DOMINO: Databases fOr MoviNg Objects tracking

Ouri Wolfson Prasad Sistla

1. BACKGROUND

Consider a database that represents information about moving
objects and their location. For example, for a database
representing the location of taxi-cabs a typical query may be:
retrieve the free cabs that are currently within 1 mile of 33 N.
Michigan Ave., Chicago (to pick-up a customer); or for a
trucking company database a typical query may be: retrieve the
trucks that are currently within 1 mile of truck ABT312 (which
needs assistance); or for a database representing the current
location of objects in a battlefield a typical query may be: retrieve
the friendly helicopters that are in a given region, or, retrieve the
friendly helicopters that are expected to enter the region within
the next 10 minutes. The queries may originate from the moving
objects, or from stationary users. We will refer to applications
with the above characteristics as moving-objects-database
(MOD) applications, and to queries as the ones mentioned above
as MOD queries.

In the military MOD applications arise in the context of the
digital battlefield (see [1]), and in the civilian industry they arise
in transportation systems. For example, Omnitracs developed by
Qualcomm (see [2]) is a commercial system used by the
transportation industry, which enables MOD functionality. It
provides location management by connecting vehicles (e.g.
trucks), via satellites, to company databases. The vehicles are
equipped with a Global Positioning System (GPS), and they
automatically and periodically report their location.

2. RESEARCH ISSUES

Currently, MOD applications are being developed in an ad hoc
fashion. Database Management System (DBMS) technology
provides a potential foundation upon which to develop MOD
applications, however, DBMS's are currently not used for this
purpose. The reason is that there is a critical set of capabilities
that are needed by MOD applications and are lacking in existing
DBMS's. The following is a discussion of the needed
capabilities.

(A) Location Modeling.

Existing DBMS's are not well equipped to handle continuously
changing data, such as the location of moving objects. The reason
for this is that in databases, data is assumed to be constant unless

Permission to make digital or hard copics of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the {irst page. To copy
otherwise, 10 republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGMOD '99 Phildelphia PA

Copyright ACM 1999 1-58113-084-8/99/05...85.00

Bo Xu Jutai Zhou
EECS Department, University of lllinois at Chicago

{wolfson,sistla,bxu,jzhou} @ eecs.uic.edu

547

Sam Chamberlain
Army Research Laboratories

wildman @ arl.mil

it is explicitly modified. For example, if the salary field is 30K,
then this salary is assumed to hold (i.e. 30K is returned in
response to queries) until explicitly updated. Thus, in order to
represent moving objects (e.g. vehicles) in a database and answer
queries about their location, the vehicle's location has to be
continuously updated. This is unsatisfactory since either the
location is updated very frequently (which would impose a
serious performance overhead), or, the answer to queries is
outdated. Furthermore, assuming that the location updates are
generated by the moving objects themselves and transmitted via
wireless networks, frequent updating would also impose a
serious wireless bandwidth overhead.

(B) Linguistic Issues.

Generally, a query in MOD applications involves spatial objects
(e.g. points, lines, regions, polygons) and temporal constraints.
Consider for example the query: “Retrieve the objects that will
intersect the polygon P within the next 3 minutes”. This is a
spatial and temporal range query. The spatial range is the
polygon P, and the temporal range is the time interval between
now and 3 minutes from now. Similarly, there are spatio-
temporal join queries such as: “Retrieve the pairs of friendly and
enemy aircraft that will come within 10 miles of each other, and
the time when this will happen.” Traditional query languages
such as SQL are inadequate for expressing such queries.
Although spatial and temporal languages have been studied in
the database research community, the two types of languages
have been studied independently, whereas for MOD databases
they have to be integrated. Furthermore, spatial and temporal
languages have been developed for data models that are
inappropriate for MOD applications (due, for example, to the
modeling problem mentioned above).

(C) Indexing.

Observe that the number of moving objects in the database may
be very large (e.g., in big cities with millions of inhabitants).
Thus, for performance considerations, in answering MOD
queries we would like to avoid examining the location of each
moving object in the database. In other words, we would like to
index the location attribute. The problem with a straight-forward
use of spatial indexing for this purpose is that the continuous
change of the locations implies that the spatial index has to be
continuously updated. This is clearly an unacceptable solution.

(D) Uncertainty/Imprecision.

The location of a moving object is inherently imprecise because,
regardless of the policy used to update the database location of
the object (i.e. the object-location stored in the database), the
database location cannot always be identical to the actual
location of the object. This inherent uncertainty has various
implications for database modeling, querying, and indexing. For
example, for range queries there can be two different kinds of



answers, i.e. the set of objects that "may" satisfy the query, and
the set that "must” satisfy the query. Thus, different semantics
should be provided for queries. Another approach would be to
compute the probability that an object satisfies the query.
Although uncertainty in databases has been studied extensively,
the new modeling and spatio-temporal capabilities needed for
moving objects necessitate revisiting existing solutions.

