servers stay untouched 
by them. 

Others: The extensibility of our system at run time can be 
exploited in quite a large number of applications. For 
space restrictions we oniy give some short descriptions 
of a few of them. 

l Dynamically loaded complex predicates could be used 
for selections on image contents during an access of a 
remote and large image collection. 

0 

. 

3 

Dynamically loaded wrappers could be used for gen- 
erating index entries of web pages in Australia for a 
search engine located in Germany. 

Dynamically loaded operators could be used for inte- 
grating new operators in query evaluation plans, for 
example operators for specialized compression tech- 
niques, operators for the efficient processing of “top 
N” queries, operators for ranking intermediate result 
objects or new index based join operators. 

The Implementation of our Query 
Processor 

We used Java as the implementation language for our query 
processor. Since this language was especially designed for 
distributed, dynamically extensible applications, it seemed 
to be the right choice. The key objectives of our query 
processor, namely portability, security (discussed in Section 
3.4) and extensibility, could not have been realized in 
this extent without Java. This programming language has 
spread at an enormous speed the last few years. A Java 
VM is available for nearly every computer platform and 
with it our query processor can run on these platforms. 
The extensibility is achieved by the dynamic class loading 
mechanism of Java and the use of special (Java-) interfaces, 
which are provided by us. These would be the interfaces, 
through which dynamically loaded code could interact with 
the query processor. At the moment we support two 
interfaces: 

In our query engine there is an interface for objects, 
which are responsible for performing predicate evalua- 
tion on data elements. By the use of this interface users 
can integrate their own specialized predicates. 

Implementing our interface for iterators in a self-written 
class is another possibility to be able to incorporate 
objects into a running server process. In this way new 
wrappers, user definied functions or iterators can be 
added to the query engine at run time. All of the example 
applications mentioned above are using this feature. 

In summary our server program (which contains the query 
processor) is able to provide the following services: 

l Exporting data, which is locally managed by the server 
process itself. 

l Providing some core functionality, which can be used by 
queries or sub-queries running on that server. 

l Accepting (parts of) query evaluation plans for execu- 
tion, in order to exploit idle machine resources. 

In the following we give an overview of our implementa- 
tion. 

551 



3.1 Execution Eugine Basics 

The overall architecture of our query processor is based on 
the iterator model. We also adopted proposed extensions 
to this model to support distributed and parallel execution 
(Send- and Receive-iterators) of query evaluation plans in 
an iterator-based query processor. See [GrBO, Gra93] for 
details of the iterator model and the mentioned extensions. 

3.2 Query Evaluiation Plans 

The starting point for a distributed query evaluation is a plan, 
which looks like a plan for local query processing. The only 
difference is the existence of three additional annotations 
for each iterator in this plan. One annotation denotes 
the execution server for this iterator, another indicates if 
this iterator (together with the whole subtree rooted at this 
iterator) should be executed in a new thread. The last 
additional annotation is a URL, which points to the code for 
that iterator. 

The client machine then starts with a depth-first traversal 
of the plan in order to instantiate the iterators. If we find 
an iterator with a site annotation different from the local 
machine, the iterator together with the subtree rooted at it 
is sent to the specified site and the traversal starts anew for 
that subtree. The communication link between the two parts 
of the distributed plan is provided by the runtime system. 

The actions for the threading annotations look similar but 
are handled with a higher priority during plan distribution 
than the ones for site annotation. The execution of iterator 
subtrees in separate threads can be used for exploiting a 
multi-processor machine, but its main purpose in our system 
is to reduce the effect of slow communication links. 

If the code URL of an iterator points to a WWW-server, 
the Java class loader local to the query fetches the particular 
class. Of course predefined iterators can be loaded from the 
local code base of the server and need not be requested over 
the network. 

3.3 Generating Query Evaluation Plans 

In order to test various plans without the interaction of an 
optimizer, there exists the possibility to specify a query 
evaluation plan in the form of an XML document. This 
way is also suitable for composing plans with new operators 
embedded. For the crgeation of such a document an XML 
editor could be used. The XML document can be further 
enriched with information about parameters needed for the 
execution of a plan, just like host variables in embedded 
SQL. We have built a servlet, which uses this information 
to create an HTML form and presents this form to the user. 
After the user has specified the values for the parameters, 
the servlet instantiates the query evaluation plan, initiates the 
execution of the query and transforms the query result into 
an HTML page. 

The optimization of queries in the context of our query 
processor is an ongoing work. Currently we have an opti- 
mizer capable of generating plans in the way the optimizer 

used in the Garlic project [HKWY97] works. But as st.ated. 
earlier our system is more flexible than the Garlic approach., 
which means that optimization will be more difficult. 

3.4 Securi@ 

The security problem we are talking about in this section 
goes beyond authorization or authentication normally ad- 
dressed in discussions about this subject in database systems. 
Obviously, a distributed system like ours must support au- 
thorization and authentication like any other database. In 
addition, special security issues arise from the extensibility. 
Code supplied by a user can be executed at any server-site. 
Without special security precautions nobody would be will- 
ing to run a copy of our query processor on their sites. ‘The 
imported code has to be executed in a “sandbox” protecting 
the server machine from hostile users. Fortunately, Java 2 
provides a rich framework for solving such security issues, 
which we used in our implementation. 

4 Conclusion 
We have installed our system on several sites at the Univer- 
sity of Passau and, for testing in a larger scale environment, 
at the University of Mannheim and the University of Mary- 
land, CP We demonstrate how it works with a small “demo” 
travel agency application as described in Section 2. 

References 
[GMPQ+97] H. Garcia-Molina, Y. Papakonstantinou, 

D. Quass, A. Rajaraman, Y. Sagiv, J. D. 
Ullman, V. Vassalos, and J. Widom. The 
TSIMMIS approach to mediation: Data 
models and languages. Journal of h’el- 
ligent Information Systems, 8(2):117-132, 
March/April 1997. 

[Gra90] G. Graefe. Encapsulation of parallelism in the 
volcano query processing system. In Proc. of 
the ACM SIGMOD Con5 on Management of 
Data, pages 102-l 11, Atlantic City, NJ, USA, 
June 1990. 

[Gra93] G. Graefe. Query evaluation techniques for 
large databases. ACM Computing Survqw, 
25(2):73-170, June 1993. 

[HKWY97] L. Haas, D. Kossmann, E. Wimmers, and 
J. Yang. Optimizing queries across diverse 
data sources. In Proc. of the Co@ on Very 
Large Data Bases (VLDB), pages 276-285, 
Athens, Greece, August 1997. 

[MS971 M. Tork Roth and P. M. Schwarz. Don’t scrap 
it, wrap it! A wrapper architecture for legacy 
data sources. In VLDB’97, Proc. of the Coqf 
on Very Large Data Bases (VLDB), pages 
266-275, Athens, Greece, August 1997. 

552 