Additionally, existing approaches to deal with uncertainty
assume that some uncertainty information is associated with the
raw data stored in the database. How is this initial uncertainty
obtained? For MOD applications the question becomes how to
quantify the location uncertainty? How to quantify the tradeoff
between the updating overhead and the uncertainty/imprecision
penalty, and how frequently should a moving object update its
location. How to handle the possibility that a moving object
becomes disconnected and cannot send location updates?

3. THE DOMINO APPROACH

Therefore, there is a critical set of capabilities that have to be
integrated, adapted, and built on top of existing DBMS's in order
to support moving objects databases. The objective of our
Databases fOr MovINg Objects tracking (DOMINO) project is to
build an envelope containing these capabilities on top of existing
DBMS's. The key features of our approach are the following.

(1) Dynamic Attributes.

In our opinion, the key to overcoming the location modeling
problem is to enable the DBMS to predict the future location of a
moving object. Thus, .when the moving object updates the
database, it provides not only its current location, but its
expected future locations. For example, if the DBMS knows the
speed and the route of a moving object, then it can compute its
location at any point in time without additional updates.

Thus, we proposed a cata model called the Moving Objects
Spatio-Temporal (or MOST for short) model. Its novelty is the
concept of a dynamic attribute, i.e. an attribute whose value
changes continuously as time progresses, without being explicitly
updated. So, for example, the location of a vehicle is given by its
dynamic attribute which consists of motion plan (e.g., north on
route 481, at 60 miles/hour). In other words, we devise a higher
level of data abstraction where an object’s motion plan (rather
than its location) is represented as an attribute of the object.
Obviously, the motion plan of an object can change (thus the
dynamic attribute needs to be updated), but in most cases it does
so less frequently than the location of the object. We devised
mechanisms to incorporate dynamic attributes in existing data
models and capabilities to be added to existing query processing
systems to deal with dynamic attributes.

(2) Spatial and Temporal Query Language.

We introduced a query language called Future Temporal Logic
(FTL) for query and trigger specifications in moving objects
databases. The language is natural and intuitive to use in
formulating MOD queries, and it is basically SQL augmented
with temporal operators (e.g. SOMETIME-DURING, UNTIL,
LATE) and spatial operators (e.g. INSIDE-REGION).

(3) Indexing Dynamic Attributes.

We propose the following paradigm for indexing dynamic
attributes. The indexing problem is decomposed into two sub-

548

problems; first is the geometric representation of a dynamic
attribute value (i.e. a moving object's speed, initial location, and
starting time) in multidimensional time-space, and second is the
spatial indexing of the geometric representation. The geometric
representation subproblem concerns the question: how to
construct the multidimensional space, and how to map an object
(more precisely, a dynamic attribute value) into a region (or a
line, or a point) in that space, and how to map a query into
another region in that space, so that the result of the query are
the objects whose regions intersect the query region. The object
region is updated only when the dynamic attribute is explicitly
updated (e.g. when the speed of the object changes) rather than
continuously. The spatial indexing subproblem concerns the
question how to find the intersection-of-regions mentioned above
in an efficient way. The latter subproblem can be solved by an
existing spatial indexing method, but it is an open problem
which method is most appropriate for a particular geometric
representation and dynamic attribute values distribution. We
have devised several solutions to the geometric representation
subproblem.

(4) Uncertainty/Imprecision Management.

We extended our data model, query language, and indexing
method to address the uncertainty problem. The data model was
extended by enabling the provision of an uncertainty interval in
the dynamic attribute. More specifically, at any point in time the
location of a moving object is a point in some uncertainty
interval, and this interval is computable by the DBMS. Thus, the
DBMS replies to a query requesting the location of a moving
object m with the following answer A: "m is on route 693 at
location (x,y), with an error (or deviation) of at most 2 miles".
The bound b on the deviation (2 miles in the above answer) is
provided by the moving object, i.e. the object commits to send a
location update when the deviation reaches the bound.

The FTL language is also extended. We devised two extensions,
a qualitative one and a quantitative one. In the qualitative
extension, two kinds of semantics, namely MAY and MUST
semantics, are incorporated, and the processing algorithms are
adapted for these semantics. The indexing method is also
extended to enable the retrieval of both, moving objects that
"must be" in a particular region, and moving objects that "may
be" in it. In the quantitative extension, the location of the moving
object is a random variable, and the uncertainty interval, the
network reliability and other factors are used to determine a
density function for this variable. An algorithm was developed to
associate with each object retrieved in response to a range query,
the probability that the object satisfies the query.

We also addressed the question of determining the uncertainty
associated with a dynamic attribute, i.e. the bound b mentioned
above. We proposed a cost based approach which captures the
tradeoff between the update overhead and the imprecision. The
location imprecision encompasses two related but different
concepts, namely deviation and uncertainty. The deviation of a
moving object m at a particular point in time ¢ is the distance
between m's actual location at time t, and its database location at
time t. For the answer A above, the deviation is the distance
between the actual location of m and (x,y). On the other hand,
the uncertainty of a moving object m at a particular point in time
t is the size of the interval in which the object can possibly be.



For the answer A above, the uncertainty is 4 miles. The deviation
has a cost (or penalty) in terms of incorrect decision making, and
so does the uncertainty. The deviation (uncertainty) cost is
proportional to the size of the deviation (uncertainty). The
tradeoff between imprecision and update overhead is captured by
the relative costs of an uncertainty-unit, a deviation-unit, and an
update-overhead unit. Using the cost model we propose update
policies that establish the uncertainty bound b in a way that
minimizes the expected total cost. Furthermore, we propose an
update policy that detects disconnection of the moving object at
no additional cost.

4. THE DEMONSTRATION

We will demonstrate the following features of Domino:

4.1 System Architecture

Our Domino system is the third in a three-layer architecture (see
Figure 1). The first layer is an Object Relational DBMS. The
database stores the information about each moving object,
including its plan of motion. The second layer is a GIS that adds
capabilities and user interface primitives for storing, querying,
and manipulating geographic information. The third layer,
Domino, adds temporal capabilities, capabilities of managing the
uncertainty that is inherent in expected future motion plans, and
a simulation testbed. Currently, Domino uses the Informix
DBMS and the Arc-View GIS.

DOMINO

ArcView GIS
Informix DBMS

Figure 1: System architecture

4.2 Motion Plan Specification

The motion plan of a moving object is a sequence of location-
time points, (pl,t1), (p2,:2),...(pn,tn), indicating that the object
will be at geographic point pI at time ¢/, at geographic point p2
(closer to the destination than pl) at time #2 (later than /), etc.
The plan is interactively specified by the user on a GIS on a map.
The moving object updates the database whenever the deviation
from the plan exceeds a prespecified bound given in terms of
distance or time. The update includes a revised plan and possibly
a new bound on the deviation. Maintaining plan information
enables queries pertaining to both, the current and future
locations of the moving object, for example:

Q1 = Retrieve the moving objects that are expected to be in a
given region R sometime during a given time interval I.

Also, queries may pertain to future arrival times, for example:

Q2 = Retrieve the moving objects that are expected to be late at
their destination by more than one hour.

4.3 Spatio-temporal Capabilities

We will demonstrate the spatial and temporal primitives of the
FTL query language and its answer-display screen. The
primitives are given in graphical format, and they can be
combined with textual SQL in a natural and intuitive way. For

example, in the query Q1 above the region R may be drawn with
a mouse on a real GIS map, and the time interval / may be
specifiea on a graphical timeline. Then / and R can be
incorporated in the textual part of an FTL query. Clearly, since
FTL is an extension of SQL, the query can also include regular
literals, e.g., WEIGHT > 5000. Information about the moving
objects that satisfy the query is displayed in textual form, and the
location of each such moving object is displayed as a point on the
map.

4.4 Uncertainty

We will demonstrate the capabilities of the FTL query language
and its answer-display screen in dealing with uncertainty. These
include MAY and MUST semantics for queries. In other words,
the query Q1 above can be specified with MAY or MUST
semantics. Under the MAY semantics, an object will be retrieved
if its uncertainty interval intersects the region R sometime during
the interval /. Under the MUST semantics, an object will be
retrieved if its uncertainty interval is wholly contained in the
region R sometime during the interval I. The location of each
moving object retrieved is displayed on the map, along with the
uncertainty interval currently associated with the location.

4.5 Simulation Testbed

We will demonstrate a simulation testbed in which the
performance of a moving objects database application can be
evaluated. The input to the simulation system is a set of moving
objects, their motion plans, their speed variations over time, the
cost of deviation, the cost of uncertainty, the cost of
communication, the wireless bandwidth distribution over the
geographic area, and the location update policy used by each
moving object. The objective is to determine the performance of
MOD queries, as well as to answer questions such as: How many
objects can be supported for an average imprecision that is
bounded by x, and a wireless bandwidth allocated to location
updates that is bounded by y? Or, given n moving objects and a
bound of 10% on the imprecision, what percentage of the
bandwidth is used for location updates?

5. REFERENCES

[11 S. Chamberlain, Model-Based Battle Command: A
Paradigm Whose Time Has Come, 1995 Symp. on C2
Research and Technology, June {995.

[2] OmniTRACS, Communicating Without Limits,
http://www.qualcomm.conmyProdTech/Omni/prodtech/omnis
ys.html.

[31 O. Wolfson, L. Jiang, P. Sistla, S. Chamberlain, N. Rishe,
M. Deng, Databases for Tracking Mobile Units in Real
Time, Springer-Verlag Proceedings of the Seventh
International Conference on Database Theory (ICDT),
Jerusalem, Israel, Jan. 10-12, 1999.

(4] O. Wolfson, B. Xu, S. Chamberlain, L. Jiang, Moving
Objects Databases: Issues and Solutions, Proceedings of the
10th International Conference on Scientific and Statistical
Database Management (SSDBM98), Capri, Italy, July 1-3,
1998, pp. 111-122.



